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1 Problem Setup

Consider an HMM with 7' time steps, M discrete states, and K-dimensional observations as
in Figure 1, where z; € {0, 1}, ||z;|| = 1, x, € R¥ for t € [T.
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Figure 1: A hidden Markov model.

The joint distribution factorizes over the graph:
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Now consider the parameterization of CPDs. Let w € R™ be the initial state distribution
and A € RM*M he the transition matrix. The emission density f(-) is parameterized by ¢;
at state 7. In other words,

p(z = 1) = m, p(z1) = HEZM, (2)

M M
plzyy = 1z15 = 1) = ayy, p(2¢|Z-1) HHG? R t=2,....,T (3)
i=1 j=1
M
p<Xt|Zti = ]_) = f(Xt, ¢l)a Xt|Zt Hf Xta d)’b Z”, t = 1, e 7T. (4)
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Define 6 = (m, A, {¢:}}2,) to be the set of parameters of the HMM.



2 The Baum-Welch algorithm

Let p be the empirical distribution of x.7. We would like to find MLE of 8 by solving the
following problem:

max Ex,.r~p [log pe(x1.7)] - (5)

However the marginal likelihood is intractable due to summation over M7 terms:
po(X1.1) = ZPQ(XI:szlzT)- (6)
Zi.T

A variational distribution ¢(z;.77) can be introduced to derive a lower bound of the marginal
likelihood:

L(x1.7;0, q) = log po(x1.:7) — KL [Q<Z1:T)||p6(Z1:T|X1:T)l (7)
>0
= By rq log po(xir, 21.7)] +H [g(217)] - (8)
—F(x1.736)

The EM algorithm maximizes the lower bound as a surrogate:

max Ex,.rnp [L(x1:7: 6, q)] - 9)

Alternatively maximizing (9) w.r.t. (6, ¢) results in the following updates:

o (E-step) Maximize (7) w.r.t. ¢:

¢ (z11) = ar(gmi)n KL [q(z1.7)||po(2z1.7|%1:7)] (10)
q\z1.T
= pe(Z1:T|X1:T)- (11)

The optimal ¢* is the posterior parameterized by the current 6.

o (M-step) Maximize (8) w.r.t. 6:

0 = argmax Ey, 5 [F(x1.7;0)] (12)
0

The optimal 6* is the MLE of a fully observed model, where the “observed” hidden
variables zq.7 follow ¢*, the posterior parameterized by the current 6.



3 The M-step objective

The factorization (1) allows decomposition of expected joint likelihood:

F(XI:T; 6) - EZLT’VQ [1ng9(X1:T7 Zl:T)] (13)
I T T
= By g |logp(z1) + ) logp(zilzi1) + ) 1ogp<xt|zt>] (14)
L t=2 t=1
M T M M
= Ezlszq Z 213 lOg v Zl T~q [Z Z Z thlyiztj lOg aij] (15)
Li=1 t=2 i=1 j=1
T M
B[ 353 1ogf<xt;¢i>]. (16)
t=1 i=1
Define shorthands v and & for the posterior expectations:
Y(2) =Epy g l21), t=1,...,T (17)
§(Zt—1,i7 th) = EZl:T"’q [zt_lviztj] . t = 27 “e ,T (18)

Then

T M M
F(xy.7;0) —Z (z11) logm—i-ZZZﬁ 214, 25) log a;; (19)

=1 t=2 =1 j=1

T M
+ZZ’Y zi) log f(x¢; ¢i). (20)

t=1 i=1

4 Parameter estimation given v and &

Suppose 7 and & are given. The MLE (12) has closed form for 7 and A:

M
I1£l€a§ EXLTNI’)\ Z ’Y(Zli) log ﬂ—i] = W; X Exl:TNﬁ [7(211)] ’ (21)
Li=1
T M T
max Fuxrp D> &1 245) log aij] = a5 X Ex,pnp [Zf(zt—lm th)] - (22)
Lt=2 i=1 t=2

The MLE of ¢ has closed form depending on the choice of f(-). For instance, when emission
is isotropic Gaussian,

f(xe i) = N(Xt;.u’iaazzj)’ (23)

whose log-density is

log f(xs; ¢i) = Ixe — g5 + constant, (24)
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then the corresponding MLE problem
T
ﬁlaég Ex,.r~p [Z V(21:) log f (x4 ¢z)] (25)
©7i t=1

has closed form

Eaiond | St 1% Fans | S 1) %0 — il

Eormp [Zthl 'y(zti)} LT Ex,r~p [Zf:l V(Zti)K} . 20

*
i =

5 Exact inference for v and &

Recall in (17) and (18) the expectation is taken w.r.t. the posterior parameterized by the
current estimate 0:

q(z1.1) = py(Zrr[X1r), (27)
which means v and £ are in fact unary and pairwise posterior marginals:
V(21:) = Eaypmg (2] = Pg(20 = 1|x0r), (28)
§(2-145 2t) = Baypmg [2e-1,25] = Pg(2i-1,25 = 1X17). (29)
The goal of this section is to perform inference for all such marginal queries:
Y(z) = pylze|x1r), t=1,...,T (30)
f(thly Zt) = pQA(thla Zt|X1;T)- t=2,...,T (31)
For convenience, the notation 6 will be omitted from now on.

Belief propagation provides an efficient way to perform exact inference on tree-structured
graphs such as HMM. First recall that a Bayesian network conditioned on evidence induces a
Gibbs distribution defined over reduced factors. In the case of posterior inference in HMM,
the graph reduced by the evidence x;.r is simply a chain:

Z]_ Z2 ... ZT

where the factors, i.e., initial clique potentials are defined as

Y1(z1) = p(z1)p(x1|21), (32)
Vi(2z—1,2¢) = p(Ze|2e—1)p(X¢|2¢), t=2,...,T (33)
Yria(zr) =1, (34)



so that the posterior is the following Gibbs distribution:

p(zrr|x1r) = Z(P:LT) - p(z1.7), (35)
P(zrr) = Yi(z1) - Hl/) (Ze-1,2¢) - Y11 (27), (36)
Z(x1.1) Z p(Z1.7)- (37)

The junction tree of the reduced graph is again a chain with clique size at most two:

Z1 Zo Z3 ZT -1 zT
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The chain structure makes message passing particularly straightforward: there are only two
types of messages, forward and backward.

The forward sum-product messages are

a(z1) = i(z1) = p(z1)p(x1]21), (38)
2) = ) i(z1,20)a(z1) (39)

Zt—1

= p(xilze) > plzalzr)a(ze). t=2,...,T (40)

Zt—1

The backward sum-product messages are

B(zi-1) Zl/)t Zi-1,2t) 3(2t) (41)
:Zp zt|2e—1)p(X¢|2e) B(2e), t=2,...,T (42)

B(zr) = Yri(zr) = 1. (43)

Clique beliefs are product of initial clique potential and incoming messages:

c(z1) = ¥1(21)B(z1) = a(z1)8(21), (
C<Zt717 Zt) = wt(ztfla Zt)a(zt—l)ﬁ(zt) (45

= p(2¢|2ze—1)p(x¢t|ze)(24-1) B(2e), t=2,...,T (

(

c(zr) = ¥r(zr)a(zr) = a(zr).

Sepset beliefs are product of corresponding messages:

s(z) = a(z)f(ze). t=1,...,T (48)



At calibration, the beliefs represent unnormalized marginals:

c(z1) = p(z1), (49)
c(ze_1,2¢) = p(ze-1,2¢), t=2,...,T (50)
c(zr) = p(zr), (51)
s(zy) =p(ze), t=1,....T (52)

which means the partition function Z(x;.7) can be computed by summing any of the beliefs:
doelm) = Yz z) =Y clzr) = s(z) =Y plarr) = Z(xix). (53)
Z1 Zt—1,2¢t zr Zt z1.T7

Finally, the marginal queries can be computed by normalizing the beliefs:

V(2e) = Z(;:T) 5(z0); (54)
§(2zi-1,2) = Z(;:T) c(Zi-1,2¢), (55)

It is not a coincidence that the messages are named « and (: the above belief propagation
procedure is precisely the forward-backward algorithm in terms of (o, 3)-recursion.

6 Scaling (o, 3) messages

Implemented as presented above, the (a, 8)-recursion is likely to encounter numerical insta-
bility due to repeated multiplication of small values. One way to mitigate the numerical
issue is to scale (o, ) messages at each step t, so that the scaled values are always in some
appropriate range, while not affecting the inference result for (7, £).

Recall that the forward message is in fact a joint distribution

a(ze) = p(X14, 2)- (56)

Define scaled messages by re-normalizing o w.r.t. z;:

Furthermore, define

r1 = Z(x1), (59)
Z(x1.4)
Ty = 7 Xea) t =2, ,T (60)



Notice that Z(xy.4) =7 -+ -1y, hence

a(zy) = - o(zy). (61)

T’l.--’r’t

Plugging & into forward messages, the new a-recursion is

. 1

a(z1) = E - p(z1)p(x1(21) (62)
a(z1)

. 1 )

a(zy) = - p(xilze) Y p(zilze1)ilzimy) . t=2,...,T (63)

a(zt)
Since & is normalized, each r; serves as the normalizing constant:
r=>_a(z). (64)
Zt

Now switch focus to 8. In order to make the inference for (v, &) invariant of scaling, 8 has to
be scaled in a way that counteracts the scaling on a. Plugging & into the marginal queries,

V(Zt) = Z(XI:T) TR A7 d(zt)ﬂ(zt), (65)
S(ZH, Zt) = @ 'p(Zt|Zt—1)p(Xt|Zt) Ty Tg—1 d(zt_l)ﬁ(zt). (66)
Since Z(X1.r) = r1...7rr, a natural scaling scheme for /3 is
A 1
5(Zt—1) = - '5<Zt—1)7 t:2,,T (67)
Blzr) = Blzr), (68)
which simplifies the expression for marginals (7, ) to
v(ze) = d(zt)ﬁ(zt% (69)
f(Zt—th) = 7“% 'p(zt|Zt—1)p<xt‘Zt>d(zt—1)6(zt) (70)

The new B—recursion can be obtained by plugging B into backward messages:

Bz ) = Tit S plalm )p(xlz)Bz), t=2,.T (71)

~

B(zr) = 1. (72)
In other words, 3(z,_1) is scaled by 1/r, the normalizer of G(z,).

The full algorithm is summarized below.



Algorithm 1 Exact inference for (7, §)

1. Scaled forward message for ¢t = 1:

. .
a(z1) = — - a(z1)
T1
2. Scaled forward message for t =2,...,T":
a(z) = p(xalze) > plzalze1)d(zi1)
Zi—1
re=>_ a(z)
(a) = (e
a(zy) = — - a(z
t r t
3. Scaled backward message for t =T + 1:
Blzr) =1

4. Scaled backward message for t =T, ...,2:
~ 1 ~
B(z1) = T_t : zzp(zt|zt—1)p(xt|zt)ﬁ(zt)

5. Unary marginal for t =1,...,T"

’Y(Zt) = @(Zt)B(Zt)

6. Pairwise marginal for t =2,...,7T"

1 .
§(Zi—1,2¢) = T_t (2| Ze—1)p(X¢|20) (20 -1) B(2Z4)




