10-708 PGM (Spring 2019): Homework 4

Andrew ID: [your Andrew ID]
Name: [your first and last name]
Collaborators: [Andrew IDs of all collaborators, if any]

1 Reinforcement Learning (Lisa) [30 pts]

All questions and material for this section are contained in the Colab notebook:
https://colab.research.google.com/drive/1VkoRfg_thJuRyW1ZXFNvPcRrviR1x09I
You do not need to submit your Colab notebook, as there are no implementation questions.

Important Note: As mentioned in Section 2.1 of the Colab notebook, we do not assume the action prior
p(at | s¢) to be uniform, and we define S;(s¢, a;) differently, so derivations may be slightly different than in
the original tutorial [I].

1.1 Exercise 1.5.1: Q-Learning (2 pts)

Train Q-Learning, then evaluate the learned greedy policy Tgreedy(a | s) := arg max, Q(s, a) on the environ-
ment.

(1 pt) Describe the policy Tgreedy il Words — how does it behave?

_

(1 pt) How does Tgreedy compare to the uniform policy in Section 1.4.1 in terms of average total reward?

_

1.2 Exercise 2.3.1: Non-Uniform Action Priors (4 pts)

(4 pts) Let r(s¢ ar) and p(ay | s¢) be any given reward function and action prior, respectively. Show that there
exists some reward function 7 (s, a;) such that the posterior distribution p(7 | 01.7) is equal for the
following combinations of reward function and action prior:

1. r(s¢,ar) and p(ay | s¢).
2. 7r1(s¢,at) and a uniform action prior.

Write down the expression for 71 (s, at) in terms of r(s¢, ar) and p(as | st).

https://colab.research.google.com/drive/1VkoRfg_thJuRyWlZXFNvPcRrviRlxO9I

1.3 Exercise 2.4.1: Derivation of f;(s;) Update (2 pts)

(2 pts) Show that the backward messages satisfy the following update equation for S;(s;):

~—

5t(8t) = Z ﬁt(styat) (1

at€A

1.4 Exercise 2.4.2: Derivation of j;(s;,a;) Update (6 pts)
(6 pts) Show that the backward messages satisfy the following update equation for S;(s¢, ar):

Be(s¢,at) = Z Be1(St41)T (St41 | 5¢,a4)p(O4, ar | 5¢) (2

st4+1€S

~

1.5 Exercise 2.4.3: Derivation of the Optimal Policy (2 pts)

(2 pts) Show that the optimal policy p(as | s¢, Or.1) satisfies

5t(5t7 Clt)

p(at | 5t70t:T): 5t(8t)

1.6 Exercise 2.6.1: Uniform Action Prior (1 pts)

Run message-passing algorithm using a uniform action prior p(a: | s¢) = AT

(1 pts) How does the learned policy compare to the Q-Learning policy Tgreedy from Exercise 1.5.1 in terms of
behavior and average total reward?

1.7 Exercise 2.6.2: Soft Action Prior (2 pts)

Run message-passing algorithm using a “soft” action prior 7(a | s;¢) for ¢ = 0.5.

(1 pts) How does the learned policy compare to the one from Exercise 2.6.1 (using uniform action prior) in
terms of behavior and average total reward?

(1 pts) (True or False) If ¢ > |—j“, then using the action prior 7(a | s;¢) instead of a uniform action prior

is equivalent to changing the reward function r (s, a;) such that the agent receives relatively greater
reward for taking the action a; =— in any state, and less reward otherwise.

1.8 Exercise 2.6.3: Hard Action Prior (1 pts)

Run message-passing algorithm using a “hard” action prior 7(a | s;¢) for ¢ = 1.0.

(1 pts) How does the learned policy compare to the Q-Learning policy Tgrecdy from Exercise 1.5.1 in terms of
behavior and average total reward?

1.9 Exercise 3.1.1: Unknown Transition Dynamics (2 pts)

Suppose we don’t know the transition dynamics T (s¢11 | s, at).

(1 pt) (True or False) Can you learn the optimal policy via Q-learning?

(1 pt) (True or False) Can you learn the optimal policy via Message-Passing?

1.10 Exercise 3.1.2: Equivalence (8 pts)

(8 pts) Is it the case that the optimal message-passing policy can be equivalent to the one discovered by
Q-learning? If yes, under which conditions? If no, why not?

2 Bayesian Nonparameterics (Maruan) [30 pts]

2.1 Some properties of the Dirichlet distribution (10 pts)

Let (71,72, ..., 7)) ~ Dir(ay, ..., an).

(5 pts) Show that (m + 72,73 ..., 7,) ~ Dir(ay + o, as, ..., a,). (Hint: Prove by induction.)

(5 pts) Show that
(T2, mn)

~ Di .
o+ + T, ir(az,.., an)

2.2 Posterior of the Dirichlet Process (10 pts)

Let H be a distribution over © and let « be a positive scalar. For any finite, measurable partition Ay,..., A,
of ©, GG is defined to be a Dirichlet process with the base distribution H and concentration parameter «,
denoted by G ~ DP(a, H), if

G(41),...,G(A;) ~ Dir(aH(Ay),...,aH(A,)).

Suppose we have observations X7, ..., X,,, which we assume are drawn from G. Assuming we have the prior
G ~ DP(«, H), derive the posterior distribution for G | X1, ..., Xn.

(Hint: Thinking about conjugacy between the Dirichlet and Multinomial distributions would be helpful.)

2.3 Gaussian Processes (10 pts)

(5 pts) The main trick behind deep kernel learning [2] is to define a kernel function on the input space through
another kernel on the latent space. If we have inputs x € RP that are transformed by a deep neural net
into some new representation h(z), we compute the kernel, k(x,z’), in the following manner:

k(x,2") = k(h(z), h(z)), (1)

where is k(-,-) is called the base kernel. Assuming that the hidden space is bounded and k(-,-) is a
valid kernel function (see definition below) defined on the hidden space, prove that k(x,2’), as defined
in 7 is similarly a valid kernel function on the input space.

Definition (Valid kernel function). We call a two-argument function, x : X x X — R a valid kernel
function if it is:

1. symmetric, i.e., k(z,2') = k(2’,z) for all (z,2’) € X2, and

2. positive-semidefinite, i.e., Y ., Z?Zl K(2s,25)cic; > 0 for any finite sequence 1, ..., 2, € X and
any ci,...,cn € R.

_

(5 pts) A simple first-order autoregressive process, AR(1), is defined as follows:

yt:a+byt71+€t7t:1727"'7yOZav (2)

where a and b are some constants and e; ~ A (0,1) is Gaussian noise. AR(1) defines a distribution
over sequence of discrete values, {yo,y1,...} (to sample from this distribution, you can simply run the
forward autoregressive recursion).

Derive a mean, u(t), and a kernel, k(t,t'), functions for a Gaussian process that defines a distribution
over functions, y(t), that coincides with AR(1) for all t =1,2,....

(Hint: Unroll the recursion to compute the mean and covariance functions.)

_

References

[1] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

[2] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning. In
Artificial Intelligence and Statistics, pages 370-378, 2016.

	Reinforcement Learning (Lisa) [30 pts]
	Exercise 1.5.1: Q-Learning (2 pts)
	Exercise 2.3.1: Non-Uniform Action Priors (4 pts)
	Exercise 2.4.1: Derivation of t(st) Update (2 pts)
	Exercise 2.4.2: Derivation of t(st, at) Update (6 pts)
	Exercise 2.4.3: Derivation of the Optimal Policy blue(2 pts)
	Exercise 2.6.1: Uniform Action Prior (1 pts)
	Exercise 2.6.2: Soft Action Prior (2 pts)
	Exercise 2.6.3: Hard Action Prior (1 pts)
	Exercise 3.1.1: Unknown Transition Dynamics (2 pts)
	Exercise 3.1.2: Equivalence blue(8 pts)

	Bayesian Nonparameterics (Maruan) [30 pts]
	Some properties of the Dirichlet distribution (10 pts)
	Posterior of the Dirichlet Process (10 pts)
	Gaussian Processes (10 pts)

