
10-708 PGM (Spring 2019): Homework 4

Andrew ID: [your Andrew ID]
Name: [your first and last name]

Collaborators: [Andrew IDs of all collaborators, if any]

1 Reinforcement Learning (Lisa) [30 pts]

All questions and material for this section are contained in the Colab notebook:

https://colab.research.google.com/drive/1VkoRfg_thJuRyWlZXFNvPcRrviRlxO9I

You do not need to submit your Colab notebook, as there are no implementation questions.

Important Note: As mentioned in Section 2.1 of the Colab notebook, we do not assume the action prior
p(at | st) to be uniform, and we define βt(st, at) differently, so derivations may be slightly different than in
the original tutorial [1].

1.1 Exercise 1.5.1: Q-Learning (2 pts)

Train Q-Learning, then evaluate the learned greedy policy πgreedy(a | s) := arg maxaQ(s, a) on the environ-
ment.

(1 pt) Describe the policy πgreedy in words – how does it behave?

Solution

(1 pt) How does πgreedy compare to the uniform policy in Section 1.4.1 in terms of average total reward?

Solution

1.2 Exercise 2.3.1: Non-Uniform Action Priors (4 pts)

(4 pts) Let r(st, at) and p(at | st) be any given reward function and action prior, respectively. Show that there
exists some reward function r1(st, at) such that the posterior distribution p(τ | o1:T ) is equal for the
following combinations of reward function and action prior:

1. r(st, at) and p(at | st).

2. r1(st, at) and a uniform action prior.

Write down the expression for r1(st, at) in terms of r(st, at) and p(at | st).
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Solution

1.3 Exercise 2.4.1: Derivation of βt(st) Update (2 pts)

(2 pts) Show that the backward messages satisfy the following update equation for βt(st):

βt(st) =
∑
at∈A

βt(st, at) (1)

Solution

1.4 Exercise 2.4.2: Derivation of βt(st, at) Update (6 pts)

(6 pts) Show that the backward messages satisfy the following update equation for βt(st, at):

βt(st, at) =
∑

st+1∈S
βt+1(st+1)T (st+1 | st, at)p(Ot, at | st) (2)

Solution

1.5 Exercise 2.4.3: Derivation of the Optimal Policy (2 pts)

(2 pts) Show that the optimal policy p(at | st, Ot:T ) satisfies

p(at | st, Ot:T )=
βt(st, at)

βt(st)
(3)

Solution

1.6 Exercise 2.6.1: Uniform Action Prior (1 pts)

Run message-passing algorithm using a uniform action prior p(at | st) = 1
|A| .

(1 pts) How does the learned policy compare to the Q-Learning policy πgreedy from Exercise 1.5.1 in terms of
behavior and average total reward?

Solution
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1.7 Exercise 2.6.2: Soft Action Prior (2 pts)

Run message-passing algorithm using a “soft” action prior π(a | s;φ) for φ = 0.5.

(1 pts) How does the learned policy compare to the one from Exercise 2.6.1 (using uniform action prior) in
terms of behavior and average total reward?

Solution

(1 pts) (True or False) If φ > 1
|A| , then using the action prior π(a | s;φ) instead of a uniform action prior

is equivalent to changing the reward function r(st, at) such that the agent receives relatively greater
reward for taking the action at =→ in any state, and less reward otherwise.

Solution

1.8 Exercise 2.6.3: Hard Action Prior (1 pts)

Run message-passing algorithm using a “hard” action prior π(a | s;φ) for φ = 1.0.

(1 pts) How does the learned policy compare to the Q-Learning policy πgreedy from Exercise 1.5.1 in terms of
behavior and average total reward?

Solution

1.9 Exercise 3.1.1: Unknown Transition Dynamics (2 pts)

Suppose we don’t know the transition dynamics T (st+1 | st, at).

(1 pt) (True or False) Can you learn the optimal policy via Q-learning?

Solution

(1 pt) (True or False) Can you learn the optimal policy via Message-Passing?

Solution

1.10 Exercise 3.1.2: Equivalence (8 pts)

(8 pts) Is it the case that the optimal message-passing policy can be equivalent to the one discovered by
Q-learning? If yes, under which conditions? If no, why not?

Solution
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2 Bayesian Nonparameterics (Maruan) [30 pts]

2.1 Some properties of the Dirichlet distribution (10 pts)

Let (π1, π2, . . . , πn) ∼ Dir(α1, . . . , αn).

(5 pts) Show that (π1 + π2, π3 . . . , πn) ∼ Dir(α1 + α2, α3, . . . , αn). (Hint: Prove by induction.)

Solution

(5 pts) Show that
(π2, . . . , πn)

π2 + · · ·+ πn
∼ Dir(α2, . . . , αn).

Solution

2.2 Posterior of the Dirichlet Process (10 pts)

Let H be a distribution over Θ and let α be a positive scalar. For any finite, measurable partition A1, . . . , Ar

of Θ, G is defined to be a Dirichlet process with the base distribution H and concentration parameter α,
denoted by G ∼ DP(α,H), if

G(A1), . . . , G(Ar) ∼ Dir(αH(A1), . . . , αH(Ar)).

Suppose we have observations X1, . . . , Xn, which we assume are drawn from G. Assuming we have the prior
G ∼ DP(α,H), derive the posterior distribution for G | X1, . . . , Xn.

(Hint: Thinking about conjugacy between the Dirichlet and Multinomial distributions would be helpful.)

Solution

2.3 Gaussian Processes (10 pts)

(5 pts) The main trick behind deep kernel learning [2] is to define a kernel function on the input space through
another kernel on the latent space. If we have inputs x ∈ Rp that are transformed by a deep neural net
into some new representation h(x), we compute the kernel, κ(x, x′), in the following manner:

κ(x, x′) = k(h(x), h(x′)), (1)

where is k(·, ·) is called the base kernel. Assuming that the hidden space is bounded and k(·, ·) is a
valid kernel function (see definition below) defined on the hidden space, prove that κ(x, x′), as defined
in (1), is similarly a valid kernel function on the input space.

Definition (Valid kernel function). We call a two-argument function, κ : X ×X 7→ R a valid kernel
function if it is:

1. symmetric, i.e., κ(x, x′) = κ(x′, x) for all (x, x′) ∈ X 2, and
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2. positive-semidefinite, i.e.,
∑n

i=1

∑n
j=1 κ(xi, xj)cicj ≥ 0 for any finite sequence x1, . . . , xn ∈ X and

any c1, . . . , cn ∈ R.

Solution

(5 pts) A simple first-order autoregressive process, AR(1), is defined as follows:

yt = a+ byt−1 + εt, t = 1, 2, . . . , y0 = a, (2)

where a and b are some constants and εt ∼ N (0, 1) is Gaussian noise. AR(1) defines a distribution
over sequence of discrete values, {y0, y1, . . . } (to sample from this distribution, you can simply run the
forward autoregressive recursion).

Derive a mean, µ(t), and a kernel, k(t, t′), functions for a Gaussian process that defines a distribution
over functions, y(t), that coincides with AR(1) for all t = 1, 2, . . . .

(Hint: Unroll the recursion to compute the mean and covariance functions.)

Solution
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