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A few notes on course logistics

e Extra credit: lecture notes

 Signh-up sheet

* Check that you are correctly signed up - any issues, please reach out.

* Project
* Honors-optional component: please reach out.

* HWI

« Posted on website

e Due next Friday via Canvas

« Assignment: Implement a Perceptron in Python
« We'll discuss this in detail next Monday
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https://docs.google.com/spreadsheets/d/1mG8T3ho2CFYZm58VHrrORN6I6lHxQNp_4I9hx6L2M7M/edit?usp=sharing
https://adaptinfer.org/dgm-fall-2025/homework/

Questions about Course Logistics?

©



What is Machine Learning?

Formally, a computer program is said to learn from experience €
with respect to some task 77 and performance measure P if its
performance at 7 as measured by P improves with €.

> Labeled data « TaskT: Learn a function h: X - Y
Supervised Learning > Direct feedback « Experience €: Labeled samples {(x;,y;) Y21

> Predict outcome/future e Performance P: A measure of how good h is

_ > No labels/targets e TaskT: Discover structure in data

Unsupervised Learning > No feedback » Experience €: Unlabeled samples {x;}i%,

> Find hidden structure in data . -
* Performance P: Measure of fit or utility
> Decision process * TaskT: Learn a policym:S - A
Reinforcement Learning  RlEe e At - Experience €: Interaction with environment
> Learn series of actions
* Performance P: Expected reward

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Data Representation

Feature vector
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Data Representation

" T L ]
T X1 % ) Xm
1
T 2] [2]1 ... [2]
Xy X = X X = X1 %) Xm
X = :
‘ T LIS 13 I 1 )
_xm_ _Xn_ _xl X Xm |
Feature vector  Feature Matrix / Design Matrix Feature Matrix / Design Matrix
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Data Representation (structured data)

Sepal Sepal Petal Petal
length width length  width

Setosa

2 4.9 3.0 1.4 0.2 Setosa

50 | 6.4 3.5 4.5 1.2 Versicolor fiE\E

150 | 5.9 3.0 5.0 1.8 Virginica
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Data Representation (unstructured data; images

Convolutional Neural Networks

Image batch dimensions: torch.size([128, 1, 28, 28]) <+—— "NCHW" representation (more on that later)
Image label dimensions: torch.Size([128])
print(images[0].size())

torch.Size([1l, 28, 28])

images[0]

tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0O.0000,

0.0000, 0.0000, 0.0000, 0.0000], 01
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 5 |

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.00007,

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 10 4
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000], 15 1

[0.0000, 0.0000, 0.0000, 0.0000, 0.5020, 0.9529, 0.9529, 0.9529,

0.9529, 0.9529, 0.9529, 0.8706, 0.2157, 0.2157, 0.2157, 0.5176, 20 -
0.9804, 0.9922, 0.9922, 0.8392, 0.0235, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000],

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 25 1
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.6627, 0.9922, 0.9922, 0.9922, 0.0314, 0.0000, 0.0000, 0.0000, 0 5 0 15 20 5
0.0000, 0.0000, 0.0000, 0.0000],

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4980, 0.5529,

0.8471, 0.9922, 0.9922, 0.5961, 0.0157, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000],

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0667, 0.0745, 0.5412, 0.9725, 0.9922,

A annn A annn n ranc A Acan A Annn A nAnnn A Annn A Annn
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Machine Learning Jargon

« Training a model = fitting a model = parameterizing a model =
learning from data

« Training example, synonymous to training record, training instance,
training sample (in some contexts, sample refers to a collection of
training examples)

* Feature, synonymous to observation, predictor, variable,
independent variable, input, attribute, covariate

« Target, synonymous to outcome, ground truth, output, response
variable, dependent variable, (class) label (in classification)

« Output / Prediction, use this to distinguish from targets; here,
means output from the model
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Today: A Brief History of DL

Artificial neurons

Multilayer neural networks

Deep Learning

The DL Hardware & Software Landscape
Current Research Trends

G W N
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A Brief History of ML

1950 1960 1970 1980 1990 2000 2010 2020

Perceptrons KNNs Decision Trees Decision Trees Neural Nets Boosted Trees DNNs LLMs
Neural Nets Bayes Nets Random Forests GBT+RF ??7?
\ SVMs SVMs
15t Coming 2nd Coming
of NNs of NNs
3rd Coming 4t Coming
of NNs of NNs

Courtesy of Rich Caruana
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McCulloch & Pitt’s neuron model (1943)

(1943)

X1

Hard

Linear
Combiner Limiter _
Output

Inputs McCulloch & Pitts

———» ¥

=
e

X2

2% i
Warren McCulloch Walter Pitts
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From biological neuron to artificial neuron

[ ]
« McCulloch & Pitts oE ANDp =
—
neuron: Threshold o y R
and (+1, —‘) We|ght5 nput @ o1 Output r 0o 0
2 1 1 1
* Canrepresent
IIAN DIII IIORII, IINOTII
1 7] Input =1 OR| =& = i
e But not "XOR i @ w1 @ 0 0 0
Y
0 1 1
. XOR nput (25 1,1 Output T 0 d
- ++ 1 1 1
+
+ 1 T
- . NOT T Y
Input @ @ Y 0
W= -1 Output 1 0
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Perceptrons generalize MP neurons

— Continuous n
Wy /D/ Weighting ACt'V?t'on
/functlon

W2 wp

—{(——0

et =2 W X : |
net gb“l 4 o = G(net) =

X Ji

X9

-net
l+e

n

CORNELL AERONAUTICAL LABORATORY, INC.

THE PERCEPTRON
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Perceptrons generalize MP neurons

— Continuous 2
W /@/ Weighting Act|v§|t|on
/ function

—{(——0

et =2 W X . L
e gb“z i o = G(net) =

W

-net
l+e

n

» Consider regression problem f: XY for scalar Y
e LetY ~ N(f(x),2%)
. 2
* Then argmax,, log[[; P(y; | x;; w) = argmin,, Zi%(yi — flx;w))
* We can find argmax,, log[[; P(y; | x;; w) by iterating:
Wg = Wq + 1 Z()’i—Oi) 0;(1 — 0;)x}
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Bonus

Deriving the perceptron learning algorithm

» Recall the nice property of sigmoid: —- = o(l —0)

OEp[w])
8’(1)]'

0 1
3 2t = o)’
‘T d

1 0
5 ; Q(td — Od) D, (td — Od)

50d
zd:(td - Od)( — 8wz)
dog Onety
B ;(td N Od) 3neti 8’11]2

— Z(td — 0g4)0q(1 — od):r:ﬁi
d
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do

X4 = input
ty = target output
04 = Observed output

w, = weight |

Batch mode:

Do until converge:
1. compute gradient VEp[w]
20 =W — nV Ep|w]

Incremental mode:

Do until converge:

= For each training example din O

1. compute gradient VE,;[w]
240 = W — nVE4[w]

where
VE({[IF] - _(td - Od)od(] - Ozl)fd




Optimism vs. pessimism

* Optimism in the early history of Al (from wiki)

In a 1958 press conference organized by the US Navy, Rosenblatt
made statements about the perceptron that caused a heated

controversy among the fledgling Al community; based on
Rosenblatt's statements, The New York Times reported the

perceptron to be "the embryo of an electronic computer that [the

Navy] expects will be able to walk, talk, see, write, reproduce itself
n[5]

and be conscious of its existence.

* Discussion: what do you think about the current Al gold rush?

Ben Lengerich © University of Wisconsin-Madison 2025




Can a Perceptron represent XOR?

Continuous
d /@/Weighting

Activation

/ function

—{(——0

/ — e Yo ; l
e gb“l i o = G(net) =

-net
l+e

o N o n

* If there were, then there would be constants w; and w, such that:
* When x; = x,, theno(wyxy + wyx,) <6
 When x; # x,, theno(wyxy + wyx,) =6
e Letx; =1,x, =0 ¢ Letx;=1,x,=1:
 Eq.(1): o(wy) =6 c Eq.(3):a(w;+wy) <86
e Letx; =0,x, =1

.« Eq. (2): 0(wy) =6 Eq. (1) + Eq. (2) contradicts Eq. (3)
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An XOR Logic Gate

=

o = G(net) = l_’m
l+e

Multi-layer Perceptron?

https://byjus.com/jee/basic-logic-
gates/
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Today: A Brief History of DL

Artificial neurons

Multilayer neural networks

Deep Learning

The DL Hardware & Software Landscape

;oA W N

Current Research Trends
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Multi-Layer Perceptrons (MLPs)

aka Multi-layer Neural Networks

Inputs
Output
Age
0.6
Gender
“Probability
of
Stage beingAlive”
g . Dependent
Independent Weights  Hiddenl.  Weijghts e
variables aver |
Prediction

Ben Lengerich © University of Wisconsin-Madison 2025




“Combined Logistic Models”

Inputs
Output
Age P
0.6
Gender
“Probability
of
Stage beingAlive”
: , Dependent
Independent Weights ~ Hiddenl  wWeijghts o
variables ayer .
Prediction
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“Combined Logistic Models”

Inputs
Output
Age
0.6
Gender
“Probability
of
Stage beingAlive”
. , Dependent
Independent Weights  Hiddenl.  Weijghts rlihle
variables ayer |
Prediction
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“Combined Logistic Models”

Inputs
Output
Age 5
S
?‘\ — 0.6
Gender iy
5‘/8/ “Probability
: of
Stage " beingalive”
. o Dependent
Independent Weights  HiddenL  weijghts ardidle
variables ayer |
Prediction
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m Class0
A Class1

m ClassO0
A Class1

Decision boundaries of two different multilayer perceptrons on simulated data
NN-SVG ~  solving the XOR problem

https://alexlenail.me/NN-SVG/index.html
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A new problem: Training

* How can we train a multilayer model?
* No targets / ground truth for the hidden nodes

* Solution: Backpropagation

* Independently formulated many times
* http://people.idsia.ch/~juergen/who-invented-backpropagation.html

* Rumelhart and Hinton (1986) showed that it really works

* Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533.
In late 1985, 1 actually had a deal with Dave Rumelhart that I would write

a short paper about backpropagation, which was his idea, and he would write
a short paper about autoencoders, which was my idea. It was always better
to have someone who didn’t come up with the idea write the paper because
he could say more clearly what was important.

So I wrote the short paper about backpropagation, which was the Nature
paper that came out in 1986, but Dave still hasn’t written the short paper

about autoencoders. I'm still waiting.
What he did da wac tell Nave Zincer ahnut the idea of autoencoders and

- Geoffrey Hinton in Talking Nets - An Oral History of Neural Networks, pg. 380
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http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Backpropagation

* Neural networks are function compositions that can be
represented as computation graphs:

(= of,
x G A0 f(x) 5 T
variables

Outputs

Intermediate
computations

* By applying the chain rule, and working in reverse order, we get:

Z dfiy afl?l B Z Z afz': 8171 B

i1€m™(n) i1 €7r(n) io€m(i1)

Ben Lengerich © University of Wisconsin-Madison 2025



Backpropagation: More than just gradient
descent?

* Engineering innovations
~vee s wass AMMILHL GlLIU TallCi BraudiCIig W0 ¢ WelIgnt cnange.
To break symmetry we start with small random weights,
Variants on the learning procedure havé been discovered

independently by3 David Parker (personal communication) and
by*Yanq Le Cun’. Leads to Dropout?
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Backpropagation: More than just gradient
descent?

* Engineering innovations
e et ety s meisreee s s i o

The most obvious drawback of the learning procecsiure is that
the error-surface may contain local minima so that gradient
descept is not guaranteed to find a global minimum. However,
experience with many tasks shows that the network very rarely
gets stuck in poor local minima that are significantly worse than
the global minimum. We have only encountered this undesirable
behaviour in networks that have just enough connections to
pf:rforn} the task. Adding a few more connections creates extra
dimensions in weight-space and these dimensions provide paths
around the barriers that create poor local minima in the lower

dimensional subspaces. .
Leads to Over-parameterized models?
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Questions about Multilayer networks?

©



Today: A Brief History of DL

Artificial neurons

Multilayer neural networks

. Deep Learning

The DL Hardware & Software Landscape

GRS

Current Research Trends
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About the term “Deep Learning”

"Representation learning is a set of methods that allows a machine
to be fed with raw data and to automatically discover the

representations needed for detection or classification. Deep

learning methods are representation-learning methods with
multiple levels of representation[...]"

--LeCun, Y., Bengio, Y., & Hinton, G. (2015).
Deep learning. Nature, 521(/553), 436.
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DL building blocks

 Activation Functions

X3
e Linear and RelLLU 51
e Sigmoid and tanh \ 5
e etc. inpurt
Linear
1 "é_“
3V
|

inpu't

Sigmoid
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output

/

inpui

Rectified linear

0

A

output

] inpui
-1

Hyperbolic tangent




DL building blocks

* Activation Functions
e Linear and ReLU
* Sigmoid and tanh
* etc.

* Layers
* Fully-connected
« Convolutional & pooling
Recurrent ———F7—+—
Residual (ResNets)
Transformers
etc.
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DL building blocks

* Activation Functions
e Linear and ReLU
* Sigmoid and tanh
* etc.

* Layers
* Fully-connected
Convolutional & pooling

Recurrent
Residual (ResNets)

Transformers
e etc.

e Loss functions
* Cross-entropy, MSE, etc.
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DL learns hierarchical representations

Trainable Trainable ,
Trainable
Feature |fFressssssssssnnnss » Feature el Classifier S
Extractor Extractor

* In Language Models: hierarchy in syntax and semantics
 Words = Parts of Speech - Sentences - Stories

* |s Vision: hierarchy in composition
* Pixels > Edges = Textons = Parts = Objects = Scenes
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When did DL Become Really Popular?

That was the view of people in computer vision until 2012. Most people in computer vi-
sion thought this stuff was crazy, even thoughYann LeCun sometimes got systems work.
ing better than the best computer vision systems, they still thought this stuff was craz,
it wasn’t the right way to do vision. They even rejected papers by Yann, even though they
worked better than the best computer vision systems on particular problems, because
the referees thought it was the wrong way to do things. That’s a lovely example of scien-
tists saying, “We’ve already decided what the answer has to look like, and anything that

doesn’t look like the answer we believe in is of no interest.” ° Al eXN et ac h | eve d 15 _40
In the end, science won out, and two of my students won a big public competition:. @d error on to p _5 N 201 2
they won it dramatically. They got almost half the error rate of the best computer “'5103 N 2 N d b est was n O-t
systems, and they were using mainly techniques developed inYann LeCun s lab but mix¢ o
in with a few of our own techniques as well. even C|OS€ 262 A)
° ~20

MARTIN FORD: This was the ImageNet competition? (n owa d ayS 3 /O

— error on ImageNet)
GEOFFREY HINTON: Yes, and what happened then was what should happen If .

One method that people used to think of as complete nonsense had now worked muf;
better than the method they believed in, and within two years, they all switched. S?;ga
things like object classification, nobody would dream of trying to do it without U
neural network now.

(Excerpt from "Architects of Intelligence")
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DL: Driven by Benchmark Datasets

S0/ ]\4

2

&

ImageNet )
Challenge |

MNIST (1998)

« 60,000 examples, 10 classes
» features: 28x28x1
* http://yann.lecun.com/exdb/mnist/

CIFAR-10/CIFAR-100 (2009)

Ben Lengerich © University of Wisconsin-Madison 2025

* 60,000 examples, 10 or 100 classes
» features: 32x32x3,
* https://www.cs.toronto.edu/~kriz/cifar.html

ImageNet (~2010)

* ~14 million images
- features: full resolution
* http://www.image-net.org




Questions about DL History?

©



Today: A Brief History of DL

Artificial neurons

Multilayer neural networks

Deep Learning

. The DL Hardware & Software Landscape
Current Research Trends
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Developing Specialized Hardware
- _ Opinion: New Nvidia chip
extends the company’s lead in

raphics, artificial intelligence
Cloud TPU ke 9

OEEEOCA

The only question that remains: How big is Nvidia’s advantage over its

rivals?

: : — 2 — -
https://www.marketwatch.com/story/new-nvidia-chip-

https://_arstechnica.com/gadgets/291 8/07/the-ai- extends-the-companys-lead-in-graphics-artificial-
revolution-has-spawned-a-new-chips-arms-race/ intelligence-2018-08-14

TECHNOLOGY NEWS N

Amazon launches machine
learning chip, taking on Nvidia,
Intel

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor https://www.reuters.com/article/us-amazon-com-nvidia/
amazon-launches-machine-learning-chip-taking-on-
nvidia-intel-idUSKCN1NX2PY

Arm Machine Learning Processor

Industry-leading performance and efficiency for inference at the edge.
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Hardware for Matrix Multiplications

CPU vs GPU: Architecture

GPU

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache
L3 Cache L3 Cache

DRAM DRAM

mob/dev

https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
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https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud

Today: A Brief History of DL

Artificial neurons

Multilayer neural networks

Deep Learning

The DL Hardware & Software Landscape
Current Research Trends

DEENENNNEES
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Self-supervised learning / pretext tasks

Example:

Figure 1. Our task for learning patch representations involves ran-
domly sampling a patch (blue) and then one of eight possible
neighbors (red). Can you guess the spatial configuration for the
two pairs of patches? Note that the task is much easier once you
have recognized the object!

19120 doy, :z0O 3w wonog :10) A3y ramsuy

Lee, H. Y., Huang, J. B., Singh, M., & Yang, M. H. (2017). Unsupervised
representation learning by sorting sequences. In Proceedings of the IEEE
International Conference on Computer Vision (pp. 667-676).
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Features

N

Comparison

Features

contrastive learning gained popularity in
self-supervised representation learning

Caron, M., Misra, |., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020).
Unsupervised learning of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882.

Instance discrimination compares features from different transformations
of the same images to each other




DL on all kinds of structured data (graphs, etc.)

A gentle introduction to graph neural networks:
https://heartbeat.fritz.ai/introduction-to-graph-neural-networks-c5a9f4aa9e99

1) average messages

A
r»erGETl NODE Q from n (_flf%(;J'_]k OIS | .4“‘ (-3
om: o

®
A

"': \ v
/
,I/ ,a" . '.
I"' o~ . .
/ %
:"’ .-"'. s
‘ "’l -""'._— . . .

-l
INPUT GRAPH

2) apply neural network
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Massive unsupervised learning

From GPT-1(2018) to GPT-4:

 Architecture:
» Scale: Variety of options, with biggest (1.5B params - >1T params):
» Block size (max context): 512 - 128k
* Layers: 12 2> >96
» Attention Heads: 12 2 >96
 Embedding Dim: 768 - >12,288
* Vocab: 40k - >50k tokens
» Tokenizer: Includes image patches for multimodal
* Mixture-of-Experts
 Training:
» Dataset: BookCorpus (5GB) - Private 13T tokens (~50TB)
» Reinforcement learning for alignment
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Alighment of large systems with human values

Chain-of-Thought Prompting Experiments with Large Training language models to
E||C|t5 Reasoninq N Larqe Language models follow instructions with human
Sparks of Artificial General feedback (RLHF)

Intelligence: Early

Standard Prompting Chain-Of-ThOUth Prompting eX p e r I m e n tS W I t h G P T - 4 Z‘:I’I‘ect demonstration data, Z:‘I’I;t comparison data, Z:tismizea policy against

_~{_ Model Input } and train a supervised policy. and train a reward model. the reward model using
reinforcement learning.

| anguage Models

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of N GPT-4
tenn!s balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many Prompt: Can you write a proof that there are infinitely ~ Prompt: Draw a unicorn in TiKZ. Apromptis A prompt and A new prompt »
tennis balls does he have now? tennis balls does he have now? many primes, with every line that rhymes? sampled from.our Eeplainthe moon sevemlmodel Bt Isisampled from Witeastory
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
. ’ . -4: GPT-4:  [Produces L] compili: led.
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls GPT-4 e et i ' sempled o o , '
each is 6 tennis balls. 5 + 6 = 11. The answer is 11. Tengh st e tain o dlevar, flan: Abeler L e .- TZ: :r:.t,:: "
Q: The cafeteria had 23 apples. If they used 20 to I’11 start by noting Euclid’s proof, demonstrates the @ gn pbiog Lo
. Wh: he ths £ 1oof . il "
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to Fssime iwe fivert rimive Tiup, | Crov ales S:f]':idnf”‘”“‘ hi
do they have? make lunch and bought 6 more, how many apples Of prines, and that none have been missed. ’ v
dO they haVe7 Multiply them all together, Alabeler ranks
[s And add one, just to be clever. Once upon a time.
The result will be a number, * :]he::nputs :rom
_ That has no prime factors, oh wonder! This data is used estioworst. !
_ But every mumber has 2 prine, . AR HIRSCETS &.;:{\ 0-0-0-0 The reward model R'M
Model Output ,~{_Model Output | \ 5o werve foumd & comtradiction, ] n = with supervised N | GalcUlates s A,
- And our finite list needs eviction. learning. ) i reward for %
A: The answer is 27, x A: The cafeteria had 23 apples originally. They used There must be infinitely many prizes, Z This data is used o the output Pt
3 N 015 el o [, Sothey had 23 he And that’s the end of my rhyming lines.s EEE to train our ./}?.Q. V‘
. : D . e - o e reward model. X4 The reward is
U htﬁmnm) les, so 0-6-0-0 used to update ’x
Cnswer is9. the policy
using PPO.
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https://arxiv.org/pdf/2201.11903
https://arxiv.org/pdf/2303.12712.pdf
https://arxiv.org/abs/2203.02155

Many directions open...

* Verifiable Rewards
e Code generation, math calculations, etc.

* Vision-Language models and learning with multimodal data
 Large-scale reinforcement learning

* Model uncertainty, hallucinations

* Model editing, interpretability

* Model synthesis, connections, communication
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Next Lecture

Stats / linear algebra / calculus review
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Questions?
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