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 Class webpage: lengerichlab.github.io/pgm-spring-2025

e | ecture scribe sign-up sheet

* Readings: Canvas
* Class Announcements: Canvas
» Assignment Submissions: Canvas

* Instructor: Ben Lengerich
« Office Hours: Thursday 2:30-3:30pm, 7278 Medical Sciences Center
* Email: lengerich@wisc.edu

« TA: Chenyang Jiang
« Office Hours: Monday Tlam-12pm, 1219 Medical Sciences Center
* Email: cjiang//@wisc.edu
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Homework 1

* Released, due next Friday at midnight.

* PDF and Latex solution template (.tex) available on website.
* Submit via Canvas.

* Most preferred format:
* PDF with your solution written in the provided solution box using Latex.

* Questions — Ask early and often

\begin{solution}
Wirite your solution here. For multiple choice Answer: Write your solution here.
questions, only the letter answer is required. )
Nbeetilaees) (a) Solution for (a)
\part Solution for (a) (b) T (b)
\part Solution for (b)
\part Solution for (c) (C) Solution for (C)
\part Solution for (d)
\end{parts} (d) Solution for (d)
\end{solution}
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Questions about Course Logistics?
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Statistics Review
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Today

* Probability Basics
 Estimation Methods
* Linear Regression

* Optimization
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Probability Basics
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Probability Basics: Definitions

* Random Variables:
 Discrete: Values from a countable set (e.g. a coin flip)
« Continuous: Values from an interval (e.g. a height)

« PMF and PDF:

* Probability Mass Function: P(X=x) for discrete X.
* Probability Density Function: f(x) for continuous X.
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Key Distributions

 Bernoulli Distribution:
c PX=x)=60*1-0)1"%x € {0,1}
« Example: a fair coin flip (6 = 0.5)

 Gaussian Distribution:
" (x—pw)?
) f(x) - V2ma?

e 202
 "Normal” because of Central Limit Theorem
« “"Standard Normal” whenu =0,0 =1
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Central Limit Theorem

e Let Xy, X,, ..., X,,be i.i.d. random variables with mean u and
variance o*“.

* Define the sample mean:

n
_ 1
Xn — EZ Xi
i=1
* Then, asn — oo: ~
n —E NG, 1)




Joint, Marginal, and Conditional Probabilities

« Joint: P(4, B), probability of two events occurring together.

* Marginal: P(A) = ), P(A, B), sum of joint probabilities over one
variable.
« Conditional: P(A|B) = P(AB

) . .
P5) probability of A given B.
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Expectation and Variance

* Expectation:
* Discrete: E[X] =), xP(X = x)
e Continuous: E[X] = [ xf(x)dx

* Variance: Var(X) = E[(X — E[X])?]
« Equivalent: Var(X) = E[X?] — E[X]?
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Linearity of Expectation

* Property:
 FlaX + b] =aE|X]+ b
* Multiple Variables:
* E[X; +X;] = E[X;] + E[X;]
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Expectation of Functions

* Formula:
* E[g(X)] = Xx g(x)P(X = x) (discrete)
* E[g(X)] = [_g(x)f(x)dx (continuous)

* Example (Discrete):
* X ~ Bernoulli(9), g(X) = X?:
« E[g(X)]=1%6+0%(1—-0) =06

* Example (Continuous):

e X ~ Uniform(0,1), g(X) = X?:
1 1

* E[g(X)] = [, x*dx = .
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Variance of Functions

e Definition:
» Var(g(X)) = E[(g(X) — E[g(0)D?]
- Equivalent: Var(g(X)) = E[g(X)?] — (E[g(X)])?
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Covariance and Correlation
 Covariance;
« Cov(X,Y) = E[(X —E[XD(Y — E[Y])]

* Properties:
* Cov(X,X) =Var(X)
« |f X,Y are independent: Cov(X,Y) = 0.

e Correlation:
Cov(X,Y)

* pXY) = JVar(X)vVar(Y)

« p = 1: Perfect positive linear relationship.

* p = 0: No linear relationship.

* p = —1: Perfect negative linear relationship.
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Bayes' Rule

P(B|A)pP(4)
P(B)
* Example: Medical test:

. P(A|B) =

P(positive test |disease) P(disease)

* P(disease|positive test) = P(positive test)
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Estimation Methods
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Introduction to Estimation

« Goal of Estimation:
* Infer unknown parameters 6 from observed data.

* Types of Estimation:
* Point Estimation: Single value (e.g., MLE).
* Interval Estimation: Range of plausible values (e.qg., confidence intervals).

« Common Methods:
* Maximum Likelihood Estimation (MLE)
* Maximum A Posteriori (MAP)
* Method of Moments




Maximum Likelihood Estimation (MLE)

e Definition:
e Find 8 that maximize

s the likelihood of observing the given data.

0 = argmaxyL(0) where L(6) = P(data|b).

* Interpretation:

* L(0): Probability of the observed data given 6.
* MLE chooses the parameter that makes the data most “likely."

L(6)

éMLE
v

0
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Maximum Likelihood Estimation (MLE)

 Example:
* Dataset: X=41,0,1,1,0%,
* Bernoulli distribution with P(X = 1|0) = 0:

L(0) = 1_[ 6% (1 — g)1~x
i
« Typically solved by maximizing the log-likelihood.

£(0) =logL(0) =Y (x;logh + (1 —x;)log(1 —6))
* Derivative:

df B k n—k
da 6 1-6
where k = Yx;
e Solution:
.k
0 =—
n
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Maximum Likelihood Estimation (MLE)

e The MLE:

« does not always exist.
* is not necessarily unique.
* is not necessarily admissible.
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Maximum A Posteriori (MAP) Estimation

* Find
Oyap = argmaxgP(0|data) < argmaxgyP(data|0)P(6)

e P(data|@) : Likelihood
* P(0): Prior belief about 6

 MLE ignores P(0)
 MAP incorporates prior information.

L(6 P(0)
|
I P(6|data)
|
' »
I jas L
: 0
1

/ MLE

/ éMAP

0 0
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Regularization is MAP

 MLE with Regularization:

« Adds a penalty to avoid overfitting
0req = argmaxg[log L(6) — AR(0)]

L(6)

- MAP as Penalized MLE:

e Let P(0) x e RO Then
0y ap = argmaxg[log L(6) + logP(0)] = Oreg
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Method of Moments

 Definition:
* Match sample moments to theoretical moments (E[X™]) to estimate
parameters.

 Example:
* Bernoulli:
« E[X] =6, estimate 6 = X.
» Gaussian:
« E[X] = p.
e Var(X) = ¢?
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Linear Regression
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Introduction to Linear Regression

* Model Definition:
 y =X + €, where
y: Response variable (dependent variable).
X: Design matrix (independent variables or features).
[: Coefficients (parameters to estimate).
e: Error term (often assumed to be N(0, 2).

 Goal:
« Estimate .
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Linear Regression Evaluation Metrics

» Coefficient of Determination (R?):
o RZ -1 — SSresidual
SStotal
* Measures the proportion of variance explained by the model.

 Mean Squared Error (MSE):
* MSE = ~%(y; = 91)°

* Mean Absolute Error (MAE):
+ MSE = ~3|ly; — %il
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Ordinary Least Squares (OLS)

« Objective:
* Minimize the sum of squared residuals:
* BOLS = argminﬁlly — XBII?
 Residuals:
* e =Y~V
 Solution:
* Bors = XTX)71XTY
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Regularization in Linear Regression (MAP)

[
- Ridge Regression (L2 Regularization):

« Adds an L2 penalty:
* ﬁridge = argminﬁlly — XBII* + Al

* Equivalent MAP interpretation:
* Prior on coefficients: f ~ N(O,%z)
« MAP estimate maximizes: P(Bly)xP(yIB)P(B)
* Penalty comes from the Gaussian prior.

- Lasso Regression (L1 Regularization):
* Adds an L1penalty:
* ﬁlasso = argmin[)’”y — X,BHZ + A8l
* Equivalent to f ~ Laplace(0, %)
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Extensions of Linear Regression

« Polynomial Regression:
* Add polynomial terms:

© Y=o+ P1x+ Lx*+ ..
* Generalized Linear Models:
« Extend to non-normal distributions by a link function:

* g(E[Y]) = XB
* Interaction Terms:
* Include interactions between predictors:

* y = Bo+ P1x1 + fox, + P3x1x;
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A word of warning on interpreting interactions...

* Suppose we have data from:
Y = AND(Xl,Xz) 0
* with Boolean X. Let's fit an X5
additive model (no 0 0
Interactions):

oV =fo+ X)) + f2(X2)
« How well can we fit the data?
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Optimization
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Convexity

[ ] .
Convex function

VA€ 0,1,  fAx+ (1 =-XNy) <Af(x)+1-=A)f(y)
Strictly convex function
VAE0, 1],  fAx+(1-A)y) <Af(x)+(1-A)f(y)
Strongly convex function
il Bt S0 —ilR[P 5 eomven
Equivalently:
VA€ [0,1], fOAx+(1-A)y) < AF()+1-N) f(y)—pA1-N)|x—y|?

The largest possible p is called the strong convexity constant.
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Convexity Aids Optimization

If f 1s convex and differentiable at x then

fly) > fx)+ Vi)' (y—x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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— is Overrated

& Using a suitable architecture (even if it leads to non-convex loss
functions) is more important than insisting on convexity

(particularly if it restricts us to unsuitable architectures)
» e.g.: Shallow (convex) classifiers versus Deep (non-convex)

classifiers
& Even for shallow/convex architecture, such as SVM, using non-

convex loss functions actually improves the accuracy and speed

» See “trading convexity for efficiency” by Collobert, Bottou,
and Weston, ICML 2006 (best paper award)

- Yann LeCun, “Who's afraid of Non-convex loss functions?” - 2007

Ben Lengerich © University of Wisconsin-Madison 2025



https://cs.nyu.edu/~yann/talks/lecun-20071207-nonconvex.pdf

Questions?
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