

STAT 453: Introduction to Deep Learning and Generative Models

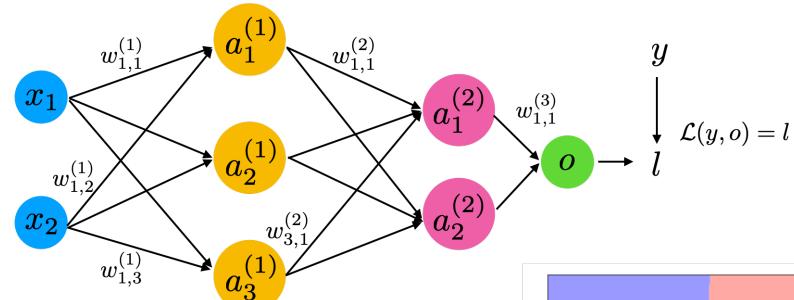
Ben Lengerich

Lecture 03: Stats/Linear algebra review

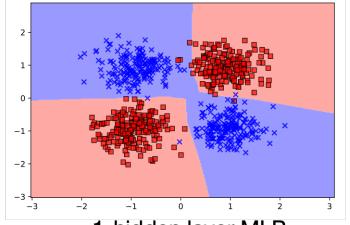
September 10, 2025

Questions about Course Logistics?

Today: Fundamental Math Skills for DL



So that we can solve the XOR problem, among other things ...



1-hidden layer MLP with non-linear activation function (ReLU)

Today: Fundamental Math Skills for DL

1. Tensors in Deep Learning

- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Probability Basics
- 5. Estimation Methods
- 6. Linear Regression

Scalars, Vectors, and Matrices

Scalar

(order-0 tensor)

$$x \in \mathbb{R}$$

$$x = 1.23$$

Vector

(order-1 tensor)

$$\mathbf{x} \in \mathbb{R}^n$$

but in this lecture, we will assume

$$\mathbf{x} \in \mathbb{R}^{n \times 1}$$

e.g.,
$$\mathbf{x} = egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrix

(order-2 tensor)

$$\mathbf{X} \in \mathbb{R}^{m \times n}$$

e.g.,

$$\mathbf{X} = egin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \ x_{2,1} & x_{2,2} & \dots & x_{2,n} \ dots & dots & \ddots & dots \ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

$$\mathbf{x}^{\top} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, \text{ where } \mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}$$

Scalars, Vectors, and Matrices

We will often use X as a special convention to refer to the "design matrix", "feature matrix", or "input matrix". That is, the matrix containing the training examples and features (inputs) and assume the structure $\mathbf{X} \in \mathbb{R}^{n \times m}$

because *n* is often used to refer to the number of examples in literature across many disciplines.

$$\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$$
 E.g.,
$$x_2^{[1]} = \text{2nd feature value of the 1st training example}$$

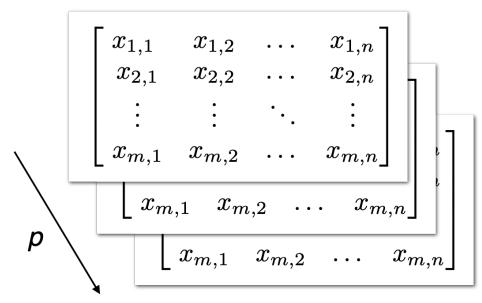
E.g.,
$$x_2^{[1]} = \text{2nd feature value of the 1st} \\ \text{training example}$$

Tensors

3D Tensor

(order-3 tensor)

$$\mathbf{X} \in \mathbb{R}^{m \times n \times p}$$
 (n and m are generic indices here)



- - -

An Example of a 3D Tensor in DL

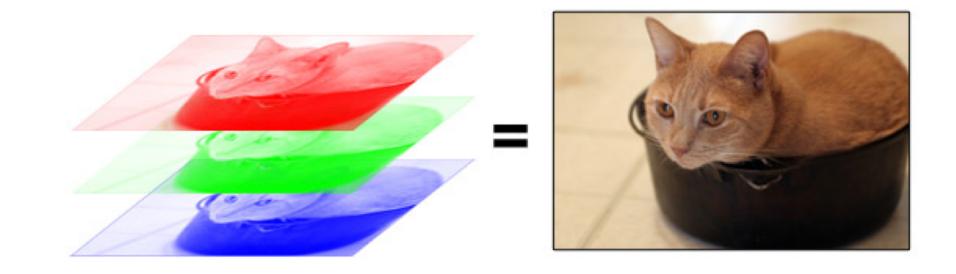
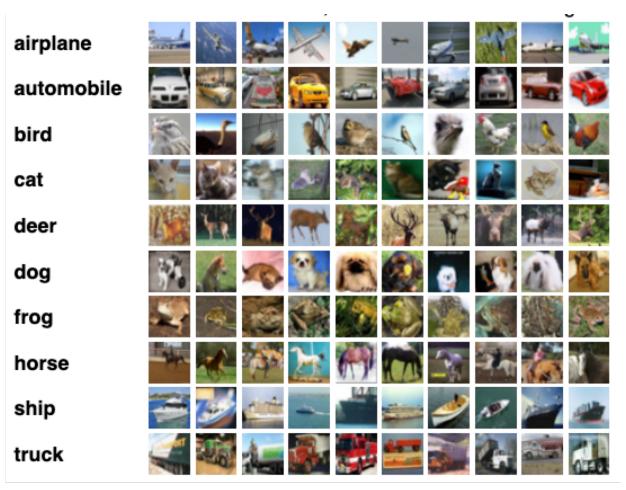


Image Source: https://code.tutsplus.com/tutorials/create-a-retro-crt-distortion-effect-using-rgb-shifting--active-3359

An Example of a 4D Tensor in DL

Batch of images (as neural network input, more later)



https://www.cs.toronto.edu/~kriz/cifar.html

For our purposes, tensor = multidimensional array

Dimensionality ("order") = # of indices of .shape

```
[In [1]: import torch
[In [2]: t = torch.tensor([[1, 2, 3], [4, 5, 6]])
[In [3]: t
Out[3]:
tensor([[1, 2, 3],
        [4, 5, 6]])
[In [4]: t.shape
Out[4]: torch.Size([2, 3])
[In [5]: t.ndim
Out[5]: 2
In [6]:
```


Today: Fundamental Math Skills for DL

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Probability Basics
- 5. Estimation Methods
- 6. Linear Regression

Numpy Arrays → PyTorch Tensors

Example:

Numpy and PyTorch Syntax is Similar

```
Numpy
[In [9]: a = np.array([1., 2., 3.])
[In [10]: print(a.dot(a))
14.0
```

```
PyTorch
[In [12]: print(b.matmul(b))
tensor(14.)

[In [13]: b
Out[13]: tensor([1., 2., 3.])

[In [14]: b.numpy()
Out[14]: array([1., 2., 3.], dtype=float32)
```


PyTorch: matmul = dot = @

```
[In [12]: print(b.matmul(b))
tensor(14.)
```

```
[In [15]: print(b.dot(b))
tensor(14.)
[In [16]: print(b @ b)
tensor(14.)
```


Data types

NumPy data type	Tensor data type	
numpy.uint8	torch.ByteTensor	_
numpy.int16	torch.ShortTensor	
numpy.int32	torch.IntTensor	
numpy.int	torch.LongTensor	
numpy.int64	torch.LongTensor	Default int in N
numpy.float16	torch.HalfTensor	
numpy.float32	torch.FloatTensor	Default float in
numpy.float	torch.DoubleTensor	
numpy.float64	torch.DoubleTensor	Default float in

Ben Lengerich © University of Wisconsin-Madison 2025

Specify the type with dtype

```
[In [21]: c = torch.tensor([1., 2., 3.], dtype=torch.float)
[In [22]: c.dtype
Out[22]: torch.float32
[In [23]: c = torch.tensor([1., 2., 3.], dtype=torch.double)
[In [24]: c.dtype
Out[24]: torch.float64
[In [25]: c = torch.tensor([1., 2., 3.], dtype=torch.float64)
[In [26]: c.dtype
Out[26]: torch.float64
```


Why not just use NumPy?

- PyTorch is made for DL:
 - GPU support
 - Automatic differentiation
 - DL Convenience functions

Loading Data onto a GPU

How to Check Your CUDA Devices

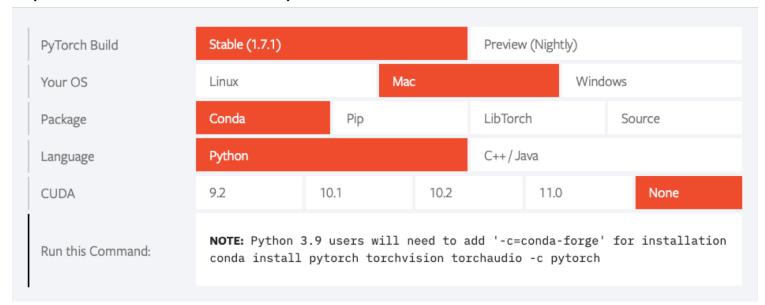
- If you have CUDA installed, you should have access to **nvidia-smi**
- However, if you are using a laptop, you probably don't have CUDA compatible graphics cards (my laptops don't)
- We will discuss GPU cloud computing later ...

	ka@gpu@ b 8 21		nvidia-s 7 2021	smi					
NVID	IA-SMI	455.3	2.00	Driver	Version:	455.32.00	CUDA	Versi	on: 11.1
GPU Fan	Name Temp				Bus-Id 				Uncorr. ECC Compute M. MIG M.
0 24%			208 71W			======== 0:1A:00.0 0 iB / 11019M:		0%	N/A Default N/A

Installing PyTorch

If you want to install PyTorch later (after the lecture) ...

- If you use it on a laptop, you likely don't have a CUDA compatible GPU
- Recommend using CPU version for your laptop (no CUDA)
- Installation on GPU-cloud later ...
- Also, use this selector tool from https://pytorch.org
 (conda is recommended):



Today: Fundamental Math Skills for DL

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Probability Basics
- 5. Estimation Methods
- 6. Linear Regression

Vectors

Quiz: How do we call this again in the context of neural nets?

$$\mathbf{w}^{ op}\mathbf{x} + b = z$$
 where $\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_m \end{bmatrix}$ $\mathbf{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_m \end{bmatrix}$

Matrices: Computing Outputs for Multiple Examples

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$
 where $\mathbf{X} = egin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \ \vdots & \vdots & \ddots & \vdots \ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$, $\mathbf{w} = egin{bmatrix} w_1 \ w_2 \ \vdots \ w_m \end{bmatrix}$

What is the Big-O computational cost of matrix multiplication (assume two NxN matrices)?

A common notational convenience

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$
 where $\mathbf{X} = egin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \ \vdots & \vdots & \ddots & \vdots \ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$, $\mathbf{w} = egin{bmatrix} w_1 \ w_2 \ \vdots \ w_m \end{bmatrix}$

This should really be $Xw + \mathbf{1}_n b = \mathbf{z}$, but in DL notation we drop the $\mathbf{1}_n$.

We assume broadcasting.

Broadcasting

```
In \lceil 4 \rceil: torch.tensor(\lceil 1, 2, 3 \rceil) + 1
Out[4]: tensor([2, 3, 4])
In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 9]])
In [6]: t
Out[6]:
tensor([[4, 5, 6],
         [7, 8, 9]])
In [7]: t + torch.tensor([1, 2, 3])
Out[7]:
tensor([[ 5, 7, 9],
         Γ 8, 10, 12]
                                   Be cautious of this when debugging ...
```


Today: Fundamental Math Skills for DL

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Probability Basics
- 5. Estimation Methods
- 6. Linear Regression

Probability Basics: Definitions

- Random Variables:
 - Discrete: Values from a countable set (e.g. a coin flip)
 - Continuous: Values from an interval (e.g. a height)
- PMF and PDF:
 - Probability Mass Function: P(X=x) for discrete X.
 - Probability Density Function: f(x) for continuous X.

Key Distributions

- Bernoulli Distribution:
 - $P(X = x) = \theta^x (1 \theta)^{1-x}, x \in \{0,1\}$
 - Example: a fair coin flip ($\theta = 0.5$)
- Gaussian Distribution:

•
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- "Normal" because of Central Limit Theorem
- "Standard Normal" when $\mu = 0, \sigma = 1$

Central Limit Theorem

- Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with mean μ and variance σ^2 .
- Define the sample mean:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Then, as $n \to \infty$:

$$\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \to N(0, 1)$$

Joint, Marginal, and Conditional Probabilities

- Joint: P(A, B), probability of two events occurring together.
- Marginal: $P(A) = \sum_{B} P(A, B)$, sum of joint probabilities over one variable.
- Conditional: $P(A|B) = \frac{P(A,B)}{P(B)}$, probability of A given B.

Expectation and Variance

- Expectation:
 - Discrete: $E[X] = \sum_{x} x P(X = x)$
 - Continuous: $E[X] = \int x f(x) dx$
- Variance: $Var(X) = E[(X E[X])^2]$
 - Equivalent: $Var(X) = E[X^2] E[X]^2$

Linearity of Expectation

- Property:
 - E[aX + b] = aE[X] + b
- Multiple Variables:
 - $E[X_1 + X_2] = E[X_1] + E[X_2]$

Expectation of Functions

- Formula:
 - $E[g(X)] = \sum_{x} g(x)P(X = x)$ (discrete)
 - $E[g(X)] = \int_{x} g(x)f(x)dx$ (continuous)
- Example (Discrete):
 - $X \sim \text{Bernoulli}(\theta), g(X) = X^2$:
 - $E[g(X)] = 1^2\theta + 0^2(1-\theta) = \theta$
- Example (Continuous):
 - $X \sim \text{Uniform}(0,1), g(X) = X^2$:
 - $E[g(X)] = \int_0^1 x^2 dx = \frac{1}{3}$.

Variance of Functions

- Definition:
 - $Var(g(X)) = E[(g(X) E[g(X)])^2]$
 - Equivalent: $Var(g(X)) = E[g(X)^2] (E[g(X)])^2$

Covariance and Correlation

- Covariance:
 - Cov(X,Y) = E[(X E[X])(Y E[Y])]
- Properties:
 - Cov(X,X) = Var(X)
 - If X,Y are independent: Cov(X,Y) = 0.
- Correlation:
 - $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$
 - $\rho = 1$: Perfect positive linear relationship.
 - $\rho = 0$: No linear relationship.
 - $\rho = -1$: Perfect negative linear relationship.

Bayes' Rule

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Example: Medical test:
 - $P(disease|positive|test) = \frac{P(positive|test|disease)|P(disease)|}{P(positive|test)}$

Today: Fundamental Math Skills for DL

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Probability Basics
- 5. Estimation Methods
- 6. Linear Regression

Introduction to Estimation

Goal of Estimation:

• Infer unknown parameters θ from observed data.

Types of Estimation:

- Point Estimation: Single value (e.g., MLE).
- Interval Estimation: Range of plausible values (e.g., confidence intervals).

Common Methods:

- Maximum Likelihood Estimation (MLE)
- Maximum A Posteriori (MAP)
- Method of Moments

Maximum Likelihood Estimation (MLE)

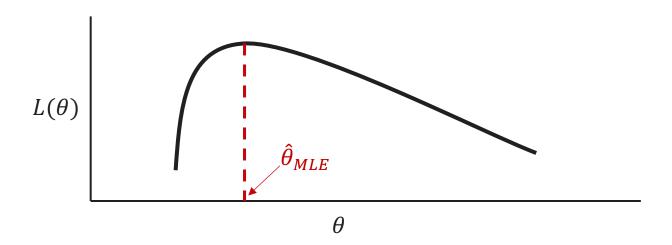
Definition:

• Find $\widehat{\boldsymbol{\theta}}$ that maximizes the likelihood of observing the given data.

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\theta} L(\theta) \text{ where } L(\theta) = P(\operatorname{data}|\theta).$$

Interpretation:

- $L(\theta)$: Probability of the observed data given θ .
- MLE chooses the parameter that makes the data most "likely."



Maximum Likelihood Estimation (MLE)

Example:

- Dataset: X={1,0,1,1,0},
- Bernoulli distribution with $P(X = 1 | \theta) = \theta$:

$$L(\theta) = \prod_{i} \theta^{x_i} (1 - \theta)^{1 - x_i}$$

- Typically solved by maximizing the log-likelihood. $\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} (x_i \log \theta + (1 x_i) \log(1 \theta))$
- Derivative:

$$\frac{d\ell}{d\theta} = \frac{k}{\theta} - \frac{n-k}{1-\theta}$$

where $k = \sum x_i$

• Solution:

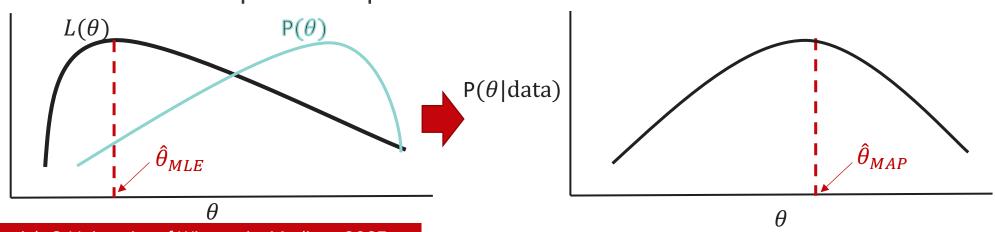
$$\widehat{\boldsymbol{\theta}} = \frac{k}{n}$$

Maximum Likelihood Estimation (MLE)

- The MLE:
 - does not always exist.
 - is not necessarily unique.
 - is not necessarily admissible.

Maximum A Posteriori (MAP) Estimation

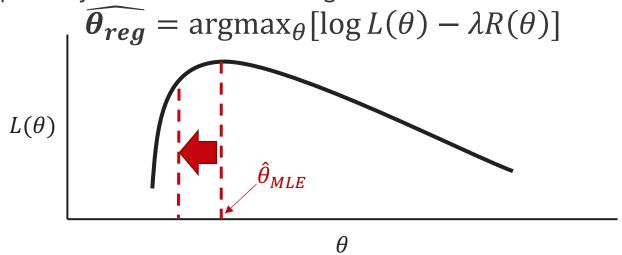
- Find $\hat{\theta}_{MAP} = argmax_{\theta}P(\theta|\text{data}) \propto argmax_{\theta}P(\text{data}|\theta)P(\theta)$
- $P(\text{data}|\theta)$: Likelihood
- $P(\theta)$: Prior belief about θ
- MLE ignores $P(\theta)$
- MAP incorporates prior information.



Regularization is MAP

MLE with Regularization:

Adds a penalty to avoid overfitting



MAP as Penalized MLE:

• Let
$$P(\theta) \propto e^{-\lambda R(\theta)}$$
. Then $\widehat{\boldsymbol{\theta}}_{MAP} = argmax_{\theta}[\log L(\theta) + \log P(\theta)] = \widehat{\theta}_{reg}$

Today: Fundamental Math Skills for DL

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Probability Basics
- 5. Estimation Methods
- 6. Linear Regression

Introduction to Linear Regression

Model Definition:

- $y = X\beta + \epsilon$, where
- y: Response variable (dependent variable).
- X: Design matrix (independent variables or features).
- β : Coefficients (parameters to estimate).
- ϵ : Error term (often assumed to be $N(0, \sigma^2)$.

Goal:

• Estimate β .

Linear Regression Evaluation Metrics

• Coefficient of Determination (R^2) :

•
$$R^2 = 1 - \frac{SS_{residual}}{SS_{total}}$$

- Measures the proportion of variance explained by the model.
- Mean Squared Error (MSE):

•
$$MSE = \frac{1}{n}\sum (y_i - \hat{y}_i)^2$$

Mean Absolute Error (MAE):

•
$$MSE = \frac{1}{n} \sum ||y_i - \widehat{y}_i||$$

Ordinary Least Squares (OLS)

Objective:

- Minimize the sum of squared residuals:
- $\widehat{\boldsymbol{\beta}}_{OLS} = argmin_{\beta} ||y X\beta||^2$
- Residuals:

•
$$e_i = y_i - \widehat{y}_i$$

Solution:

•
$$\widehat{\boldsymbol{\beta}}_{OLS} = (X^T X)^{-1} X^T Y$$

Regularization in Linear Regression (MAP)

Ridge Regression (L2 Regularization):

- Adds an L2 penalty:
 - $\widehat{\boldsymbol{\beta}}_{ridge} = argmin_{\beta} ||y X\beta||^2 + \lambda ||\beta||^2$
- Equivalent MAP interpretation:
 - Prior on coefficients: $\beta \sim N(0, \frac{\sigma^2}{\lambda})$
 - MAP estimate maximizes: $P(\beta|y) \propto P(y|\beta)P(\beta)$
 - Penalty comes from the Gaussian prior.

Lasso Regression (L1 Regularization):

- Adds an L1 penalty:
 - $\widehat{\boldsymbol{\beta}}_{lasso} = argmin_{\beta} ||y X\beta||^2 + \lambda ||\beta||_1$
- Equivalent to $\beta \sim \text{Laplace}(0, \frac{\sigma}{\lambda})$

Next Lecture

Single-layer networks

Questions?

