
STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich
Lecture 03: Stats/Linear algebra review

September 10, 2025

Questions about Course Logistics?

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

1. Tensors in Deep Learning
2. Tensors and PyTorch
3. Vectors, Matrices, and Broadcasting
4. Probability Basics
5. Estimation Methods
6. Linear Regression

Scalars, Vectors, and Matrices

Ben Lengerich © University of Wisconsin-Madison 2025

Scalars, Vectors, and Matrices

Ben Lengerich © University of Wisconsin-Madison 2025

Tensors

Ben Lengerich © University of Wisconsin-Madison 2025

An Example of a 3D Tensor in DL

Ben Lengerich © University of Wisconsin-Madison 2025

An Example of a 4D Tensor in DL

Ben Lengerich © University of Wisconsin-Madison 2025

For our purposes, tensor = multidimensional array

Ben Lengerich © University of Wisconsin-Madison 2025

Dimensionality (“order”) = # of indices of .shape

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

1. Tensors in Deep Learning
2. Tensors and PyTorch
3. Vectors, Matrices, and Broadcasting
4. Probability Basics
5. Estimation Methods
6. Linear Regression

Numpy Arrays à PyTorch Tensors

Ben Lengerich © University of Wisconsin-Madison 2025

numpy.array / numpy.ndarray =
(data structure representation of a tensor)

pytorch.tensor / pytorch.Tensor =
(data structure representation of a tensor)

Example:

Numpy and PyTorch Syntax is Similar

Ben Lengerich © University of Wisconsin-Madison 2025

Numpy PyTorch

PyTorch: matmul = dot = @

Ben Lengerich © University of Wisconsin-Madison 2025

Data types

Ben Lengerich © University of Wisconsin-Madison 2025

NumPy data type Tensor data type

numpy.uint8 torch.ByteTensor
numpy.int16 torch.ShortTensor
numpy.int32 torch.IntTensor
numpy.int torch.LongTensor
numpy.int64 torch.LongTensor
numpy.float16 torch.HalfTensor
numpy.float32 torch.FloatTensor
numpy.float torch.DoubleTensor
numpy.float64 torch.DoubleTensor

Default int in Numpy & PyTorch

Default float in PyTorch

Default float in NumPy

Specify the type with dtype

Ben Lengerich © University of Wisconsin-Madison 2025

Why not just use NumPy?

Ben Lengerich © University of Wisconsin-Madison 2025

• PyTorch is made for DL:
• GPU support
• Automatic differentiation
• DL Convenience functions

Loading Data onto a GPU

Ben Lengerich © University of Wisconsin-Madison 2025

In [23]: print(torch.cuda.is_available())
True

In [24]: b = b.to(torch.device('cuda:0'))
...: print(b)

tensor([1., 2., 3.], device='cuda:0')

In [25]: b = b.to(torch.device('cpu'))
...: print(b)

tensor([1., 2., 3.])

How to Check Your CUDA Devices

Ben Lengerich © University of Wisconsin-Madison 2025

• If you have CUDA installed, you should have access to nvidia-smi
• However, if you are using a laptop, you probably don't have CUDA

compatible graphics cards (my laptops don't)
• We will discuss GPU cloud computing later ...

Installing PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

1. Tensors in Deep Learning
2. Tensors and PyTorch
3. Vectors, Matrices, and Broadcasting
4. Probability Basics
5. Estimation Methods
6. Linear Regression

Vectors

Ben Lengerich © University of Wisconsin-Madison 2025

Matrices: Computing Outputs for Multiple Examples

Ben Lengerich © University of Wisconsin-Madison 2025

What is the Big-O computational cost of matrix multiplication (assume two NxN matrices)?

A common notational convenience

Ben Lengerich © University of Wisconsin-Madison 2025

This should really be 𝑿𝒘+ 𝟏𝒏𝑏 = 𝒛, but in DL notation we drop the 𝟏𝒏.

We assume broadcasting.

Broadcasting

Ben Lengerich © University of Wisconsin-Madison 2025

In [4]: torch.tensor([1, 2, 3]) + 1
Out[4]: tensor([2, 3, 4])

In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 9]])

In [6]: t
Out[6]:
tensor([[4, 5, 6],

[7, 8, 9]])

In [7]: t + torch.tensor([1, 2, 3])
Out[7]:
tensor([[5, 7, 9],

[8, 10, 12]])

DRAFT

APPENDIX F. INTRODUCTION TO NUMPY 15

• std (computes the standard deviation)

• var (computes variance)

• np.sort (sorts an array)

• np.argsort (returns indices that would sort an array)

• np.min (returns the minimum value of an array)

• np.max (returns the maximum value of an array)

• np.argmin (returns the index of the minimum value)

• np.argmax (returns the index of the maximum value)

• array_equal (checks if two arrays have the same shape and ele-
ments)

F.5 Broadcasting

A topic we glanced over in the previous section is broadcasting. Broadcast-
ing allows us to perform vectorized operations between two arrays even if
their dimensions do not match by creating implicit multidimensional grids.
You already learned about ufuncs in the previous section where we per-
formed element-wise addition between a scalar and a multidimensional
array, which is just one example of broadcasting.

Figure F.4: An illustration of broadcasting showing the addition of a single
number to every element in an array.

Naturally, we can also perform element-wise operations between arrays
of equal dimensions:

DRAFT

APPENDIX F. INTRODUCTION TO NUMPY 16

1 >>> ary1 = np.array([1, 2, 3])
2 >>> ary2 = np.array([4, 5, 6])
3 >>> ary1 + ary2
4 array([5, 7, 9])

In contrast to what we are used from linear algebra, we can also add ar-
rays of different shapes. In the example above, we will add a one-dimensional
to a two-dimensional array, where NumPy creates an implicit multidimen-
sional grid from the one-dimensional array ary1:

1 >>> ary3 = np.array([[4, 5, 6],
2 ... [7, 8, 9]])
3 >>> ary3 + ary1 # similarly, ary1 + ary3
4 array([[5, 7, 9],
5 [8, 10, 12]])

Figure F.5: An illustration of broadcasting showing the addition of a 1D to
a 2D NumPy array.

Keep in mind though that the number of elements along the explicit axes
and the implicit grid have to match so that NumPy can perform a sensical
operation. For instance, the following example should raise a ValueError,
because NumPy attempts to add the elements from the first axis of the left
array (2 elements) to the first axis of the right array (3 elements):

1 >>> try:
2 ... ary3 + np.array([1, 2])
3 >>> except ValueError as e:
4 ... print('ValueError:', e)
5 ValueError: operands could not be broadcast
6 together with shapes (2,3) (2,)

Be cautious of this when debugging …

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

1. Tensors in Deep Learning
2. Tensors and PyTorch
3. Vectors, Matrices, and Broadcasting
4. Probability Basics
5. Estimation Methods
6. Linear Regression

Probability Basics: Definitions

Ben Lengerich © University of Wisconsin-Madison 2025

• Random Variables:
• Discrete: Values from a countable set (e.g. a coin flip)
• Continuous: Values from an interval (e.g. a height)

• PMF and PDF:
• Probability Mass Function: P(X=x) for discrete X.
• Probability Density Function: f(x) for continuous X.

Key Distributions

Ben Lengerich © University of Wisconsin-Madison 2025

• Bernoulli Distribution:
• 𝑃 𝑋 = 𝑥 = 𝜃! 1 − 𝜃 "#! , 𝑥 ∈ {0,1}
• Example: a fair coin flip (𝜃 = 0.5)

• Gaussian Distribution:

• 𝑓 𝑥 = "
√%&'!

𝑒
"#$!

!%!

• “Normal” because of Central Limit Theorem
• “Standard Normal” when 𝜇 = 0, 𝜎 = 1

Central Limit Theorem

• Let 𝑋!, 𝑋", … , 𝑋#be i.i.d. random variables with mean 𝜇 and
variance 𝜎".
• Define the sample mean:

&𝑋# =
1
𝑛
*
$%!

#

𝑋$

• Then, as 𝑛 → ∞:
&𝑋# − 𝜇
𝜎
𝑛

→ 𝑁(0, 1)

Ben Lengerich © University of Wisconsin-Madison 2025

Joint, Marginal, and Conditional Probabilities

Ben Lengerich © University of Wisconsin-Madison 2025

• Joint: 𝑃(𝐴, 𝐵), probability of two events occurring together.
• Marginal: 𝑃 𝐴 = ∑& 𝑃(𝐴, 𝐵), sum of joint probabilities over one

variable.

• Conditional: 𝑃 𝐴 𝐵 = '(),&)
'(&)

, probability of A given B.

Expectation and Variance

Ben Lengerich © University of Wisconsin-Madison 2025

• Expectation:
• Discrete: 𝐸 𝑋 = ∑! 𝑥𝑃(𝑋 = 𝑥)
• Continuous: 𝐸 𝑋 = ∫ 𝑥𝑓 𝑥 𝑑𝑥

• Variance: V𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 "

• Equivalent: V𝑎𝑟 𝑋 = 𝐸 𝑋% − 𝐸 𝑋 %

Linearity of Expectation

Ben Lengerich © University of Wisconsin-Madison 2025

• Property:
• 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

• Multiple Variables:
• 𝐸 𝑋" + 𝑋% = 𝐸 𝑋" + 𝐸 𝑋%

Expectation of Functions

Ben Lengerich © University of Wisconsin-Madison 2025

• Formula:
• 𝐸 𝑔 𝑋 = ∑! 𝑔 𝑥 𝑃(𝑋 = 𝑥) (discrete)
• 𝐸 𝑔 𝑋 = ∫! 𝑔 𝑥 𝑓 𝑥 𝑑𝑥 (continuous)

• Example (Discrete):
• 𝑋 ∼ Bernoulli 𝜃 , 𝑔 𝑋 = 𝑋%:
• 𝐸 𝑔 𝑋 = 1%𝜃 + 0% 1 − 𝜃 = 𝜃

• Example (Continuous):
• 𝑋 ∼ Uniform 0,1 , 𝑔 𝑋 = 𝑋%:
• 𝐸 𝑔 𝑋 = ∫(

" 𝑥%𝑑𝑥 = "
)
.

Variance of Functions

Ben Lengerich © University of Wisconsin-Madison 2025

• Definition:
• 𝑉𝑎𝑟 𝑔 𝑋 = 𝐸[𝑔 𝑋 − 𝐸 𝑔 𝑋 %]
• Equivalent: 𝑉𝑎𝑟 𝑔 𝑋 = 𝐸 𝑔 𝑋 % − 𝐸 𝑔 𝑋 %

Covariance and Correlation

Ben Lengerich © University of Wisconsin-Madison 2025

• Covariance:
• 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸[𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌]

• Properties:
• 𝐶𝑜𝑣 𝑋, 𝑋 = 𝑉𝑎𝑟(𝑋)
• If X,Y are independent: 𝐶𝑜𝑣 𝑋, 𝑌 = 0.

• Correlation:
• 𝜌 𝑋, 𝑌 = *+, -,/

012 - 012(/)

• 𝜌 = 1: Perfect positive linear relationship.
• 𝜌 = 0: No linear relationship.
• 𝜌 = −1: Perfect negative linear relationship.

Bayes’ Rule

Ben Lengerich © University of Wisconsin-Madison 2025

• 𝑃 𝐴 𝐵 = ' 𝐵 𝐴 '())
' &

• Example: Medical test:
• 𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 = 5 6+7898,: 9:79 ;87:17:) 5(;87:17:)

5 6+7898,: 9:79

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

1. Tensors in Deep Learning
2. Tensors and PyTorch
3. Vectors, Matrices, and Broadcasting
4. Probability Basics
5. Estimation Methods
6. Linear Regression

Introduction to Estimation

• Goal of Estimation:
• Infer unknown parameters θ from observed data.

• Types of Estimation:
• Point Estimation: Single value (e.g., MLE).
• Interval Estimation: Range of plausible values (e.g., confidence intervals).

• Common Methods:
• Maximum Likelihood Estimation (MLE)
• Maximum A Posteriori (MAP)
• Method of Moments

Ben Lengerich © University of Wisconsin-Madison 2025

Maximum Likelihood Estimation (MLE)

Ben Lengerich © University of Wisconsin-Madison 2025

• Definition:
• Find X𝜽 that maximizes the likelihood of observing the given data.

(𝜽 = argmax"𝐿 𝜃 where 𝐿 𝜃 = 𝑃 data 𝜃 .
• Interpretation:

• L(θ): Probability of the observed data given θ.
• MLE chooses the parameter that makes the data most "likely."

𝐿(𝜃)

'𝜃&'(

𝜃

Maximum Likelihood Estimation (MLE)

Ben Lengerich © University of Wisconsin-Madison 2025

• Example:
• Dataset: X={1,0,1,1,0},
• Bernoulli distribution with 𝑃 𝑋 = 1 𝜃 = 𝜃:

𝐿 𝜃 =[
8

𝜃!) 1 − 𝜃 "#!)

• Typically solved by maximizing the log-likelihood.
ℓ 𝜃 = log 𝐿(𝜃) = ∑8<"= 𝑥8 log 𝜃 + 1 − 𝑥8 log(1 − 𝜃)

• Derivative:
𝑑ℓ
𝑑𝜃

=
𝑘
𝜃
−
𝑛 − 𝑘
1 − 𝜃

where 𝑘 = ∑𝑥8
• Solution:

X𝜽 =
𝑘
𝑛

Maximum Likelihood Estimation (MLE)

Ben Lengerich © University of Wisconsin-Madison 2025

• The MLE:
• does not always exist.
• is not necessarily unique.
• is not necessarily admissible.

Maximum A Posteriori (MAP) Estimation

Ben Lengerich © University of Wisconsin-Madison 2025

• Find
:𝜃,)' = 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜃 data) ∝ 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 data 𝜃 𝑃(𝜃)

• 𝑃 data 𝜃 : Likelihood
• 𝑃(𝜃): Prior belief about 𝜃

• MLE ignores 𝑃 𝜃
• MAP incorporates prior information.
𝐿(𝜃)

𝜃

'𝜃&'(

P(𝜃|data)

'𝜃&*+

𝜃

Regularization is MAP

Ben Lengerich © University of Wisconsin-Madison 2025

• MLE with Regularization:
• Adds a penalty to avoid overfitting

4𝜽𝒓𝒆𝒈 = argmax"[log 𝐿 𝜃 − 𝜆𝑅 𝜃]

• MAP as Penalized MLE:
• Let 𝑃 𝜃 ∝ 𝑒#>?(@). Then

X𝜽AB5 = 𝑎𝑟𝑔𝑚𝑎𝑥@[log 𝐿 𝜃 + log𝑃 𝜃] = b𝜃2:C

𝐿(𝜃)

'𝜃&'(

𝜃

Today: Fundamental Math Skills for DL

Ben Lengerich © University of Wisconsin-Madison 2025

1. Tensors in Deep Learning
2. Tensors and PyTorch
3. Vectors, Matrices, and Broadcasting
4. Probability Basics
5. Estimation Methods
6. Linear Regression

Introduction to Linear Regression

Ben Lengerich © University of Wisconsin-Madison 2025

• Model Definition:
• 𝑦 = 𝑋𝛽 + 𝜖, where
• y: Response variable (dependent variable).
• X: Design matrix (independent variables or features).
• 𝛽: Coefficients (parameters to estimate).
• ϵ: Error term (often assumed to be 𝑁(0, 𝜎%).

• Goal:
• Estimate 𝛽.

Linear Regression Evaluation Metrics

Ben Lengerich © University of Wisconsin-Madison 2025

• Coefficient of Determination (𝑹𝟐):
• 𝑅% = 1 − DD,-.)/012

DD34312
• Measures the proportion of variance explained by the model.

• Mean Squared Error (MSE):
• 𝑀𝑆𝐸 = "

=
∑ 𝑦8 − j𝑦8 %

• Mean Absolute Error (MAE):
• 𝑀𝑆𝐸 = "

=
∑‖𝑦8 − j𝑦8‖

Ordinary Least Squares (OLS)

Ben Lengerich © University of Wisconsin-Madison 2025

• Objective:
• Minimize the sum of squared residuals:
• X𝜷EFD = 𝑎𝑟𝑔𝑚𝑖𝑛G 𝑦 − 𝑋𝛽 %

• Residuals:
• 𝑒8 = 𝑦8 − j𝑦8

• Solution:
• X𝜷EFD = 𝑋H𝑋 #"𝑋H𝑌

Regularization in Linear Regression (MAP)

Ben Lengerich © University of Wisconsin-Madison 2025

• Ridge Regression (L2 Regularization):
• Adds an L2 penalty:

• !𝜷28;C: = 𝑎𝑟𝑔𝑚𝑖𝑛G 𝑦 − 𝑋𝛽 % + 𝜆 𝛽 %

• Equivalent MAP interpretation:

• Prior on coefficients: 𝛽 ∼ 𝑁(0, '
!

>
)

• MAP estimate maximizes: P(β∣y)∝P(y∣β)P(β)
• Penalty comes from the Gaussian prior.

• Lasso Regression (L1 Regularization):
• Adds an L1 penalty:

• !𝜷I177+ = 𝑎𝑟𝑔𝑚𝑖𝑛G 𝑦 − 𝑋𝛽 % + 𝜆 𝛽 "

• Equivalent to 𝛽 ∼ Laplace(0, '
>
)

Next Lecture

Ben Lengerich © University of Wisconsin-Madison 2025

Single-layer networks

.

Questions?

