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Conditional Independence
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Introduction to Conditional Independence

 Variables X and Y are independent if:
P(X,Y) = P(X)P(Y)
 Notation: X LY
 Variables X and Y are conditionally independent given Z if:
P(X,Y|Z) = P(X|Z)P(Y|2)
« Equivalently: P(X|Y,Z) = P(X,Z)
* Notation: X LY | Z
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Example of Conditional Independence

 Let X = Fever, Y = Rash, Z = Measles

* Given that a patient has measles, does knowing if they have a
fever give us any additional information about whether they
have a rash?

Subtype of
P(X YlZ) - P(X, Y, Z) measles?
' - P(2)
~ P(XIZD)P(Y|Z)P(Z)

P(Z) !/ !/ !/
= P(X|Z)P(Y |2) P(X;Y|Z)=ZP(Z | Z)P(X 1 Z")P(Y | Z")
YA
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Recall Naive Bayes

» Conditional independence of X;s | Y allows for efficient

computation of P(X | Y):

PX|Y) = P(Xy, ..., X4|¥)
_ [I,P(X; 1 Y)P(Y)
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Recall Naive Bayes

 Could we switch the direction of one of the arrows?

P(X|Y) = P(Xq, ., X4|Y)
= PX)PY[X) ;o P(X; | Y)
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Recall Naive Bayes

e Could we switch the direction of two of the arrows?

P(X|Y) = P(Xq, ..., X4|Y)
= P(X)P(X)P(Y|X1, X2) [1;=5 P(X; | )
P(Y)

P 1) | [Pt
=3

Now we need X; 1 X,

S POX)P(XR)
P(Xll XZ)
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What happened?

Nalve Bayes

P(X,)P(X
PAXIY) = | |PCi1Y) pexivy =] [Pexi i) PN = 2 0, 11 [ e )
) ’ i=3
l

Intuitively: Ignoring graph structure can double-count evidence.
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Questions about Conditional

Independence?
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Directed Graphical Models:

Bayesian Networks
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Two types of Graphical Models

* Directed edges give causality relationships (e.g. Bayesian
Network)

» Undirected edges give correlations between variables (e.q.
Markov Random Field)
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Representing Multivariate Distributions

* | X;s are conditionally independent, the joint can be factored to
a product of simpler terms, e.q.

R ____________________E P(XlI XZI X3, X4-l XS) X6; X7; X8) —
Jk  P(X3|X1)P(X4]|X2)P(X5]|X7)

[KinaseC ’X:;
i P(XelX3, X4)P(X7|X6) P (Xg| X6, X5)

. Speual case: If X;s are independent: P(X |-) = P(X;)
P(X11X21X31X47X5rx6fX71X8) - P(Xl)P(XZ)P(XS)P(X4)P(X5)P(X6)P(X7)P(X8)
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Example: The Dishonest Casino
* Suppose a casino has two dice:
* Fairdice:P(1) =P(2)=..=P(6) =1/6
« Loaded dice: P(1) = P(2) = P(3) = P(4) = P(5) = 1/10, P(6) = %

* Suppose the dealer switches between die every 20 times

* Game:
* You bet $1
* You roll
« Dealer rolls (maybe with fair dice, maybe with loaded dice)
« Highest number wins $2

Do you play at the dishonest casino?
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Fundamental Questions at the dishonest casino

* Representation
« Can we build a model of how this game works?

* Learning
e Can we learn how "loaded” is the loaded dice? How often does the dealer
change from fair to loaded and back?
* Inference

« After observing a sequence of rolls, can we say what portion of the
sequence was generated with a fair die vs a loaded one? How likely are we to
sit at the table?
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A Simple Directed PGM

* Markov Chain

* Markov property: “The future state depends only on the
present state, and not on past states”

* Parameters:
* Transition Probability Matrix:  M;; = P(X, =j | X;—1 = 10)
* |nitial State Distribution: i =P(X, =

O ®0eE

PO = PO | | PO 1 Xe)
t=2
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Hidden Markov Model (HMM)

* Markov chain but underlying drivers not observed

 Parameters:
Observation ("Emission”) ProbabilityEy; = P(X; =k | Z; =)
Transition Probability Matrix: M;; = P(Z; =j | Zt—1 = i)
Initial State Distribution: m; =P(Z; =1)

74 7, Z4 4 Z4

D ®O® 6

P(X,Z) = P(Z,) HP(Zt | Z,. 1)1_[P(Xt 1 Z,)
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Dishonest Casino as HMM

 Z;: Dice being used by dealer (fair or loaded)
» Observation Probability Matrix: Probability of dice roll, given Z;
 Transition Probability Matrix: How often dealer switches die.

 |nitial State Distribution: What do we believe the dealer started
with?

Z4 Z, Zq-

000 e

P(X,Z) = P(Z,) HP(Zt | Z,. 1)1_[P(Xt 1 Z,)
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Bayesian Network (BN)

 ABN is a directed acyclic graph whose nodes represent the
random variables and whose edges represent direct influence of
one variable on another

* Provides the skeleton for representing a joint distribution
compactly in a factorized way

« Compact representation of a set of conditional independence
assumptions

* We can view the graph as encoding a generative sampling
process executed by nature.
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Bayesian Network (BN)

Factorization Theorem:

Given a DAG, the most general form of the probability distribution
that is consistent with the graph factors according to:

P(X) = HP(Xi | Xz, )

where X is the set of parents of X;.
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Bayesian Network: Local Structures

[
« Common parent G
* Knowing B decouples A and C

ONRG
e Cascade
* Knowing B decouples A and C Q G Q
e A1 C|B

e \/-structure
* Knowing B couples A and C

« A can “explain away” C Q

Three foundational building blocks for creating complex BNs
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I-Maps

* Independence set: Let P be a distribution over X. We define I(P)
to be the set of independences (X L Y | Z) that hold in P.

* |-Map: Let G be any graph object with an associated
independence set I(G). We say that G is an I-map for an
independence set I if I(G) S 1.

* |-Map of Distribution: We say G is an I-map for P if G is an I-map
for I(P), when we use I(G) as the associated independence set.

Distribution P

G is an I-Map for P if I(G) € I(P)
Why does the graph get special privileges?
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Facts about I-Maps
* For G to be anI-map of P, it is necessary that G does not
mislead us regarding any independencies in P.

* Any independence that G asserts must also hold in P. Conversely, P may
have additional independencies that are not reflected in G.

e "We must be able to use G to estimate P”.

* Example
@ ll- XY PXY)
0 0.08 0 0 04
0 1 0.32 0 1 0.3
1 0 0.12 1 0 0.2
1 1 0.48 1 1 0.1
GX—>Y GY—)X P1 PZ
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From I(G) to local Markov assumptions of BNs

* In a BN, each node is independent of its non-descendants given

Its parents.

* Let Pay, denote t
denote the variab

ne parents of X;in G and NonDescendantsy,
es in the graph that are not descendants of X;.

Then G encodes t

he following set of local conditional

independence assumptions I;(G):
I,(G) = {X; L NonDescendantsy |Pay;: V i}

Q a = NonDescen@

025
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Graph separation

» D-separation criterion for Bayesian networks [Pearl, 1988]
« D for "directed” edges

« Definition: A set of nodes X is d-separated (conditionally independent)
from a set of nodes Y given a conditioning set Z iff every path between any
nodesin X and any node inY is blocked by Z.

» A path between nodes 4 and B is blocked by Z if it contains at least one of
the following structures:
e ChainnA—-Z - BforZ' €Z
» Forki A« Z" - BforZ' €Z
« Collider: A - C « B for C € Z AND no descendantof Cisin Z
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Active Trails

e Causal: A—-7Z - B

e Active iff Z is not observed.

e CommonCause:A«<Z7Z - B
e Active iff Z is not observed.

e Collider:A—-7Z «< B

e Active iff Z OR one of Z's descendants is observed.
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An alternate definition of D-separation

« MAG Definition of D-Separation

* Variables X and Y are D-separated given Z if they are separated in the
moralized ancestral graph.

* Example:
Original Graph Ancestral Graph for X,Y,Z Moral Ancestral Graph

Remove non-
ancestors of X,Y,Z

—)

Are X and Y separated by Z (i.e.
removing Z disconnects X and Y)?

Connect coparents,
undirect edges
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Example

* Whatis the I(G) of this graph?
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Quantitatively Specifying Probability Distributions

Equivalence Theorem:
For agraph G,

et D; denote the family of all distributions that satisfy I(G).

_et D, denote the family of all distributions that factor
accordingto G

P = | [ Poxi 1)

Then D; = D,.
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Conditional Probability Tables (CPTs)

0.75

0.25

b® ]0.33 P(a,b,c.d) =
2 (007 P(a)P(b)P(c|a,b)P(d|c)
a%h? a%'? a'b® a'b?
0.45 1 0.9 7
0.55 0 0.1 0.3
C1
0.5
0.5
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Conditional Probability Density Functions (CPDs)

P(a,b,c.d) =
A~N(p,, Z;) B~N(uy, 2,) P(a)P(b)P(Clasb)P(dlc)

o w“'\‘\

'v

...... m‘\‘
@W%*é‘
s‘s \‘\

"~
v
-

C~N(A+B, %)

. D~N(ug+C, Zy)

il
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Summary of BN semantics

» A Bayesian Network is a pair (G, P) where P factorizes over G and
where P is specified as a set of CPDs associated with G's nodes.
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Uniqueness of BNs

* Very different BN graphs can be equivalent (in that they encode
the same set of conditional independence assertions).

X1Y|Z

o606 @ &
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I-equivalence

 Definition of I-Equivalence: Two BN graphs G, and G, over X are
[-equivalentit I(Gy) = I(G,).

X1Y|Z

o6 © &

How can we distinguish structures when learning?
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Simple BNs

e [ID Observations

Q Model parameters

P(v;0)=P©) | | P(¥i10)
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Simple BNs

* Nalve Bayes

Px1v) =P | [PCxi1v)
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Notation: "Plate”

* Nalve Bayes with Streamlined Notation

/ i=1:n

Plate notation

Variables within a plate are replicated
in a conditionally independent manner
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Questions?
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