STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich

Lecture O4: Single-layer networks
September 15, 2025

Announcements

* HW1 Due this Friday via Canvas
* Enrollment / waitlist

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Single-layer neural networks

1. Perceptrons

2. Geometric Intuition

3. Notational Conventions for Neural Networks
4. A Fully Connected (Linear) Layer in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Rosenblatt’'s Perceptron

A learning rule for the computational/mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para.
Cornell Aeronautical Laboratory.

Source: http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4/Rosen-2.jpg

Ben Lengerich © University of Wisconsin-Madison 2025

Rosenblatt’'s Perceptron

[
A Computational Model of a Biological Neuron
Oemdﬁ%

(\D@V\d“:"{es OQ 6)05“—"
m Sbwm‘frl-‘\c

\f\ A MA}Q“'M

j\ *0W ,
I~

>L ¢ /ﬁ:\

A

NEuRow

Ben Lengerich © University of Wisconsin-Madison 2025

Inputs

Threshold f(2) = {

0,
1,

z2<40
z>0

Rosenblatt’'s Perceptron

* Note that Rosenblatt (and later others) proposed many variants
of the Perceptron model and learning rule.

» We discuss a "basic” version; today
"Perceptron” = "a classic Rosenblatt Perceptron”

* In our “brief history of DL" (Lecture 2), we were a bit loose:

Perceptrons generalize MP Neurons . Classic
Continuous Activation threshold function Rosenblatt

. et Weighting / function Perceptron

sigmoid —— DL “Perceptron”
: Ck N® / sigmoid unit
L

net :ig)wi \l b— G(II(’f) -

-net
l+e

Ben Lengerich © University of Wisconsin-Madison 2025

Many activation functions

* Threshold function (perceptron, 1950+)
 Sigmoid function (before 2000)

* RelLLU function (popular since CNNs)

* Many variants of RelLU, e.qg. leaky RelLU, GelLU

Ben Lengerich © University of Wisconsin-Madison 2025

Terminology

General (logistic regression, multilayer nets, ...):

* Net input = pre-activation = weighted input, z

 Activations = activation function(net input); a = a(2)
 Label output = threshold(activations of last layer); y = f(a)

Special cases:
* In perceptron: activation function = threshold function

* In linear regression: activation = identify function, so net
Input = output

Ben Lengerich © University of Wisconsin-Madison 2025

General Notation for Single-Layer Neural Networks

 Common notation (i.e. in most modern texts) to define the
bias unit separately

 However, often inconvenient for mathematical notation

"separate” bias unit

Activatio m
(Oh o o (Z ;W + b%b) =
O

utput
Net input o(z) = 0if 2<0
lifz>1

b= —0
Inputs

Ben Lengerich © University of Wisconsin-Madison 2025

General Notation for Single-Layer Neural Networks

« Often more convenient notation: define bias unit as w, and
prepend a 1to each input vector as an additional "feature”

* Modifying input vectors is more inconvenient coding-wise

bias unit "included" as w,,

\:i’wi) =o(x'w) =9

Activation

. o(z) = 0, 2<0
O y "1, 2>0
Output

Net input

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Learning Algorithm

» Assume binary classification task
» Perceptron finds decision boundary is classes are separable

® classO
41| @ class1 A,
~.;I .l :.'
2 e T
® -‘.l @
® ° ¢ " mE m _
0 @ " ... o
0, .. :
o @ @
24 e .JO. .00@
@ Qe y
® @
-4 .. @ L .
® [animated GIF]
=4 -2 (I) 2 4

Iteration 0

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Perceptron Learning Algorithm

* |f correct: Do nothing

* [T incorrect
* |f outputis O (targetis 1), then add input vector to weight vector
 |f outputis1 (targetis O), then subtract input vector from weight vector

Guaranteed to converge if a solution exists (more about that later...)

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Learning Algorithm (pseudocode)

Let
D = ((xM, M), (xZ,yB), . (= y)) € (R™ x {0,1})"

1. Initialize w := 0™ (assume weight incl. bias)

2. Forevery training epoch:
1. Forevery (x!! y[']) € D:
1.yl = a(x w) «—— Only-Oorf
2. err == (y LIy l]) «—— Only-1,0,or1
3 wi=w+errxxll

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Single-layer neural networks

1. Perceptrons
2. GeometricIntuition
3. Notational Conventions for Neural Networks

4. AFully Connected (Linear) Layer in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Intuition

Decision boundary Weight vector is perpendicular

to the boundary. Why?

Remember,

. 0, wix <0
v 1, wix >0

w'x = ||w|| - [|x]] - cos(6)

—

So this needs to be 0 at the boundary,
and it is zero at 90°

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Intuition

What else does this mean?

Every input vector on this side
will have an angle with the weight vector
that is < 9()°

Decision boundary

Assume origin (0, 0)
and no bias

So, we could scale the weights and/or inputs by an
arbitrary factor and still get the same classification results

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Intuition

input vector for an example with label 1

weight vector must be somewhere such that the angle
CORRECT SIDE Is < 90 degrees to make a correct prediction

WRONG SIDE
The dot product will then be positive, i.e., > 0, since

w' x = [[w|| - [|x]| - cos(6)

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Intuition

input vector for an example with label O

WRONG SIDE I

CORRECT SIDE \ weight vector must be somewhere such that the angle
is >>90 degrees to make a correct prediction

The dot product will then <0, since

w'x = [[w|| - [|x|| - cos(6)

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Intuition: An update

input vector for an example with label 1

This is the new weight vector
CORRECT SIDE

WRONG SIDE

For this weight vector, we make a wrong prediction;
hence, we update

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Limitations
[
* The (classic) Perceptron has many problems
* Linear classifier, no non-linear boundaries
* Binary classifier, cannot solve XOR problems
* Does not converge if classes are not linearly separable
« Many “optimal” solutions in terms of O/1loss on the training data
* Most will not be optimal in terms of generalization performance

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Fun Fact

Where a perceptron had been trained to distinguish between - this was for military purposes - it
was looking at a scene of a forest in which there were camouflaged tanks in one picture and no
camouflaged tanks in the other. And the perceptron - after a little training - made a 100% correct
distinction between these two different sets of photographs. Then they were embarrassed a few
hours later to discover that the two rolls of film had been developed differently. And so these
pictures were just a little darker than all of these pictures and the perceptron was just measuring
the total amount of light in the scene. But it was very clever of the perceptron to find some way of
making the distinction.

-- Marvin Minsky, Famous Al researcher, Author of the famous "Perceptrons™ book

Source: https://www.webofstories.com/play/marvin.minsky/122

%L)

https://gph.fs.quoracdn.net/main-qimg-305eb8136c4a20f348bb7ab465bc2e 1Bktp:/theconversation.com/want-to-beat-climate-change-protect-our-natural-forests-121491

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptrons and Distributions

* |s the classic Perceptron learning algorithm a form of MLE/MAP
estimation? If so, what's the interpretation? If not, why not?

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptrons and Distributions

* |s the classic Perceptron learning algorithm a form of MLE/MAP
estimation? If so, what's the interpretation? If not, why not?
* No

» Classic Perceptron defines a hard threshold with a deterministic mapping:
o(z) = step(z) = step(w!x)
* No likelihood defined - No MLE/MAP estimation

1 5
1+e~ %

« What if we use a sigmoid activation o(z) =

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptrons and Distributions

* |s the classic Perceptron learning algorithm a form of MLE/MAP
estimation? If so, what's the interpretation? If not, why not?
* No

» Classic Perceptron defines a hard threshold with a deterministic mapping:
o(z) = step(z) = step(w!x)
* No likelihood defined - No MLE/MAP estimation

! -
1+e~ 2

« What if we use a sigmoid activation o(z) =

* Yes

* This is logistic regression!

e Likelihood function: L(w) = [[;c(wx)Yi(1 — a(wlx))1¥:
can be maximized for MLE - gradient ascent

Ben Lengerich © University of Wisconsin-Madison 2025

Parallel Histories

« 1838 — Verhulst: introduces the logistic function (population growth).
* 1943 — McCulloch & Pitts: logic neurons (no learning).

* 1944 — Berkson: introduces the logit.

* 1957 — Rosenblatt: perceptron + learning rule (connectionism).

« 1958 — Cox: logistic regression as general regression (statistics).

* 1969 — Minsky & Papert: perceptron limits (can’'t do XOR).

* 1986 — Rumelhart, Hinton & Williams: backpropagation + sigmoids.
» Can be seen as “solve the 1969 problem by stacking the 1958 model > MLE by gradient ascent/chain rule”

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptrons and DL

* So why is Rosenblatt’'s Perceptron considered the basis of DL
(instead of logistic regression)?
* First “Neuron that learns”
* Rosenblatt framed it explicitly as a biologically-inspired neuron
* Learning rule + Hardware Prototypes (“Mark 1 Perceptron™)
* Cultural lineage
* Narrative power
 Architectural continuity (“logistic” over-specified)

* Maybe if statisticians had won the naming war, we'd be talking about multi-layer
logistic models.

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Single-layer neural networks

1. Perceptrons
2. Geometric Intuition
3. Notational Conventions for Neural Networks

4. AFully Connected (Linear) Layer in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

So far...

Activation

A

9) Yy

Output

Xx'w4 b=z

Net input

e.g., Perceptron with one training example as input
during "inference" (in DL, people now often refer to
Inputs predicting the target variable as "inference")

If we have n training examples, X € R"*™, =z ¢ R7*1

XwW+b==2z

Ben Lengerich © University of Wisconsin-Madison 2025

A Fully-Connected Layer

I1
L2
where X =

Im
w1 w12 .. W1,m
w21 W22 ... Wom

W =

wh,l wh,2 .o wh,m

Layer activations for 1 training example

O'(WX—I— b) —a
ac thl

note that Wi,j refers to the weight connecting the
J-th input to the i-th output.

Ben Lengerich © University of Wisconsin-Madison 2025

A Fully-Connected Layer

I1
L2
where X =

Im
w11 Wi2 ... Wim
w21 W22 ... W2, m

W =

wh,l wh,2 .o wh,m

Layer activations for n training examples

c((WX'+b]")=A
A € R™*h

note that Wi,j refers to the weight connecting the
J-th input to the i-th output.

Ben Lengerich © University of Wisconsin-Madison 2025

Why is the Wx notation intuitive?
1 O 1|l L1
0 1 i) o i)
| Lo A

Transformation matrix 1 = 0.25
Ty — 0.5
>
1= >
A

Ben Lengerich © University of Wisconsin-Madison 2025

Why is the Wx notation intuitive?

scales the x cooinate moves y into x direction
a b| |z - [a b
c d| |yl T TY

N

scales the y coordinate

>c

moves x in y direction

Ben Lengerich © University of Wisconsin-Madison 2025

Why is the Wx notation intuitive?

—
Stretching x-axis by factor of 3:

3 Of|x| |3z y
0 1 |y| |w
Stretching y-axis by factor of 2:
1 Of (x| |= Y
0 2| |yl |2y

Stretching x-axis by factor of 3 and y-axis by a factor of 2:

eI y

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Single-layer neural networks

1. Perceptrons

2. Geometric Intuition

3. Notational Conventions for Neural Networks

4. A Fully Connected (Linear) Layer in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

A Fully-Connected Layer

A Fully-Connected Layer in PyTorch

]
import torch

X = torch.arange(5@, dtype=torch.float).view(10, 5)

.view() and .reshape() are equivalent print('X dim:', X.size())

X print('w dim:', fc_layer.weight.size())
print('b dim:', fc_layer.bias.size())

.size() 1is equivalent to .shape

tensor([[., 1., 2., 3., 4.1,
[5., 6., 7., 8., 9.1, AR tfo_LaysriX]
[10., 11., 12., 13., 14.1], pr?”t{,A:df Al 4
(15.. 16.. 17.. 18., 19.1, print('A dim:', A.size())
(202 2)ay 22.; 23.; 24.), X dim: torch.Size([1@, 5])
[25., 26., 27., 28., 29.]1, W dim: torch.Size([3, 5])
[30., 31., 32., 33., 34.]1, b dim: torch.Size([3])
8. T 37 0 M., A: tensor([[1.2004, 2.3291, 2.0036],
[40., 41., 42., 43., 44.], [4.5367, 7.7858, 5.4519],
[45., 46., 47., 48., 49.1]) [7.8730, 13.2424, 8.9003],

[11.2093, 18.6991, 12.3486],
[14.5457, 24.1557, 15.7970],
[17.8820, 29.6123, 19.2453],
[21.2183, 35.0690, 22.6937],
[24.5546, 40.5256, 26.1420],
fc_layer.weight [27.8910, 45.9823, 29.5904],
[31.2273, 51.4389, 33.0387]1], grad_fn=<ThAddmmBackward>)
A dim: torch.Size([1@, 3])

fc_layer = torch.nn.Linear(in_features=5,
out_features=3)

Parameter containing:

tensor([[-0.1706, 0.1684, 0.3509, 0.1649, 0.1903],
[-0.1356, 0.0663, -0.4357, 0.2710, 0.1179],
[-0.0736, ©0.0413, -0.0186, ©0.4032, ©0.0992]], requires_grad=True)

fc_layer.bias

Parameter containing:
tensor([-0.2552, ©.3918, 0.2693], requires_grad=True)

Ben Lengerich © University of Wisconsin-Madison 2025

About notation

* ML culture is mix of implementation and model development
* These do not always suggest the same notations

 Always think about how the dot products are computed when
writing and implementing matrix multiplication

* Theoretical intuition and convention does not always match up
with practical convenience (coding)

* When switching between theory and code, these rules may be
useful: AB=(BTAT)T

(AB)' =B'TAT

Be cautious of this when debugging...very prone to mistakes with shapes...

Ben Lengerich © University of Wisconsin-Madison 2025

Next time

A better learning algorithm for neural networks

Ben Lengerich © University of Wisconsin-Madison 2025

Questions?

IIIIIIIIIIIIIIIIIIIIIIIIIIII

