Probabilistic Graphical
Models & Probabilistic Al

Ben Lengerich
Lecture 5: Undirected GMs
February 4, 2025

Reading: See course homepage




Logistics

* No class 2/11
« HW?2 deadline pushed to 2/1111:59pm

* Quizin-class on 2/13
* Quiz format: 3 HW problems, 2 new problems
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Today

* Undirected Graphical Models

 Markov Random Fields
* Restricted Boltzmann Machines
 Conditional Random Fields
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Undirected Graphical Models

©



Undirected Graphical Models

o
®C

 Pairwise relationships
* No explicit way to generate samples
» Contingency constraints on node configurations
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Example: Lattice

air or water ? .
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Example: Lattice

* Naturally arises in image processing, lattice physics, etc

* The states of adjacent / nearby nodes are coupled due to
pattern continuity, electro-magnetic force, etc.

Ben Lengerich © University of Wisconsin-Madison 2025



Representing Undirected Graphical Models

* An undirected graphical mode/represents a distribution P(X)
defined by an undirected graph H and a set of positive potential

functions ) associated with the c

igues of H such that:

1
P(X,, ... X)) = Er
C

l/)c (XC) “Gibbs distribution”

where Z represents the partition function: Z =), [[. . (X,).

* The potential function can be understood as a “score” of the

joint configuration

Are ¢ .(X,) probability
densities?
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Is P(X) a proper
probability density?




Whatis a clique?

* For G = {V,E}, aclique (complete subgraph) is a subgraph ¢’ =
{fV' € V,E'" € E}such that nodes in V' are fully connected.

« A maximal clique is a clique such that any superset V"' © V is not

a clique.

X;

Maximal cliques: {X1, X,, X3}, {X1, X4}
Sub-cliques: {X1, X2}, {X2, X3}, {X1, X3} {X1} {X2} X3} { X4}
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Example Lattice: Ising Model from Physics

» Used to describe ferromagnetism
* Each node i has a spin variable X; € {—1, +1}

» Let potential function for an edge (i, ) be ¥;;(X;, X;) =
exp(J;;X;X;) (neighboring states share spins with some strength)

+ P(X) = ~Tlepe(Xe) = 5 exp{Z; ;i (Xi, X))
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Interpretation of Clique Potentials

* This model implies X; 1 X3| X5, so joint must factorize as:
P(X1, X3, X3) = P(X2)P(X1|X2)P(X3]X7)
* We could write as P(X{,X,)P(X5 | X,) or P(X,, X3)P(X{ | X5), but:
« Cannot have all potentials be marginals
« Cannot have all potential be conditionals

 Clique potentials can be thought of as general “compatibility” of
their variables, but not as probability distributions.
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Example UGM: Maximal Cliques
9.
6,6;0 =

1
P(A,B,C,D)==Z?¢M36(A,B,C)¢@CD(B,C,D)
L= z WYapc(4, B, CO)Ypep(B,C, D)

ABCD
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Global Markov Independencies

* Let H be an undirected graph:

X4

X
* B separates A and C if every path fromanodeinAtoanodeinC
passes through a node in B:

We write sepy(A;C | B)

A probability distribution satisfies the global Markov property if
for any disjoint A, B, C such that B separates Aand C, Ais
independent of C given B: I(H) ={A 1L C | B:sepy(A;C | B)}
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Local Markov Independencies

* For each node X; there is a unique Markov blanket of X;, denoted
MBy., which is the set of neighbors of X; in the graph.

* The local Markov independenciesin H are:
L(H)={X; LV —{X;} — MBy, | MBy:V i}

* In other words, X; is independent of the rest of the nodes in the
graph given its immediate neighbors.
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Pairwise Markov Independencies

* The pairwise Markov independencies associated with H are:
Ip(H)={X 1YV - {X,Y}:{X,Y} ¢ E}

e.g.

00000

X1 L Xs| {X2, X3, X4}
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Recall: I-Maps

* Independence set: Let P be a distribution over X. We define I(P)
to be the set of independences (X L Y | Z) that hold in P.

* |-Map: Let G be any graph object with an associated
independence set I(G). We say that G is an I-map for an
independence set I if I(G) S 1.

* |-Map of Distribution: We say G is an I-map for P if G is an I-map
for I(P), when we use I(G) as the associated independence set.

Distribution P

G is an I-Map for P if I(G) € I(P)
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I-Maps of UG

 An UG H is an |-Map for a distribution P it I(H) < I(P)
* Pis a Gibbs Distributionover H if it can be represented as:

1
P == |etxo

ceC
* Theorem (soundness): If P is a Gibbs Distribution over H, then H is
an |-Map of P.

Distribution P

His an|-Map for P if I(H) S I(P)
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Perfect Maps

« An UG H is a perfect map for P if forany X,Y,Z, we have that
sepy(X;Z 1Y) X 1LZ|Y

* Not every distribution has a perfect map as an UG.
« Example: V-structure

@@%

________________________________________
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GMs and UGMs rep. overlapping sets of dists
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Exponential Families

« Constraining clique potentials to be positive could be
inconvenient (e.qg., the interactions between a pair of atoms can
be either attractive or repulsive).

« We can represent a clique potential ) in an unconstrainted
form using a real-valued “energy” function ¢ and have:

Y (Xc) — exp(_¢c (Xc))

* This gives the joint a nice additive structure:

1 1
P(X) = fexp {_ Z ch(Xc)} = Eexp{_H(v)\()}

CEC IlEnergy”

In physics, this is called the Boltzmann distribution.
In statistics, this is called a log-linear model.
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Aside: MAP Inference = Free Energy Minimization

Pgoitzmann(X) = argminHF(P(X; H)) = argminyE[H(X)]| — TS(P(X))

Distribution Free energy Expected energy Entropy at
observed in nature temp T

Negative log likelihood  Entropy = Uncertainty - LogPrior
Q" (8) = argmingF(Q) = argmingEqyg)[—log P(X |1 68)] —TS(Q) — Eggyllog P(0)]

Will make more sense after we study variational inference
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Questions?
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