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Reading: See course homepage




A Follow-up on Project Ideas

* What does “novel” mean?
« Something is uniquely yours

e Questions? Please ask.
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Today

« HW3 + Feedback
* Parameter Learning in Fully-Observed BNs
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A Brief Recap of our Roadmap

Local Structure <——— Prior Knowledge

Graphs -
Lectures 4,5

Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation . 5 Inference
MLE / MAP - Lecture 2 Exact - Lecture 6
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A Brief Recap of our Roadmap

Architecture Design,
Lectures 16-23

Local Structure <——— Prior Knowledge

Graphs -
Structure Learning - Lectures 4,5

Lectures 10, 11
Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation 5 Inference

> > P53 (-
MLE / MAP - Lecture 2 Exact - Lecture 6 9( )
Learning on Graphs _ Approximate - Lecture 14
Lectures 7 (8) -9, 12-13
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Parameter Learning in Fully-

Observed Bayesian Networks

©



Learning in Graphical Models

* Goal: Given a set of independent samples (assignments to
random variables), find the best Bayesian Network (both DAG

and CPDs)
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CRDO CAD Structure learning
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Parameter Estimation for Fully-Observed BNs

* The data: D = (x1, x2, x3, ..., xN)
* Assume the graph G is known and fixed
* Expert design or structure learning

* Goal: estimate from a dataset of N independent, identically
distributed (iid) training examples D

* Each training example corresponds to a vector of M values one
per node random variable

* Model should be completely observable: no missing values, no hidden
variables

Z(H;D)=logp(D|t9)=10gH(Hp(xn,iX,W ] Z(Zlogp(xm )j
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Simplest case: Density estimation

* A construction of an estimate, based on observed data, of an
unobservable underlying probability density function

0 ®® - ®

e Can be viewed as single-node graphical models

* Instances of exponential family distribution @

* Building blocks of general GM

 MLE and Bayesian estimate
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Discrete Distributions

* Bernoulli distribution: P(x) = px(l — p)l_w

e Multinomial distribution: Mult(1, 6)

X = [X17X27X37X47X57X6] X; =10,1], Z Xj =

j€[1,°",6]
X; =1 with probability 6;, »  theta; =1
je[l’... ’6]
P(X;=1) =0,
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Discrete Distributions

e Multinomial distribution: Mult(n, )
n = |ny,ng,...,NnE| where E n; =N
]

N
n) = 07 057 - O
p( ) nl'ng'nk' 1 2 K
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Example: Multinomial Model

e Data: We observed N iid die rolls (K-sided): D = {5, 1, K, ...3}} @

Lpn = [xn,lyxn,% T 7$’rL,K] where Ln,k — 07 1 E :xn,k =1 N

* Model: Xn.r = 1 with probability 6, and Z 0. =1
]{:6{17"' 7K}

e Likelihood of an observation: £ (@i) = P({znx =1, where k is the index of the n-th roll})

_ek_efnlean.. xnk Hexnk
* Likelihood of D: P(z1,2,...,2n|0) =

[ ,’:]2
sg
=
%
':1
?55
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MLE: constrained optimization

* Objective function: 1(0; D) =log P(D|0) = log H Opc =)  nglogby

* We need to maximize this subject to the constraint: D, G=1
ke{l,- K}

 Lagrange multipliers: l 0; D) an log 0 + \(1 — Z 0r)

01_ _nk

A — =—-)X=0
e Derivatives: 80, 0y ﬁﬁk,MLE:—E Bl
N
nk—)\ekian:)\ZQkiN:
k k

Sufficient statistics?
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Bayesian estimation

* | need a prior over parameters 6

* Dirichlet distribution P(0) = li_}%k(z:; []en"=c]]o~"
k k k

, e aN|0)p(8 nie TT porn— ctp o —
* Posteriorof 8  P(0lz1,...,an) = p(x;(x INL )2;( ) [[ex-1Toe—" =]Lee
1y--+s LN 7 i L

* Isomorphism of the posterior with the prior (conjugate prior)

* Posterior mean estimation 6, = /ekp(e\p)de - (j/@k Hggwnk—ld@ _ Nkt ag
k

N + |a|
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MLE for a multivariate Gaussian

* You can show that the MLE for pand  is

1
e =22, (%)
B = ;Zn (%, = 1 J%0 — 110 )
* What are the sufficient statistics?
" Rewrite S=, (6~ Yot — 1) =2, 2,37, )~ Nty 2y,

e Sufficient statistics are: z (x ) (Z x x! )
n n n n - nn
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MLE for general BNs

* If we assume the parameters for each CPD are globally independent, and
all nodes are fully observed, then the log-likelihood function decomposes
into a sum of local terms, one per node

¢(6;D) = log p(D | 6) —1ogj(1‘[ p(x,, |x,,,7,0.)]: Z[Zlog p(x,, x,.._:,a)j
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* MLE-based parameter estimation of GM reduces to local est. of each
GLIM.
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Decomposable likelihood of a BN

e Consider the GM:

p(x|0)=p(x, |6)p(x,|x,0,)p(x,|x,60,) p(x,|x,,x,,0,)

* This is the same as learning four separate smaller BNs each of which
consists of a node an its parents.
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MLE for BNs with tabular CPDs

* Each CPD is represented as a table (multinomial) with i

def "

0.{;&' = [)(X! — -/‘X7 :k) 1

* In case of multiple parents the CPD is a high-dimensional table
* The sufficient statistics are counts of variable configurations " ;Z e

e The log-likelihood is ~ (6:D)=log [ 6, = > n,. logb,,

i,J.K I‘J',k

* And using a Lagrange multiplier to enforce that conditionals sumup to 1
we have: oM =
ij
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What about parameter priors?

« In a BN we have a collection of local distributions 2(x; | xf}z.) = gxlg‘x_;

]

* How can we define priors over the whole BN?

* We could write P(x1,x2,...xN;G,0)P(6 | a)
* Symbolically the same as before but 0 is defined over a vector of random variables
that follow different distributions.

* We need 0 to decompose to use local rules. Otherwise we cannot decompose the
likelihood any more.

* We need certain rules on 0
* Complete Model Equivalence
* Global Parameter Independence
* Local Parameter Independence
* Likelihood and Prior Modularity

22
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Global and Local Parameter Independence

I
‘ Earthquake ’
A

(C Ca )
* Local Parameter Independence P(Q )
* For every node Call|Alarm=YES

* Global Parameter Independence

* For every DAG model \
M

P, 16) =11 r@,16)

independent of

p(@ |G) Hp( g |"J ) P(HCalllAlarm=NO)
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Which PDFs satisfy these assumptions?

» Discrete DAG Models  x; | 7} ~ Multi(6)

rQ o)
Dirichlet prior: P(6) = Hll:( )H 6 = C(@)[ ]9
Q) "k K

* Gaussian DAG Models X, | 7] ~ Normal(x,X)

1
@7)"* ||

1
Normal prior: p(ulv,¥)= 2 exr){— E(“ -v)'¥ 7 (u —V)}
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Parameter Sharing
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Parameter Sharing

e Now: PXirl0)=p(x|7) p(X, [ X, 4) optimize separately
t=2 t=2
* 1T (multinomial)
e« What about A? * Ais a stochastic matrix with Z Aij = 1

J
 Each row of A is a multinomial distribution

* MLE of A; is the fraction of transitions from i to

/g 5 :
AML —_— #(l == ‘]) _ Zn Zt:Z xn,t—lx;,t

ij : B T i
Ben Lengerich © University of Wisconsin-Madison 2025 #(i—> o) Z,,Z,ZZ Xn,t-1




Key idea today

For fully-observed BNs, the log-likelihood function decomposes
into a sum of local terms - Learning is factored
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Questions?
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