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Today
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• Parameter Learning in Undirected Graphical Models
• Iterative Proportional Fitting
• Generalized Iterative Scaling



Parameter Learning in Fully-Observed 
Undirected Graphical Models



Recall: MLE for BNs
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What about for Undirected GMs?
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Main challenge: Clique potentials are not probabilities, so MLE may not 
decompose into estimates for individual parameters.



MLE for Undirected GMs
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Likelihood for UGMs with tabular clique potentials
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• Sufficient statistics: Summarize the number of times that a 
configuration 𝑥 is observed in a dataset 𝐷 as:

Number of times 
configuration x is 
seen in dataset

Number of times 
clique configuration 
𝑥! is seen in dataset



Likelihood for UGMs with tabular clique potentials
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• Sufficient statistics: Summarize the number of times that a 
configuration 𝑥 is observed in a dataset 𝐷 as:

Number of times 
configuration x is 
seen in dataset

Number of times 
clique configuration 
𝑥! is seen in dataset

• The log-likelihood is then:



Derivative of Log-likelihood
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• Log-likelihood

• First term:

• Second term:



Derivative of Log-likelihood
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• Putting it together

• Set equal to zero:

• But the UGM is parameterized by 𝜓! not 𝑝.



Case 1: The model is decomposable
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• If the model is decomposable and all the clique potentials 
are defined on maximal cliques, then:
• The MLE of clique potentials are equal to the empirical marginals (or 

conditionals) of the corresponding clique.

• Example: Chain 𝑋" – 𝑋# – 𝑋$



Case 2: The model is NON-decomposable
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• If the model is non-decomposable (clique potentials are 
defined on non-maximal cliques), then we cannot equate MLE of 
clique potentials to empirical marginals (or conditionals).

• Two iterative algorithms:
• Iterative Potential Fitting
• Generalized Iterative Scaling



Iterative Proportional Fitting (IPF)
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Properties of IPF Updates
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So far…
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• Decomposable graphs: MLE for clique potentials correspond 
to empirical marginals or conditionals
• Non-decomposable graphs:

• If clique potentials are parameterized as full tables:
• Iterative Proportional Fitting

• Cost of clique potentials as full tables is exponential in the number of 
variables in the clique.

Can we represent UGMs more compactly and still estimate parameters?



Feature-parameterized clique 
potentials



Recall Parameter Sharing in BNs…
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𝑍" 𝑍# … 𝑍$%" 𝑍$

𝑋" 𝑋# … 𝑋$%" 𝑋$

Parameters:
• 𝑃(𝑍" ∣ 𝑍"#$)
• 𝑃 𝑋" 𝑍"
• 𝑃(𝑍$)
à d( 𝑍 %+ 𝑋 |𝑍|) + |𝑍|

HMM Definition:
• 𝑃 𝑍" = 𝑘 𝑍"#$ = 𝑗 = 𝑇&'
• 𝑃 𝑋" = 𝑘 𝑍" = 𝑗 = 𝐸&'
• 𝑃(𝑍$)
à 𝑍 % + 𝑋 𝑍 + |𝑍|

𝜋

𝑋" 𝑋# … 𝑋$%" 𝑋$

𝐴
Alternate Definition:
à 𝑋 + 𝑋 %



Features

Ben Lengerich © University of Wisconsin-Madison 2025

• A “feature” is a function that is non-zero for a few particular 
inputs and zero otherwise.
• Key idea: Instead of modeling all possible feature values in a big 

table, model specific groupings of feature values together.
• Example:

• Let a clique correspond to three consecutive characters.
• How would we define p(c1, c2, c3)?

• All possible character combinations we need 26^3 – 1 parameters.
• But there are sequences that are unlikely: kfd
• Define a feature like “ing”: 1 if c1=i,c2=n,c3=g. 0 otherwise.



Features as Potentials
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• Each feature function can be converted to a potential by 
exponentiating it. We can multiply these together to get a clique 
potential.
• Example:

• There is still an exponential number of settings, but only K 
parameters (𝜃%)
• A nice benefit of undirected graphical models: we don’t have to 

normalize each feature.



Combining Features
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• Each feature function has a weight 𝜃% which represents the 
numerical strength of the feature and whether it increases or 
decreases the probability of a clique.
• The marginal over the clique is a generalized exponential family 

distribution (a GLM):

• The features may be overlapping across cliques



Feature-based model
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• Joint distribution:

• We can drop sum over c:

• What are the sufficient statistics for this model?
• The features

• We need to learn weighting parameters 𝜃%



MLE of Feature-based model
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ℓ 𝜃; 𝐷 ∝
1
𝑁
-
&

log 𝑝(𝑥& ∣ 𝜃)

=-
'

4𝑝 𝑥 log𝑝(𝑥 ∣ 𝜃)

=-
'

4𝑝 𝑥 -
(

𝜃(𝑓( 𝑥 − log𝑍(𝜃)

• Problem: 𝑍 is a function of the parameters.
• Solution: Let’s maximize a lower-bound of the log-likelihood.

ℓ 𝜃; 𝐷 ≥ *ℓ 𝜃; 𝐷 =,
4

-𝑝 𝑥 ,
5

𝜃5𝑓5 𝑥 −
𝑍 𝜃
𝑍 𝜃6 − log𝑍 𝜃6 + 1



MLE of Feature-based model: GIS Update

Ben Lengerich © University of Wisconsin-Madison 2025

• A bit more math gets us to the Generalized Iterative Scaling 
(GIS) update rule:

𝜃567" = 𝜃56 + log
𝐸$868[𝑓5(𝑥)]
𝐸9(4;;!)[𝑓5 4 ]

Empirical expectation
Expectation under 
current model 
distribution



Summary
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• Iterative Proportional Fitting (IPF):

• Generalized Iterative Scaling (GIS):

𝜃567" = 𝜃56 + log
𝐸$868[𝑓5(𝑥)]
𝐸9(4;;!)[𝑓5 4 ]

Empirical expectation
Expectation under 
current model 
distribution

𝜓<67"(𝑥<) = 𝜓<6(𝑥<)
-𝑝(𝑥<)
𝑝6(𝑥<)

Empirical distribution
Current model 
distribution



Summary
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Why don’t we just do gradient descent for UGMs?
The partition function!



Questions?


