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Today

* Parameter Learning in Undirected Graphical Models
* |terative Proportional Fitting
* Generalized lterative Scaling
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Parameter Learning in Fully-Observed

Undirected Graphical Models




Recall: MLE for BNs

* If we assume the parameters for each CPD are globally independent, and
all nodes are fully observed, then the log-likelihood function decomposes
into a sum of local terms, one per node
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* MLE-based parameter estimation of GM reduces to local est. of each
GLIM.
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What about for Undirected GMs?

X %)

Main challenge: Clique potentials are not probabilities, so MLE may not
decompose into estimates for individual parameters.
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MLE for Undirected GMs

* For directed models, the log-likelihood decomposes into a sum of terms,
one per family (node plus parents).

* For undirected models, the log-likelihood does not decompose, because
the normalization constant Z is a function of all parameters.
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* In general, we need to do inference to learn parameters for undirected
models, even in the fully observed case.
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Likelihood for UGMs with tabular clique potentials

e Sufficient statistics: Summarize the number of times that a
configuration x is observed in a dataset D as:

def def
m(x) = Z o(x,x,) (totalcount), and m(x,)= Z m(x) (clique count)

T n T Xy
Number of times
clique configuration

X, is seen in dataset

Number of times
configuration x is
seen in dataset
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Likelihood for UGMs with tabular clique potentials

e Sufficient statistics: Summarize the number of times that a
configuration x is observed in a dataset D as:

def def
m(x) = Z o(x,x,) (totalcount), and m(x,)= Z m(x) (clique count)

T - T —

Number of times Number of times
configuration x is clique configuration
seen in dataset X, is seen in dataset

pDO) =TTI]px|6)°*
logp(D|0) =" 5(x,x,)logp(x|60) =D > 5(x,x,)logp(x|6)

10gp(D|9) = Z Z m(xc) lOg l//c (Xc) = N log A Zzzx:m(x)log{%]:[l//c(xc)j

=Y. > m(x,)logy,(x,)-NlogZ

* The log-likelihood is then:
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Derivative of Log-likelihood

* Log-likelihood logp(D|0) =), > m(x,)logy, (x,)~ NlogZ
e First term: 04 :m(xcy
5(,//C(XC) V/c(xc)
» Second term: ~ 9logZ _ 1 ZHV/d(Xd)
oy .(x,) Z Owc(x
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Derivative of Log-likelihood
o  Putting it together 5‘/22‘(:) == V'Z((icc)) -N ;C(();CC))

e S p o)

* But the UGM is parameterized by . not p.

« Set equal to zero:  py - (x,) =
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Case 1: The model is decomposable

* If the model is decomposable and all the clique potentials
are defined on maximal cliques, then:

* The MLE of clique potentials are equal to the empirical marginals (or
conditionals) of the corresponding clique.

 Example: Chain X; - X, - X5
p(X1, X2)p(X2, X3)
p(X2)

pmre(X1,X2) Zp X1, X2,X3) = p(X1|X2) Zp X3) =p(X1,X2)

pmLE(X1,X2,X3) =

PMLE(X2,X3) = p(XZ. X3)

p (X;,X;)
p(x)

FHE (%, %,) = P (%, X,) oy (Ko X3)= = p(X;|x,)
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Case 2: The model is NON-decomposable

* |f the model is non-decomposable (clique potentials are
defined on non-maximal cliques), then we cannot equate MLE of
cligue potentials to empirical marginals (or conditionals).

e Two iterative algorithms:
* |terative Potential Fitting
* Generalized Iterative Scaling
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Iterative Proportional Fitting (IPF)

60 _ m(x) _p P&

* From the log-likelihood: ow (x.) w.(x) v, (x,)

* Let’s rewrite in a different way: in(XC) _ P o p(_xc)‘ _ plxe)

Ne(Xc) the(Xc) Ve(Xe) he(Xe)

* The clique potentials implicitly appear in the model marginal p(x.) = f(V.(x.))

* Let’s forget a closed form solution and focus on a fixed-point iteration
method

p(x) p(x.) A g p(Xc)
00y uPx) P () = e ()

* Need to run inference for p(t/(x,)

Ben Lengerich © University of Wisconsin-Madison 2025




Properties of IPF Updates

* Set of fixed-point equations: by

* We can show that it is also a coordinate ascent
algorithm (coordinates=parameters of clique

potentials)

* At each step, it will increase the log-likelihood,
and it will converge to a global maximum. 500
axZ < minKLIp(x) || p(x |8))=) p(x)log
max £ <> min (p( Pl )) Zp )%p(x 0)

minp KI.(_p(X') h(X):]

* Maximizing the log likelihood is equivalent to
minimizing the KL divergence (cross entropy) = ST
LT e S

* The max-entropy principle to parameterization .. v urx) -«
offers a dual perspective to the MLE. L
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So far...
- Decomposable graphs: MLE for clique potentials correspond
to empirical marginals or conditionals

* Non-decomposable graphs:

* |f clique potentials are parameterized as full tables:

* lterative Proportional Fitting (Hl)(x - T {3

\ X —
& & - ])(t)(X()

« Cost of clique potentials as full tables is exponential in the number of
variables in the clique.

Can we represent UGMs more compactly and still estimate parameters?
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Feature-parameterized clique

potentials

©



Recall Parameter Sharing in BNs...

[ ]
Parameters:

* P(Zi1Zi—y)

® P(Xl |Zl)

. P(Z,) Zq Z
> d(ZI?+X11Z]) + |Z]

HMM Definition: ‘ '
« P(Zi=k|Zi_1=]) =Ty X1 X,
« P(X;=klZ =j)=Ej

* P(Zy)

> 1Z17 + 1X11Z] + | Z]
@

Alternate Definition:
> X+ |X]?
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Features
» A "feature” is a function that is non-zero for a few particular
inputs and zero otherwise.

» Key idea: Instead of modeling all possible feature values in a big
table, model specific groupings of feature values together.

* Example:
* Let aclique correspond to three consecutive characters.
* How would we define p(cl, c2, c3)?
* All possible character combinations we need 26”3 - 1 parameters.

« But there are sequences that are unlikely: kfd
* Define a feature like “ing”: 1if c1=i,c2=n,c3=qg. O otherwise.

Ben Lengerich © University of Wisconsin-Madison 2025




Features as Potentials
* Each feature function can be converted to a potential by
exponentiating it. We can multiply these together to get a clique

potential. b L

T (AN ] b T I
K
= GXP{Z gkfk (Cl,Cz,C3)}
K =1

* There is still an exponential number of settings, but only K
parameters (6;)

* Example:

A nice benefit of undirected graphical models: we don’t have to
normalize each feature.
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Combining Features

* Each feature function has a weight 6, which represents the
numerical strength of the feature and whether it increases or
decreases the probability of a clique.

* The marginal over the clique is a generalized exponential family
distribution (a GLM):
gingfi:lg (C1=C2aC3) " 8.’:df‘.’:d (C13C2=C3) e }

Ci.Cs:C1) % ex
p(C;,C;,C3) P{gquqfquq(cpczgq)*g

//////

* The features may be overlapping across cliques

V. (xc ) L; exp{z gkfk (xc, )}
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Feature-based model

e Joint distribution: _ 1 _ 1 . \>
p(X) Z (H) 1:[ Wc (xc Z (6) eXP{Z ZI fok (XC‘ )/

* We can drop sum over c: p(x)—lex
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 What are the sufficient statistics for this model?
* The features

* We need to learn weighting parameters 6,
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MLE of Feature-based model

£(0;D) x %Zlog p(x, | 0)
= z p(x)logp(x | 0)
= ) 500 ) 6:£i(x) —10gZ(6)

* Problem: Z is a function of the parameters.
 Solution: Let's maximize a lower-bound of the log-likelihood.

/ Z(6
f(eiD) = f(@,D) = Eﬁ(x)ielfl(x) _ ( )

7065 logZ(6%) + 1

Ben Lengerich © University of Wisconsin-Madison 2025



MLE of Feature-based model: GIS Update

A bit more math gets us to the Generalized Iterative Scaling
(GIS) update rule:

Egatalfi(¥)] «———— Empirical expectation

Epotficn] " Expectation under
current model

distribution

f:+1 =6 + log
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Summary

* Iterative Proportional Fitting (IPF):

p(x.) «———— Empirical distribution

pt(x;) “——_ Current model

distribution

¢ (xe) = Pe(xe)

« Generalized Iterative Scaling (GIS):

Egaralfi(¥)] «———— Empirical expectation

Epotfizy] T Expectation under
current model

distribution

6571 =6} + log
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Summary

Why don’t we just do gradient descent for UGMs?
The partition function!

P, ]‘[V/ (x,) Z— Z [[v.(x.)

ceC X oel
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Questions?
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