Probabilistic Graphical
Models & Probabilistic Al

Ben Lengerich

Lecture 10: Structure Learning

February 27, 2025

Reading: See course homepage




Logistics
]
* Quiz graded, up on Canvas
« Office hours to review.
* Average: 89%
¢ Min:59%
« Max: 100%

e HW3 due Mar1

* Next week:
* Project Proposal due Mar 7
« HW4 due Mar 8

 Later:
« HW5 due Mar 15
« Midterm - Mar 20
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A Brief Recap of our Roadmap
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A Brief Recap of our Roadmap

Local Structure <——— Prior Knowledge

Graphs -
Lectures 4,5

Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation . 5 Inference
MLE / MAP - Lecture 2 Exact - Lecture 6
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A Brief Recap of our Roadmap

Architecture Design,
Lectures 16-23

Local Structure <——— Prior Knowledge

Graphs -
Structure Learning Lectures 4,5

- Lectures 10, 11
Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation 5 Inference

> > Ps(-
MLE / MAP - Lecture 2 Exact - Lecture 6 9( )
Learning on Graphs _ Approximate - Lecture 14
Lectures7-9, 12-13
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Today

» Structure Learning
* Learning Tree BNs
* Learning Pairwise MRFs
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Structure Learning
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Learning in Graphical Models

* Goal: Given a set of independent samples (assignments to
random variables), find the best Bayesian Network (both DAG

and CPDs)
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Why aim for accurate structure?
_ True Structure

Missing Edge More Edges
* Cannot be compensated for by * Increases the number of

parameters to be estimated

* Wrong assumptions about
domain structure

fitting parameters

* Wrong assumptions about
domain structure
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Recall: I-Maps

* Independence set: Let P be a distribution over X. We define I(P)
to be the set of independences (X L Y | Z) that hold in P.

* |-Map: Let G be any graph object with an associated
independence set I(G). We say that G is an I-map for an
independence set I if I(G) S 1.

* |-Map of Distribution: We say G is an I-map for P if G is an I-map
for I(P), when we use I(G) as the associated independence set.

Distribution P

G is an I-Map for P if I(G) € I(P)
Why does the graph get special privileges?
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The I-Map view of Structure Learning

* We are looking for a graph G such that I(G) € I(P)

* This gets easier the looser we permit the inequality to be.
* Trivial: fully-connected. No structure learning needed.
« Hard: Perfect I-Map (no extra edges in graph).

Distribution P

G is an I-Map for P if I(G) € I(P)
Why does the graph get special privileges?

Ben Lengerich © University of Wisconsin-Madison 2025



Information Theoretic Interpretation

£(6.,G;D)=

= UZI(r X,
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Information Theoretic Interpretation

— £(6.,G;D)=log p(D|6.,G)
=M I(x,,X, )-MY H(x)
Mutual information Entropy of x;

between Xx; and its parents

* As we match x; and parents better, the mutual information
INncreases.

* Problems?
» Adding edges always helps!
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Different approaches to structure learning

e Two main problems:

* Likelihood is maximized for fully-connected graph, so we
don’t want to just maximize likelihood alone.

* Finding optimal BN structure is an NP-hard problem if allowed to
be non-tree.

* Many heuristics but no “guarantees” of returning the perfect
structure.

« Can get some guarantees if we make assumptions:
e Fortree BNs: Chow-Liu algorithm
* For pairwise MRFs: Covariance selection, neighborhood-selection
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Score-based Learning

* Define a scoring function that evaluates how well a structure
matches the data:

E,B, A :
<Y,V.V>
<N,N,Y> |
<N,Y,Y> |

e Search for a structure that maximizes the score
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Bayesian Score

* Let's take a Bayesian approach
 Place a distribution over our “uncertain” elements (G and 9)

[ Marginal likelihood ] tri\or/over structures ]

p@G|p)=2 IID(G;'; (©)

Marginal probability of Data ]

P(D) does not depend on the network

» Bayesian score for G

Score, (G :D)=log P(D|G)+log P(G)
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Bayesian Score cont’d

* Bayesian score for G
Score, (G :D)=1log P(D|G)+log P(G)
* QOur choice of prior P(G) has implications.

* Example: Let the edges have Dirichlet priors. Then as the
number of configurations M — oo,

log M

log P(D|G)=1(6, : D)- Dim(G) + O(1)

Dim(G): number of independent parameters in G

Tradeoff between fit to vs. data and complexity
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Bayesian Information Criterion (BIC)

* Bayesian score gives Bayesian Information Criterion:

Score, (G:D) =I(6. : D)— "2 Dim(G)
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Structure Learning of Tree BNs
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Tree BNs

* Let's assume at most one parent per variable
* Why trees?

e Sparse
* No V-structures -
« Can solve the optimization problem with a greedy algorithm
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Chow-Liu tree learning algorithm

 Start by calculating Mutual Information between every pair of
variables X; and X;

s count(x,,x ;)
P(X,X,)= 73

p(‘xzﬂxj)

Ix,x)=Y p(x,x,)log—2
T X )= 2B 2 oh g e
« Compute maximum weight spanning tree (Kruskal)

» Guarantees to maximize objective function:

¢(6;,G;D)=log p(D|6;,G)

C G)ZJM ix,’xr:{:] |
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Chow-Liu tree learning algorithm: directionality

* How to pick direction of edges?

 Pick any node as root, do BFS to define directions

C(G)=I1(A,B)+I(A,C)+I(C,D)+I(C,E)

« Can't tell the difference between competing root nodes

Ben Lengerich © University of Wisconsin-Madison 2025



Structure Learning of UGMs
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Learning Undirected Graphical Models
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Pairwise MRFs

 Pairwise MRF:

PX) | | (X)) | Al/Ji,j(Xi»Xj)
[ L,j
» Gaussian Graphical Model:
. Let y;(X;) = exp(6;X), ¥ j (X1, X;) = exp(0;;X; X))

* Then:
P(X | 9) X exp (Z HiXi + z Hl] XLX]>
i L]
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Gaussian Graphical Model

» Gaussian Graphical Model:
o Lety; (X)) = exp(0:X;), ¥ j(Xi, X;) = exp(6;;X:X;)

* Then:
P(X | 9) X exp (Z HiXi + z Hl] XLX]>
i L,j

* This is a Multivariate G?ussian denslity:
p(xlp, 2) = ———exp[~5 (x — )27 (x — )]
(2m)2|X|2
e foruy=0andd = 271 =Q.
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The covariance and precision matrices

e Covariance matrix ]
Yij =0 = XilX; or p(X; X;)=p(Xi)p(X;)

* What is the graphical model interpretation?
Marginal independence / Correlation graph

* Precision matrix () = Y7!
Q:;=0 = X, 1X:X ; or p(X; X;|X ;) =0(X;| X i)p(X;]X ;)

* What is the graphical model interpretation?

Conditional independence / Markov graph
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Precision vs. Covariance
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Example

O % % % % *
O % % % % *
OO0 0O % ¥ %
OO % O % %
O ¥ O O *x *
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\

If we can estimate a sample covariance, then we can estimate Q = 271

J 26 O

L5

What if the number of dimensions > number of data points?
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Recall Lasso

f;, = arg 1‘1;111[(0,-) + A1l €; ||

where [(0;) = log 1’(;1/,-|x,-. (),-).

Let's apply Lasso for each graph regression: @
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Graph Regression

Neighborhood selection Lasso:

-
(} = arg 1 / U /\ {/
nhmumzl( ) + A1 @ ||
{

Gives graph structure.
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Can we do graph regression for BNs?

Yes! Instead of raw Lasso, use matrix exponential to
reqgularize toward DAG structure:

Theorem 1. A matrix W € R%**4 is a DAG if and only if
h(W) = tr (e"°W) —d =0, (5)

where o is the Hadamard product and e” is the matrix exponential of A. Moreover, h(W) has a
simple gradient

VA(W) = (VW) o 2w, (6)
and satisfies all of the desiderata (a)-(d).

Ben Lengerich © University of Wisconsin-Madison 2025

DAGs with NO TEARS:
Continuous Optimization for Structure Learning

[Zheng 2018]



https://proceedings.neurips.cc/paper/2018/hash/e347c51419ffb23ca3fd5050202f9c3d-Abstract.html

Questions?
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