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Logistics
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• Quiz graded, up on Canvas
• Office hours to review.
• Average: 89%
• Min: 59%
• Max: 100%

• HW3 due Mar 1
• Next week:

• Project Proposal due Mar 7
• HW4 due Mar 8

• Later:
• HW5 due Mar 15
• Midterm – Mar 20



A Brief Recap of our Roadmap

Ben Lengerich © University of Wisconsin-Madison 2025

Probability Distribution
X Y
0 0

0.1 1

0.2 1

Observations

Estimation !𝜃

Parametric Family 𝑃!

Prior Knowledge

Regularizer / Prior

X

MLE / MAP - Lecture 2

Disc / Gen Models -
Lecture 3



A Brief Recap of our Roadmap

Ben Lengerich © University of Wisconsin-Madison 2025

Probability Distribution

𝑋!

𝑋"

𝑋#

𝑋$ 𝑃(𝑋!, … , 𝑋" , 𝑌)
𝑋%

X Y
0 0

0.1 1

0.2 1

Observations

Local Structure

Estimation !𝜃

Parametric Family 𝑃!

Prior Knowledge

Regularizer / Prior

Inference 𝑃"!(⋅)

Graphs -
Lectures 4,5

Exact - Lecture 6MLE / MAP - Lecture 2

Disc / Gen Models -
Lecture 3



A Brief Recap of our Roadmap

Ben Lengerich © University of Wisconsin-Madison 2025

Probability Distribution

𝑋!

𝑋"

𝑋#

𝑋$ 𝑃(𝑋!, … , 𝑋" , 𝑌)
𝑋%

X Y
0 0

0.1 1

0.2 1

Observations

Local Structure

Estimation !𝜃

Parametric Family 𝑃!

Prior Knowledge

Regularizer / Prior

Inference

Structure Learning 
- Lectures 10, 11

Learning on Graphs -
Lectures 7 - 9, 12-13

Architecture Design, 
Lectures 16-23

Graphs -
Lectures 4,5

Disc / Gen Models -
Lecture 3

MLE / MAP - Lecture 2 Exact - Lecture 6
Approximate - Lecture 14

𝑃"!(⋅)



Today
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• Structure Learning
• Learning Tree BNs
• Learning Pairwise MRFs



Structure Learning



Learning in Graphical Models
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Why aim for accurate structure?
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Recall: I-Maps

• Independence set: Let 𝑃 be a distribution over 𝑋. We define 𝐼(𝑃)
to be the set of independences (𝑋 ⊥ 𝑌 ∣ 𝑍) that hold in 𝑃.
• I-Map: Let 𝐺 be any graph object with an associated 

independence set 𝐼(𝐺). We say that 𝐺 is an I-map for an 
independence set 𝐼 if 𝐼 𝐺 ⊆ 𝐼.
• I-Map of Distribution: We say 𝐺 is an I-map for 𝑃 if 𝐺 is an I-map 

for 𝐼(𝑃), when we use 𝐼(𝐺) as the associated independence set.
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The I-Map view of Structure Learning

• We are looking for a graph G such that 𝐼 𝐺 ⊆ 𝐼(𝑃)
• This gets easier the looser we permit the inequality to be.

• Trivial: fully-connected. No structure learning needed.
• Hard: Perfect I-Map (no extra edges in graph).
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Information Theoretic Interpretation

Ben Lengerich © University of Wisconsin-Madison 2025



Information Theoretic Interpretation
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Mutual information 
between 𝑥! and its parents

Entropy of 𝑥!

• As we match 𝑥! and parents better, the mutual information 
increases.
• Problems?
• Adding edges always helps!



Different approaches to structure learning
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• Two main problems:
• Likelihood is maximized for fully-connected graph, so we 

don’t want to just maximize likelihood alone.
• Finding optimal BN structure is an NP-hard problem if allowed to 

be non-tree.

• Many heuristics but no “guarantees” of returning the perfect 
structure.
• Can get some guarantees if we make assumptions:

• For tree BNs: Chow-Liu algorithm
• For pairwise MRFs: Covariance selection, neighborhood-selection



Score-based Learning
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• Define a scoring function that evaluates how well a structure 
matches the data:

• Search for a structure that maximizes the score



Bayesian Score
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• Let’s take a Bayesian approach
• Place a distribution over our ”uncertain” elements (𝐺 and 𝜃)

• Bayesian score for G



Bayesian Score cont’d
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• Our choice of prior 𝑃(𝐺) has implications.
• Example: Let the edges have Dirichlet priors. Then as the 

number of configurations 𝑀 → ∞,

• Bayesian score for G

Tradeoff between fit to vs. data and complexity



Bayesian Information Criterion (BIC)
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• Bayesian score gives Bayesian Information Criterion:



Structure Learning of Tree BNs



Tree BNs
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• Let’s assume at most one parent per variable
• Why trees?

• Sparse
• No V-structures à

• Can solve the optimization problem with a greedy algorithm



Chow-Liu tree learning algorithm
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• Start by calculating Mutual Information between every pair of 
variables 𝑋! and 𝑋"

• Compute maximum weight spanning tree (Kruskal)
• Guarantees to maximize objective function: 



Chow-Liu tree learning algorithm: directionality
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• How to pick direction of edges?

• Can’t tell the difference between competing root nodes

• Pick any node as root, do BFS to define directions



Structure Learning of UGMs



Learning Undirected Graphical Models
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Pairwise MRFs
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• Pairwise MRF: 
𝑃 𝑋 ∝&

!

𝜓! 𝑋! &
!,#

𝜓!,# 𝑋! , 𝑋#

• Gaussian Graphical Model:
• Let 𝜓! 𝑋! = exp(𝜃!𝑋!), 𝜓!,# 𝑋! , 𝑋# = exp(𝜃!#𝑋!𝑋#)
• Then: 

P X 𝜃 ∝ exp 7
!

𝜃!𝑋! +7
!,"
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Gaussian Graphical Model
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• Gaussian Graphical Model:
• Let 𝜓! 𝑋! = exp(𝜃!𝑋!), 𝜓!,# 𝑋! , 𝑋# = exp(𝜃!#𝑋!𝑋#)
• Then: 

P X 𝜃 ∝ exp 7
!

𝜃!𝑋! +7
!,"

𝜃!" 𝑋!𝑋"

• This is a Multivariate Gaussian density:

𝑝 𝑥 𝜇, Σ =
1

2𝜋
$
% Σ

&
%
exp[−

1
2 𝑥 − 𝜇 'Σ(&(𝑥 − 𝜇)]

• for 𝜇 = 0 and 𝜃 = Σ(& = 𝑄.



The covariance and precision matrices
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Marginal independence / Correlation graph

Conditional independence / Markov graph



Precision vs. Covariance

Ben Lengerich © University of Wisconsin-Madison 2025



Example
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If we can estimate a sample covariance, then we can estimate 𝑄 = #Σ)*

What if the number of dimensions > number of data points?



Recall Lasso
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Let’s apply Lasso for each graph regression:



Graph Regression
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Gives graph structure.



Can we do graph regression for BNs?
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[Zheng 2018]

Yes! Instead of raw Lasso, use matrix exponential to 
regularize toward DAG structure:

https://proceedings.neurips.cc/paper/2018/hash/e347c51419ffb23ca3fd5050202f9c3d-Abstract.html


Questions?


