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Logistics

* HW3 out
* Due next Friday (October 17) night

* Projects
* Due next Friday (October 17) night
* Discussion board on Canvas to help you find teammates

e Midterm Exam
* In-class Wednesday, October 22
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https://canvas.wisc.edu/courses/479352/discussion_topics/2249777
https://canvas.wisc.edu/courses/479352/discussion_topics/2249777

Project

* Proposal (5%)

 Midway Report (5%)

* Presentation (5%)

* Report (15%)

* Collaboration: Teams of up to four students are allowed.

* Honors Optional Component: Individual extension to your
project. Email me!

* Details / formatting:
* https://adaptinfer.org/dgm-fall-2025/project/
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Project Proposal

* Due: Friday, October 17, 2025, at 11:59 PM via Canvas.
* Only one submission needed per group.

* Content:
* Project title and team member list.
* Problem statement and motivation (% page).

 Literature review of at least four relevant papers (~1 page).
e Description of dataset(s) and planned activities.

* Expected length: ~2 pages, make it easy for us to read!
* Use the ICML Style template.

* Grading:

40%: Clear and concise description of the project.
40%: Quality of literature survey.

10%: Feasibility and detail of activity plan.

10%: Writing quality.
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https://www.overleaf.com/latex/templates/icml2025-template/dhxrkcgkvnkt

Some course projects from prior years
|

* Spring 2023

* Breast Cancer detection using ultrasound imaging

LSTM music generation
Predicting stock prices using LSTMs
Creating Surrealism Artworks with DCGAN
Exploring the Impact of Activation Functions and Normalization Techniques

* Spring 2024
* Gradio framework with self-supervised learning
* Song generation

Diagnosis of Chest X-ray Images

Audio-to-video image animation

Movie recommendations

Sentiment analysis using BERT
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More project ideas for you:

* Computer Vision

* Super-Resolution with Autoencoders: reconstruct high-res images from low-res
inputs using convolutional autoencoders.

* Diffusion Models for Handwritten Digits: implement a simple diffusion model to
generate MINIST digits step-by-step

e Skin Lesion Classification using CNNs: detect melanoma vs. benign moles using
public dermoscopy datasets (e.g., ISIC)

* Language and Sequential Data

* LSTM-based Weather Forecasting: predict daily temperature sequences from
historical data.

* Emotion Recognition in Tweets: classify emotional tone using BERT or DistilBERT.

* Music Generation with Transformers: Extend LSTM-based music generation to
Transformer-based models.
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More project ideas for you:

 Generative Al

 Style Transfer for Artwork: Transfer Van Gogh’s style to photos using a convolutional
neural style transfer model.

* GAN-based Face Aging: Train a conditional GAN to transform faces to older or
younger versions

e Latent Space Arithmetic with DCGAN: show how semantic directions (smile, pose,
etc.) can be captured in a GAN’s latent space

* Multimodal / Applied Al

* Image Captioning Model: combine a CNN encoder with an RNN or Transformer
decoder to caption images.

* Radiology Report Generation: match X-ray images with their diagnostic text.
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More project ideas for you:
e Explainability and Fairness
* Visualize Attention in Transformers

e Explaining Image Classifiers: Use Grad-CAM or integrated gradients to interpret
CNN prediction. Look at adversarial examples.

e Bias Detection in Text Models: measure and visualize gender or racial bias in
pretrained embeddings.

e Calibration and Confidence in Deep Models: evaluate whether model probabilities
reflect true accuracy. Does learning to abstain from prediction fix calibration?
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Questions about logistics?




Last Time: Multilayer Perceptrons & Backpropagation

Multilayer Perceptron Architecture
Nonlinear Activation Functions
Multilayer Perceptron Code Examples
Overfitting and Underfitting (intro)
Cats & Dogs and Custom Data Loaders

i & W bheE
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VGG16 CNN for Kaggle’s Cats & Dogs Images
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model.eval() . . .
with to‘;ch.set_grad_enabled(i‘alsc]: # save memory during inference httDS//qlthUbCom/raSbt/deeDIearnan'
test_acc, test_loss = compute_accuracy_and loss(model, test_loader, DEVICE) modeIS/bIOb/master/thorCh_iDvnblcnnlcnn-

print(f'Test accuracy: {test_acc:.2f}%')

vgg16-cats-dogs.ipynb

Test accuracy: B88.28%
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Loading Data

PyTorch DatalLoader

pler

Tl

Collate Function

https://x.com/ ScottCondron/status/1363494433715552259
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Custom DatalLoader Classes

 Example showing how you can create your own data loader to efficiently iterate through

your own collection of images (pretend the MNIST images there are some custom image
collection)

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-
mlp/code/custom-dataloader/custom-dataloader-example.ipynb

import torch

from PIL import Image

from torch.utils.data import Dataset
import os

B mnist_test

class MyDataset(Dataset):
B8 mnist_train
def init_(self, csv_path, img dir, transform=None):
i mnist_valid df = pd.read_csv(csv_path)
self.img dir img_dir
custom-dataloader-example.ipynb self.img names = df[ 'File Name']
self.y = df['Class Label']
- self.transform = transform
mnist_test.csv
def  getitem (self, index):
mnist_train.csv img = Image.open(os.path.join(self.img dir,
self.img names[index]))
mnist_valid.csv if self.transform is not None:
img self.transform(img)

label = self.y[index]
return img, label

def _ len_ (self):
return self.y.shape[0]
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Where we are...

 Good news: We can solve non-linear problems!
* Bad news: Our multilayer neural networks have lots of
parameters and it’s easy to overfit the data...

Next time:
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Today: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

A S

Dropout
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Collecting more data

Data augmentation

Many ways to improve generalization

Label smoothing

Dataset Semi-supervised

Leveraging unlabeled data _~~
o~ Self-supervised

Meta-learning
Leveraging related data
'< Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchMNorm and variants
Normalization

Weight standardization

Gradient centralization

Adaptive learning rates

Training loop Auxiliary losses
Gradient clipping

L2 (/L1) regularization

Regularization Early stopping

Dropout
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Today: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

A S

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025



General Strategies to Avoid Overfitting

* Collecting more data, especially high-quality data, is best & always
recommended

e Alternatively: semi-supervised learning, transfer learning, and self-supervised
learning

e Data augmentation is helpful
e Usually requires prior knowledge about data or tasks

* Reducing model capacity can help
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Data Augmentation

* Key Idea: If we know the label shouldn’t depend on a transformation
h(x), then we can generate new training data h(x‘),y‘

* But we must already know something that our outcome doesn’t
depend on

* Example: image classification
* rotation, zooming, sepia filter, etc.
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Data Augmentation in PyTorch via TorchVision

Origina S ARE NP 2RV 4
Randomly Augmented q N " N ﬂ l

https://github.com/rasbt/stat453-deep-learning-
ss21/blob/master/L 10/code/data-augmentation.ipynb
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# Note transforms.ToTensor() scales input images
# to 0-1 range

training_transforms = torchvision.transforms.Compose( [
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.RandomCrop(size=(28, 28)),
torchvision.transforms.RandomRotation(degrees=30, interpolation=PIL.Image.BILINEAR),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
# normalize does (x_1 - mean) / std
# 1f images are [@, 1], they will be [-1, 1] afterwards

1)

test_transforms = torchvision.transforms.Compose( [
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.CenterCrop(size=(28, 28)),
torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
1)

# for more see
# https://pytorch.org/docs/stable/torchvision/transforms.html

train_dataset = datasets.MNIST(root='data',
train=True,
transform=training_transforms,
download=True)

test_dataset = datasets.MNIST(root='data',
train=False,
transform=test_transforms)

https://github.com/rasbt/stat453-deep-learning-
ss21/blob/master/L 10/code/data-augmentation.ipynb
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Today: Regularization

Improving generalization performance
Avoiding overfitting with (1) more data and (2) data augmentation

Reducing network capacity & early stopping
Adding norm penalties to the loss: L1 & L2 regularization
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Dropout
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Reduce Network’s Capacity

* Key Idea: The simplest model that matches the outputs should
generalize the best

* Choose a smaller architecture: fewer hidden layers & units, add
dropout, use ReLU + L1 penalty to prune dead activations,e tc.

* Enforce smaller weights: Early stopping, L2 norm penalty
e Add noise: Dropout

* Note: With recent LLMs and foundation models, it’s possible to use a
large pretrained model and perform efficient fine-tuning (updating
small number of parameters of a large model)
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Early Stopping

 Step 1: Split your dataset into 3 parts (as always)

e Use test set only once at the end
* Use validation accuracy for tuning

Dataset

Training Validation Test
dataset dataset dataset
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Early Stopping

 Step 2: Stop training early

* Reduce overfitting by observing the training/validation accuracy gap during training
and then stop at the “right” point

A

Good early stopping point

Training set

Accuracy

Validation set

v

Epoéhs
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Today: Regularization

Improving generalization performance
Avoiding overfitting with (1) more data and (2) data augmentation

Reducing network capacity & early stopping
Adding norm penalties to the loss: L1 & L2 regularization

A R A

Dropout
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Recall from prior discussions...

 L1-regularization = LASSO regression
 L2-regularization > Ridge regression
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L2 Regularization for Linear Models

1 < 0
e = = 3 L(yH, gF
Costw b niﬂﬁ(y , ")

1 < N A
L2-Regularized-Cost,, , = - Z ﬁ(y[z] ; @[Z]) T n Z w92

i=1 j

where: ) w? = [|w]|3
J

and A is a hyperparameter
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L1 Regularization for Linear Models

1 < 1o A
L1-Regularized-Cost,, ;, = — Z Lyl gl + = Z lw;|
’ n n
i=1 j
where: D lw;l =Iwll
j

 L1-regularization encourages sparsity (which may be useful)

« However, usually L1 regularization does not work well in
deep learning in practice and is very rarely used

 Also, it's not smooth and harder to optimize
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Geometric Interpretation of L2 regularization

— 1st component:
Wia

minimize cost function

(&

\

)<' W

2nd component: Compromise between penalty

. and cost
minimize penalty term
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Geometric Interpretation of L1 regularization

— 1st component:
Wiia
minimize cost function

AN
Compromise

2nd component. between penalty
minimize penalty term  and cost
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Effect of Regularization on Decision Boundary

Assume a nonlinear model
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L2 regularization for Multilayer Neural Networks

n L
1 T A
L2-Regularized-Cost,, , = n Z Ly, ") + n Z w1
sum/ov'er layers

where ||W(l) | |% is the Frobenius norm (squared):

w2 = ZZ 2
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L2 regularization for Multilayer Neural Networks

Regular gradient descent update:

oL 2 )

Wi j = Wi — 1 F—wy,
J J (8Wi,j Wi,z
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L2 regularization for Neural Networks in PyTorch

Manually:

# regularize loss
L2 = 0.
for name, p in model.named parameters():
if 'weight' in name:
L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward ()
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L2 regularization for Neural Networks in PyTorch

Automatically:

HHHHHHHHHHHHHHHAH A A A A A AHHAHHAHHAHHAHHHHFHHFHHHHHHH
## Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),

1r=0.1,

weight decay=LAMBDA)

for epoch in range(num epochs):

#### Compute outputs ####
out = model(X train tensor)

#### Compute gradients ####

cost = F.binary cross entropy(out, y train tensor)
optimizer.zero grad()

cost.backward()
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Today: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

i & W bheE

Dropout
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Dropout

Original research articles:

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R.
(2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1), 1929-1958.
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Dropout

P
L1 (2)
aq
> ;
T2 agz)
P

Originally, drop probability 0.5

(but 0.2-0.8 also common now)
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Dropout

 How do we drop node activations practically / efficiently?

Bernoulli Sampling (during training):

* p :=drop probability

* v :=random sample from uniform distribution in range [0, 1]
* Viev:v;, =0ifv; <pelsel

*a=a@Ov (o X 100% of the activations a will be zeroeqd)

Then, after training when making predictions (during "inference")

scale activationsvia a:=a® (1 — p)
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Dropout in PvTorch

E— class MultilayerPerceptron(torch.nn.Module):

def __init_ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__()

self.my_network = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
# output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits
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Why does Dropout work?

* Co-Adaptation Interpretation
* Network will learn not to rely on particular connections too heavily

* Thus, will consider more connections (because it cannot rely on
individual ones)

* The weight values will be more spread-out (may lead to smaller weights
like with L2 norm)

 Side note: You can certainly use different dropout probabilities in
different layers (assigning them proportional to the number of units in a
layer is not a bad idea, for example)
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Why does Dropout work?

 Ensemble Method Interpretation
* In dropout, we have a "different model" for each minibatch

* Via the minibatch iterations, we essentially sample over M=2" models,
where h is the number of hidden units

e Restriction is that we have weight sharing over these models, which can
be seen as a form of regularization

e During "inference" we can then average over all these models (but this is
very expensive)

If you are interested in more details, see FS 2019 ML class (LO7):
https://github.com/rasbt/stat479-machine-learning-
fs19/blob/master/07 ensembles/07-ensembles notes.pdf
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Why does Dropout work?

* Interaction Effect Interpretation
* For p input variables there are (i) selections
of order-k interactions.
e Grows as p” for the first few orders.

* The probability that an order-k interaction
survives Dropout at rate ris (1 — r)*.

* Decays exponentially with k.
* These exponential rates cancel out.

* This anti-interaction effect regularization
happens at every layer.

Ben Lengerich © University of Wisconsin-Madison 2025
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Dropout in PyTorch

I .. . i
Here, is is very important that you use model.train() and model.eval()!

for epoch in range(NUM _EPOCHS):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28*28).to(DEVICE)

### FORWARD AND BACK PROP
logits = model (features)

cost = F.cross_entropy(logits, targets)
optimizer.zero grad()

cost.backward()

minibatch cost.append(cost)
### UPDATE MODEL PARAMETERS
optimizer.step()

model.eval()
with torch.no grad():
cost = compute loss(model, train loader)
epoch cost.append(cost)
print ('Epoch: %03d/%03d Train Cost: %.4f' % (
epoch+l, NUM _EPOCHS, cost))
print('Time elapsed: %.2f min' % ((time.time() - start time)/60))
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Dropout in PyTorch: Inverted Dropout

* Most frameworks (incl. PyTorch) actually implement inverted
dropout
* Here, the activation values are scaled by the factor 1/(1-p)
during training instead of scaling the activations during
"inference”
e Helpful for models that will be used many times in “test”
time

Ben Lengerich © University of Wisconsin-Madison 2025



Dropout in PyTorch

— Without dropout:
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https://qithub.com/rasbt/stat453-deep-learning-
ss21/blob/master/L10/code/dropout.ipynb
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Questions?
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