STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich

Lecture 10: Regularization

October 6, 2025

Logistics

* HW3 out
* Due next Friday (October 17) night

* Projects
* Due next Friday (October 17) night
* Discussion board on Canvas to help you find teammates

e Midterm Exam
* In-class Wednesday, October 22

Ben Lengerich © University of Wisconsin-Madison 2025

https://canvas.wisc.edu/courses/479352/discussion_topics/2249777
https://canvas.wisc.edu/courses/479352/discussion_topics/2249777

Project

* Proposal (5%)

 Midway Report (5%)

* Presentation (5%)

* Report (15%)

* Collaboration: Teams of up to four students are allowed.

* Honors Optional Component: Individual extension to your
project. Email me!

* Details / formatting:
* https://adaptinfer.org/dgm-fall-2025/project/

Ben Lengerich © University of Wisconsin-Madison 2025

https://adaptinfer.org/dgm-fall-2025/project/
https://adaptinfer.org/dgm-fall-2025/project/
https://adaptinfer.org/dgm-fall-2025/project/
https://adaptinfer.org/dgm-fall-2025/project/
https://adaptinfer.org/dgm-fall-2025/project/
https://adaptinfer.org/dgm-fall-2025/project/

Project Proposal

* Due: Friday, October 17, 2025, at 11:59 PM via Canvas.
* Only one submission needed per group.

* Content:
* Project title and team member list.
* Problem statement and motivation (% page).

 Literature review of at least four relevant papers (~1 page).
e Description of dataset(s) and planned activities.

* Expected length: ~2 pages, make it easy for us to read!
* Use the ICML Style template.

* Grading:

40%: Clear and concise description of the project.
40%: Quality of literature survey.

10%: Feasibility and detail of activity plan.

10%: Writing quality.

Ben Lengerich © University of Wisconsin-Madison 2025

https://www.overleaf.com/latex/templates/icml2025-template/dhxrkcgkvnkt

Some course projects from prior years
|

* Spring 2023

* Breast Cancer detection using ultrasound imaging

LSTM music generation
Predicting stock prices using LSTMs
Creating Surrealism Artworks with DCGAN
Exploring the Impact of Activation Functions and Normalization Techniques

* Spring 2024
* Gradio framework with self-supervised learning
* Song generation

Diagnosis of Chest X-ray Images

Audio-to-video image animation

Movie recommendations

Sentiment analysis using BERT

Ben Lengerich © University of Wisconsin-Madison 2025

More project ideas for you:

* Computer Vision

* Super-Resolution with Autoencoders: reconstruct high-res images from low-res
inputs using convolutional autoencoders.

* Diffusion Models for Handwritten Digits: implement a simple diffusion model to
generate MINIST digits step-by-step

e Skin Lesion Classification using CNNs: detect melanoma vs. benign moles using
public dermoscopy datasets (e.g., ISIC)

* Language and Sequential Data

* LSTM-based Weather Forecasting: predict daily temperature sequences from
historical data.

* Emotion Recognition in Tweets: classify emotional tone using BERT or DistilBERT.

* Music Generation with Transformers: Extend LSTM-based music generation to
Transformer-based models.

Ben Lengerich © University of Wisconsin-Madison 2025

More project ideas for you:

 Generative Al

 Style Transfer for Artwork: Transfer Van Gogh’s style to photos using a convolutional
neural style transfer model.

* GAN-based Face Aging: Train a conditional GAN to transform faces to older or
younger versions

e Latent Space Arithmetic with DCGAN: show how semantic directions (smile, pose,
etc.) can be captured in a GAN’s latent space

* Multimodal / Applied Al

* Image Captioning Model: combine a CNN encoder with an RNN or Transformer
decoder to caption images.

* Radiology Report Generation: match X-ray images with their diagnostic text.

Ben Lengerich © University of Wisconsin-Madison 2025

More project ideas for you:
e Explainability and Fairness
* Visualize Attention in Transformers

e Explaining Image Classifiers: Use Grad-CAM or integrated gradients to interpret
CNN prediction. Look at adversarial examples.

e Bias Detection in Text Models: measure and visualize gender or racial bias in
pretrained embeddings.

e Calibration and Confidence in Deep Models: evaluate whether model probabilities
reflect true accuracy. Does learning to abstain from prediction fix calibration?

Ben Lengerich © University of Wisconsin-Madison 2025

Questions about logistics?

Last Time: Multilayer Perceptrons & Backpropagation

Multilayer Perceptron Architecture
Nonlinear Activation Functions
Multilayer Perceptron Code Examples
Overfitting and Underfitting (intro)
Cats & Dogs and Custom Data Loaders

i & W bheE

Ben Lengerich © University of Wisconsin-Madison 2025

VGG16 CNN for Kaggle’s Cats & Dogs Images

—— Training loss - Training accuracy
Validation loss 95 1 Validatioen accuracy

0.005 A1

0.004 A

Cross entropy
o
o
(=]
W
Cross entropy
3

0.002 1 N
70
0.001 - & -

model.eval() . . .
with to‘;ch.set_grad_enabled(i‘alsc]: # save memory during inference httDS//qlthUbCom/raSbt/deeDIearnan'
test_acc, test_loss = compute_accuracy_and loss(model, test_loader, DEVICE) modeIS/bIOb/master/thorCh_iDvnblcnnlcnn-

print(f'Test accuracy: {test_acc:.2f}%')

vgg16-cats-dogs.ipynb

Test accuracy: B88.28%

Ben Lengerich © University of Wisconsin-Madison

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb

Loading Data

PyTorch DatalLoader

pler

Tl

Collate Function

https://x.com/ ScottCondron/status/1363494433715552259

Ben Lengerich © University of Wisconsin-Madison 2025

https://x.com/_ScottCondron/status/1363494433715552259
https://x.com/_ScottCondron/status/1363494433715552259
https://x.com/_ScottCondron/status/1363494433715552259
https://x.com/_ScottCondron/status/1363494433715552259
https://x.com/_ScottCondron/status/1363494433715552259
https://x.com/_ScottCondron/status/1363494433715552259

Custom DatalLoader Classes

 Example showing how you can create your own data loader to efficiently iterate through

your own collection of images (pretend the MNIST images there are some custom image
collection)

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-
mlp/code/custom-dataloader/custom-dataloader-example.ipynb

import torch

from PIL import Image

from torch.utils.data import Dataset
import os

B mnist_test

class MyDataset(Dataset):
B8 mnist_train
def init_(self, csv_path, img dir, transform=None):
i mnist_valid df = pd.read_csv(csv_path)
self.img dir img_dir
custom-dataloader-example.ipynb self.img names = df['File Name']
self.y = df['Class Label']
- self.transform = transform
mnist_test.csv
def getitem (self, index):
mnist_train.csv img = Image.open(os.path.join(self.img dir,
self.img names[index]))
mnist_valid.csv if self.transform is not None:
img self.transform(img)

label = self.y[index]
return img, label

def _ len_ (self):
return self.y.shape[0]

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L08-mlp/code/custom-dataloader/custom-dataloader-example.ipynb

Where we are...

 Good news: We can solve non-linear problems!
* Bad news: Our multilayer neural networks have lots of
parameters and it’s easy to overfit the data...

Next time:

A (i) |

O x /O 1=

: c‘)yO “ (0.0 x \O O

% 3 X . 3(" X)(’)(._
o =3 — T
Zaw‘,& WJM@MIEOI["\D"P P“"Il} Louw f'd“(“’".i‘d‘"n (rood (owpromfe
> lﬂuj(/l l/iag =% lmdh Vanau

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

A S

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Collecting more data

Data augmentation

Many ways to improve generalization

Label smoothing

Dataset Semi-supervised

Leveraging unlabeled data _~~
o~ Self-supervised

Meta-learning
Leveraging related data
'< Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchMNorm and variants
Normalization

Weight standardization

Gradient centralization

Adaptive learning rates

Training loop Auxiliary losses
Gradient clipping

L2 (/L1) regularization

Regularization Early stopping

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

A S

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

General Strategies to Avoid Overfitting

* Collecting more data, especially high-quality data, is best & always
recommended

e Alternatively: semi-supervised learning, transfer learning, and self-supervised
learning

e Data augmentation is helpful
e Usually requires prior knowledge about data or tasks

* Reducing model capacity can help

Ben Lengerich © University of Wisconsin-Madison 2025

Data Augmentation

* Key Idea: If we know the label shouldn’t depend on a transformation
h(x), then we can generate new training data h(x‘),y‘

* But we must already know something that our outcome doesn’t
depend on

* Example: image classification
* rotation, zooming, sepia filter, etc.

Ben Lengerich © University of Wisconsin-Madison 2025

Data Augmentation in PyTorch via TorchVision

Origina S ARE NP 2RV 4
Randomly Augmented q N " N ﬂ l

https://github.com/rasbt/stat453-deep-learning-
ss21/blob/master/L 10/code/data-augmentation.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb

Note transforms.ToTensor() scales input images
to 0-1 range

training_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.RandomCrop(size=(28, 28)),
torchvision.transforms.RandomRotation(degrees=30, interpolation=PIL.Image.BILINEAR),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
normalize does (x_1 - mean) / std
1f images are [@, 1], they will be [-1, 1] afterwards

1)

test_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.CenterCrop(size=(28, 28)),
torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
1)

for more see
https://pytorch.org/docs/stable/torchvision/transforms.html

train_dataset = datasets.MNIST(root='data',
train=True,
transform=training_transforms,
download=True)

test_dataset = datasets.MNIST(root='data',
train=False,
transform=test_transforms)

https://github.com/rasbt/stat453-deep-learning-
ss21/blob/master/L 10/code/data-augmentation.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb

Today: Regularization

Improving generalization performance
Avoiding overfitting with (1) more data and (2) data augmentation

Reducing network capacity & early stopping
Adding norm penalties to the loss: L1 & L2 regularization

L kW

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Reduce Network’s Capacity

* Key Idea: The simplest model that matches the outputs should
generalize the best

* Choose a smaller architecture: fewer hidden layers & units, add
dropout, use ReLU + L1 penalty to prune dead activations,e tc.

* Enforce smaller weights: Early stopping, L2 norm penalty
e Add noise: Dropout

* Note: With recent LLMs and foundation models, it’s possible to use a
large pretrained model and perform efficient fine-tuning (updating
small number of parameters of a large model)

Ben Lengerich © University of Wisconsin-Madison 2025

Early Stopping

 Step 1: Split your dataset into 3 parts (as always)

e Use test set only once at the end
* Use validation accuracy for tuning

Dataset

Training Validation Test
dataset dataset dataset

Ben Lengerich © University of Wisconsin-Madison 2025

Early Stopping

 Step 2: Stop training early

* Reduce overfitting by observing the training/validation accuracy gap during training
and then stop at the “right” point

A

Good early stopping point

Training set

Accuracy

Validation set

v

Epoéhs

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Regularization

Improving generalization performance
Avoiding overfitting with (1) more data and (2) data augmentation

Reducing network capacity & early stopping
Adding norm penalties to the loss: L1 & L2 regularization

A R A

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Recall from prior discussions...

 L1-regularization = LASSO regression
 L2-regularization > Ridge regression

Ben Lengerich © University of Wisconsin-Madison 2025

L2 Regularization for Linear Models

1 < 0
e = = 3 L(yH, gF
Costw b niﬂﬁ(y , ")

1 < N A
L2-Regularized-Cost,, , = - Z ﬁ(y[z] ; @[Z]) T n Z w92

i=1 j

where:) w? = [|w]|3
J

and A is a hyperparameter

Ben Lengerich © University of Wisconsin-Madison 2025

L1 Regularization for Linear Models

1 < 1o A
L1-Regularized-Cost,, ;, = — Z Lyl gl + = Z lw;|
’ n n
i=1 j
where: D lw;l =Iwll
j

 L1-regularization encourages sparsity (which may be useful)

« However, usually L1 regularization does not work well in
deep learning in practice and is very rarely used

 Also, it's not smooth and harder to optimize

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Interpretation of L2 regularization

— 1st component:
Wia

minimize cost function

(&

\

)<' W

2nd component: Compromise between penalty

. and cost
minimize penalty term

Ben Lengerich © University of Wisconsin-Madison 2025

Geometric Interpretation of L1 regularization

— 1st component:
Wiia
minimize cost function

AN
Compromise

2nd component. between penalty
minimize penalty term and cost

Ben Lengerich © University of Wisconsin-Madison 2025

Effect of Regularization on Decision Boundary

Assume a nonlinear model

0 /\
VAN
| xO X O X -
= © “ 0.0 x \O 0O
X XK X Xk
- > —)

[atﬂi,& rfju(am?a(nb'ﬂ W{{B LOLJ rfdu(am'gqﬁ'aq
= lﬂ(ff(/l b/as =)D lxudh Vanau o

6’000((wampm,[e

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

n L
1 T A
L2-Regularized-Cost,, , = n Z Ly, ") + n Z w1
sum/ov'er layers

where ||W(l) | |% is the Frobenius norm (squared):

w2 = ZZ 2

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

Regular gradient descent update:

oL 2)

Wi j = Wi — 1 F—wy,
J J (8Wi,j Wi,z

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Manually:

regularize loss
L2 = 0.
for name, p in model.named parameters():
if 'weight' in name:
L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward ()

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Automatically:

HHHHHHHHHHHHHHHAH A A A A A AHHAHHAHHAHHAHHHHFHHFHHHHHHH
Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),

1r=0.1,

weight decay=LAMBDA)

for epoch in range(num epochs):

Compute outputs
out = model(X train tensor)

Compute gradients

cost = F.binary cross entropy(out, y train tensor)
optimizer.zero grad()

cost.backward()

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

i & W bheE

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

Original research articles:

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R.
(2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1), 1929-1958.

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

P
L1 (2)
aq
> ;
T2 agz)
P

Originally, drop probability 0.5

(but 0.2-0.8 also common now)

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

 How do we drop node activations practically / efficiently?

Bernoulli Sampling (during training):

* p :=drop probability

* v :=random sample from uniform distribution in range [0, 1]
* Viev:v;, =0ifv; <pelsel

*a=a@Ov (o X 100% of the activations a will be zeroeqd)

Then, after training when making predictions (during "inference")

scale activationsvia a:=a® (1 — p)

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout in PvTorch

E— class MultilayerPerceptron(torch.nn.Module):

def __init_ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

Ben Lengerich © University of Wisconsin-Madison 2025

Why does Dropout work?

* Co-Adaptation Interpretation
* Network will learn not to rely on particular connections too heavily

* Thus, will consider more connections (because it cannot rely on
individual ones)

* The weight values will be more spread-out (may lead to smaller weights
like with L2 norm)

 Side note: You can certainly use different dropout probabilities in
different layers (assigning them proportional to the number of units in a
layer is not a bad idea, for example)

Ben Lengerich © University of Wisconsin-Madison 2025

Why does Dropout work?

 Ensemble Method Interpretation
* In dropout, we have a "different model" for each minibatch

* Via the minibatch iterations, we essentially sample over M=2" models,
where h is the number of hidden units

e Restriction is that we have weight sharing over these models, which can
be seen as a form of regularization

e During "inference" we can then average over all these models (but this is
very expensive)

If you are interested in more details, see FS 2019 ML class (LO7):
https://github.com/rasbt/stat479-machine-learning-
fs19/blob/master/07 ensembles/07-ensembles notes.pdf

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/07_ensembles/07-ensembles__notes.pdf

Why does Dropout work?

* Interaction Effect Interpretation
* For p input variables there are (i) selections
of order-k interactions.
e Grows as p” for the first few orders.

* The probability that an order-k interaction
survives Dropout at rate ris (1 — r)*.

* Decays exponentially with k.
* These exponential rates cancel out.

* This anti-interaction effect regularization
happens at every layer.

Ben Lengerich © University of Wisconsin-Madison 2025

1.0
[«}]
N
" 0.8
!
.
e
v 0.6
o
[«}]
No.a
’é’ e k=1
- e k=2
00.2
b mm k=3
Bl k=4
0.0

0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

Lengerich et al. Dropout as a Reqularizer of
Interaction Effects. AISTATS 2022

https://proceedings.mlr.press/v151/lengerich22a.html
https://proceedings.mlr.press/v151/lengerich22a.html
https://proceedings.mlr.press/v151/lengerich22a.html
https://proceedings.mlr.press/v151/lengerich22a.html
https://proceedings.mlr.press/v151/lengerich22a.html
https://proceedings.mlr.press/v151/lengerich22a.html

Dropout in PyTorch

I .. . i
Here, is is very important that you use model.train() and model.eval()!

for epoch in range(NUM _EPOCHS):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28*28).to(DEVICE)

FORWARD AND BACK PROP
logits = model (features)

cost = F.cross_entropy(logits, targets)
optimizer.zero grad()

cost.backward()

minibatch cost.append(cost)
UPDATE MODEL PARAMETERS
optimizer.step()

model.eval()
with torch.no grad():
cost = compute loss(model, train loader)
epoch cost.append(cost)
print ('Epoch: %03d/%03d Train Cost: %.4f' % (
epoch+l, NUM _EPOCHS, cost))
print('Time elapsed: %.2f min' % ((time.time() - start time)/60))

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout in PyTorch: Inverted Dropout

* Most frameworks (incl. PyTorch) actually implement inverted
dropout
* Here, the activation values are scaled by the factor 1/(1-p)
during training instead of scaling the activations during
"inference”
e Helpful for models that will be used many times in “test”
time

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout in PyTorch

— Without dropout:

100.0
= Minibatch Loss
05 Running Average 975
04 95.0
" 03 92.5
5 9
02 g 00
&
875
0l
85.0
00 T T T T T —r———
0 2000 4000 6000 8000 10000 825 1 = Taining
Iterations validation
T T T T T T 80.0 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epoch
.
With 50% dropout:
100.0
10 —— Minibatch Loss ::_'gmg
Running Average 97.5 1 idation e —
08 —
95.0
06 925 4
m >
5 @
04 é 90.0
2
87.5
02
85.0
00 T T T T T T
0 2000 4000 6000 8000 10000 82.5 1
Iterations
80.0 = T T T T T
0 10 20 0 20 50 0 10 20 Eooch 30 40 50
Epochs P

https://qithub.com/rasbt/stat453-deep-learning-
ss21/blob/master/L10/code/dropout.ipynb

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb

Questions?

Ey
QWISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

>
)

	Slide 1: STAT 453: Introduction to Deep Learning and Generative Models
	Slide 2: Logistics
	Slide 3: Project
	Slide 4: Project Proposal
	Slide 5: Some course projects from prior years
	Slide 6: More project ideas for you:
	Slide 7: More project ideas for you:
	Slide 8: More project ideas for you:
	Slide 9
	Slide 10: Last Time: Multilayer Perceptrons & Backpropagation
	Slide 11: VGG16 CNN for Kaggle’s Cats & Dogs Images
	Slide 12: Loading Data
	Slide 13: Custom DataLoader Classes
	Slide 14: Where we are…
	Slide 15: Today: Regularization
	Slide 16: Many ways to improve generalization
	Slide 17: Today: Regularization
	Slide 18: General Strategies to Avoid Overfitting
	Slide 19: Data Augmentation
	Slide 20: Data Augmentation in PyTorch via TorchVision
	Slide 21
	Slide 22: Today: Regularization
	Slide 23: Reduce Network’s Capacity
	Slide 24: Early Stopping
	Slide 25: Early Stopping
	Slide 26: Today: Regularization
	Slide 27: Recall from prior discussions…
	Slide 28: L2 Regularization for Linear Models
	Slide 29: L1 Regularization for Linear Models
	Slide 30: Geometric Interpretation of L2 regularization
	Slide 31: Geometric Interpretation of L1 regularization
	Slide 32: Effect of Regularization on Decision Boundary
	Slide 33: L2 regularization for Multilayer Neural Networks
	Slide 34: L2 regularization for Multilayer Neural Networks
	Slide 35: L2 regularization for Neural Networks in PyTorch
	Slide 36: L2 regularization for Neural Networks in PyTorch
	Slide 37: Today: Regularization
	Slide 38: Dropout
	Slide 39: Dropout
	Slide 40: Dropout
	Slide 41: Dropout in PyTorch
	Slide 42: Why does Dropout work?
	Slide 43: Why does Dropout work?
	Slide 44: Why does Dropout work?
	Slide 45: Dropout in PyTorch
	Slide 46: Dropout in PyTorch: Inverted Dropout
	Slide 47: Dropout in PyTorch
	Slide 48: .

