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 Causal Thinking

* |dentification of causal effects
* Causal Discovery

 Causality in Practice
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Causal Thinking
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Association vs. Dependence

T USED 10 THINK, THEN T Took A | | SOUNDS LKE THE
CORRELATION MPUED STATISTICS CLASS. CLASS HELPED.
CAUSATION. Now I DON'T. WELL, MAYBE.

TRl

(http://imgs.xkcd.com/comics/correlation.png)

N 7 - B

X and Y are associated iff X 1s a cause of Y 1ff
L3X1 7 X, P(Y|X=x,) # P(Y|X=x,) 3x, # x, P(Y|do (X=x,)) # P(Y|do (X=x,)) |

S
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Example 1of Causal Thinking:
Learning from Medical Data

e Can we learn causal effects from real-world observations?

Observed r_______________'_r_?___-l\\/ Patient
. ~___Useful fo predict? |
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Example 1of Causal Thinking:
Learning from Medical Data

e Can we learn causal effects from real-world observations?

Underlying [ Underlymg RISKJ Underlying risk

risk produces worsens patient
observed outcomes.
biomarkers.

Predicts worse outcome

Observed N\ =~ = S Sf T hm meqian "~ " Patient
Biomarkers /' == ------=-=-t-=-=------- Outcome
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Example 1of Causal Thinking:
Learning from Medical Data

e Can we learn causal effects from real-world observations?

. nderlying Risk

Underlying [ Unde ying RIS J Underlying risk
risk produces worsens patient
observed outcomes.
biomarkers' Predicts worse outcome

Observed N\, =~ " JHacfiil fm momdian 7~ Patient
Biomarkers /!---s=-—-=-==-=2-=-=-—---- » Outcome

Predicting outcomes from biomarkers can
confound underlying risk and treatment.

Observed
biomarkers can
affect treatment
decisions.

Predicts better outcome

©

[ Treatments J

Treatments
improve patient
outcomes.
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Example 1of Causal Thinking:
Learning from Medical Data

_ . Data-driven reality
o Expectation S ' '
el
&U “— 5] I High creatinine suggests
" © I renal failure but
O m monitoring and treatment
O | S
@) ) make the most high-risk
| | region appear as low-risk.
2 S | |
g O | Concavity suggests that |
o ~ I behavioral changes are |
> ' > I influenced by thresholdsl|
. a i
Creatinine (mg/dL) = | of3andSmg/dLof |
Qv ] serum creatinine. I

Elevated creatinine levels are an t I |

indicator of renal failure, so we O]_- | |

may expect mortality risk to 2 l , l , ,

increase with creatinine. 2 % 4 t 5 ( 6/d L) 7

erum creatinine (mg

Lengerich et al 2022
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https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2

Example 2 of Causal Thinking:
Simpson’s Paradox

* Graduate admissions at UC Berkeley in 1973

Outcome
Applicants Observed Expected
Admit Deny Admit Deny
Men 3738 4704 3460.7 4981.3
Women 1494 2827 1771.3 2549.7

Gender bias?
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https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf

Example 2 of Causal Thinking:
Simpson’s Paradox

O Number of applicants =40
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[Bickel]
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The Fundamental Problem of Causal Learning

e We don’t know if we have unobserved confounders.

There are known knowns; there are things we
know that we know.

There are known unknowns; that is to say,
there are things that we now know we don't

know.

But there are also unknown unknowns - there
are things we do not know we don’t know.

Donald Rumsfeld
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The Mindset of Causal Learning from
Observational Data

» Given a fixed set of variables X, observational data doesn’t prove
causality; it rules out non-causal explanations.
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Causal Models
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Causal Models

e Infer effect of interventions:
What 1s
SEASON Px3=0MX1,X2,X4,X5)? @ SEASON

. N
SPRINKLER / \ RAIN ~ SPRINKLER RAIN
R 4 - ol
WET WET
! |
SLIPPERY

SLIPPERY
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Kinds of questions we ask with Causal Models

* Prediction: Would the pavement be slippery if /®\SEAS°N
we find the sprinkler off? SR \ / A
* P(Slippery | Sprinkler = of f) WET
* Intervention: Would the pavement be slippery if SLIPPERY

we make sure that the sprinkler is off?
« P(Slippery | do(Sprinkler = of f))

« Counterfactual: Would the pavement be
slippery had the sprinkler been off, given that the
pavement is in fact not slippery and the sprinkler
IS on?

* P(Slipperysprinkier=ors} | Sprinkler = on, Slippery = no)
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Causal DAGs

* Able to represent and respond to external or ®SEASON
spontaneous changes SPRINKLER' g .RMN
Let P«(V) be the distribution of V resulting from —
intervention do(X=x). ADAG G 1s a causal DAG 1f @ o ASON
1. P«(V) 1s Markov relative to G; serruicen (5) ‘ ‘ RAIN
2. P.(Vi=v)=1 for all V;&X and v; consistent with . P
X=x; . SLIPPERY
3. P(Vi| P4;) = P(V:| P4;) for all ViEX, i.e., P(Vi| PA))|  whatis
remains invariant to interventions not involving V; Lo A
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Identification of Causal Effects
* Intervention: Would the pavement be slippery if
we make sure that the sprinkler is off?
« P(Slippery | do(Sprinkler = of f))

 Gold standard: Randomized controlled
experiments.

SPRINKLER
ol ©

« Often expensive or impossible/unethical to do. ‘
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Potential Outcomes Framework (Rubin-Neyman)

e Each unit (individual) x; has two potential outcomes:

— Yo (x;) is the potential outcome had the unit not been treated:
“control outcome”

— Y;(x;) is the potential outcome had the unit been treated:
“treated outcome”

 Conditional average treatment effect for unit i:
CATE (x;) = Ey, pev;|x;) [Y11%i] — Eyyep(yp|x) [YolXi]
 Average Treatment Effect:
ATE:=E|Y; — Y] = IExNP(x)[CATE(x)]

* INRCT, E[Y;] = E|Y | do(Treatment) | and
ElY,] = E[Y | do(NoTreatment) ]
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“The fundamental problem of causal inference”

We only ever observe one of the
two outcomes
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Example - Blood pressure and age

y =
blood_pres.

— Y (x)
— () /\

X =age
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Example - Blood pressure and age

y =
blood_pres.

— h | L | CATE ()

— Y, (@) /\

X =age
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Example - Blood pressure and age

y =
blood_pres.

— ¥, (x)
— Y (%)

X =age
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Example - Blood pressure and age

y =
blood_pres.

— Y1 (x) ® . 0

— Yo (x) 7t J
@ Treated
@ control

X = age
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Example - Blood pressure and age

]
Y; (x)
e
— l“
y = Ty
blood_pres. ¢ it !
L S N
Felo e oo Y s IR
i SRR
| 1.0, I -
| gpe 1R ‘ l-;L!. TR
0.0 ‘o i, ) | :
o ‘:::":':'. .'. F'. Ta,
CoeY (x
@ Treated o)
@ cControl X =age

va,

{ i Counterfactual treated

LN

i i Counterfactual control

'''''
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Typical Assumption - No unmeasured confounders

Yy, Y : potential outcomes for control and treated
X: unit covariates (features)
T: treatment assignment

We assume:

(Yo, Y,)) LT |x

The potential outcomes are independent of treatment
assignment, conditioned on covariates x
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Typical Assumption - Ignorability

@ treatment

covariates
(features)

Potential outcomes

(Yo,Y1) LT |x
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Typical Assumption - Ignorability

anti-
hypertensive

medication
age, gender,

weight, diet,
heart rate at
rest,...

blood pressure blood pressure
after medication after

A medication B

(Yo,Y) LT |x
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Typical Assumption - Ignorability

No Ignorability
anti-
hypertensive
medication

T diabetic

blood pressure blood pressure
after medication after

A medication B

Yo, YD) AT | x

age, gender,
weight, diet,
heart rate at
rest,...
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Typical Assumption - Common Support

Yy, Y;: potential outcomes for control and treated
X: unit covariates (features)
T: treatment assignment

We assume:

p(T=t|X=x)>0Vt,x
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Covariate Adjustment

Explicitly model the relationship between
treatment, confounders, and outcome:

Covariates Regression Outcome
(Features) model

X

f@,T)
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Covariate Adjustment

* Explicitly model the relationship between
treatment, confounders, and outcome

* Under ignorability, the expected causal effect
of TonY:

Ex-poy| EIIT = 1,x] — E[Y|T = 0, x]]
* Fitamodel f(x,t) = E|Y;|T = t, x]

...........
* '.
.

f (xv 1) f (xv 0)

M:

— 1
ATE = —
n

1
[

[
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Covariate Adjustment

[
" Y; (x)
Yy = ?. 1““‘
t“l
I A
blood_pres. ' LT :
ey 0% ., ke ‘Ill I
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LT Lesados = 'Y i 11!
AN |I I
':Ilﬁ' ! 4 " "Il"'::l
R A -4 o
| *‘L‘.--‘!‘- ' ‘ '-.’.. . I.I! ||| 11 :
0.0 i oy, et
“0’ ® ‘l....‘_....!
}“o ,"'!....,Y (x)
@ Treated 0

X =age
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Propensity scores

* Tool for estimating ATE

* Basic idea: turn observational study into a
pseudo-randomized trial by re-weighting
samples, similar to importance sampling
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Inverse propensity score re-weighting

p(x|t=0)#p(x|t=1)

control treated
@)
© & e
) @
o ® Lo o °
xZ = . ‘ ' ‘
0
Charlson ® ° &)
comorbidity ® © o e ©
index O @ ®
O © ¢ ® ®
@ o O @
S o) ©
‘ Treated .
‘ Control X1 = age
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Inverse propensity score re-weighting

p(x|t =0) - wo(x) = plx|t =1) - wy(x)
reweighted control reweighted treated

O
: ¢ O
o %0 o o °
x2= . ‘ .
o © 8
Charlson ® @
comorbidity O © Py ' e © .
index O ° © " ®
&
©
@ @
® O
e
X1 = age
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Inverse propensity score re-weighting

How to calculate ATE with propensity score

for sample (x4, t1, V1), --» (X0, tr, V)

1. Use any ML method to estimate p(T = t|x)

. 1 Y | Yi
ATE = = ok

7 s.t. t,,;=1 7 Bt t,,;=0
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Inverse propensity score re-weighting

How to calculate ATE with propensity score

for sample (xq,t1, V1), v (k) ty Vo)

1. Randomized trial p(T = t|x) = 0.5

. 1 Yi | Ys
ATE = = - -
2. n Z pt; =1z;)) n Z p(t; = 0|x;)

% st Be=1 3 8t =0
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Problems with inverse propensity scores

* Need to estimate propensity score (problem in
all propensity score methods)

 |f there’s not much overlap, propensity scores
become non-informative and easily mis-
calibrated

* Weighting by inverse can create large variance
and large errors for small propensity scores

— Exacerbated when more than two treatments
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Causality in Practice
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Causality in Practice
* RA Fisher: famous statistician, rejected
smoking->cancer causality

* His claim: Only associational studies
have been run so far.

* Monozygotic twins have more similar
smoking patterns than dizygotic twins, so
maybe a genetic propensity to smoke
instead of a causal link?

* How many cancers were caused by this
wrong interpretation?
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British Medical J., vol. 11, p. 43, 6 July 1957 and vol. I, pp. 297-298, 3 August 1957.

269-270

ALLEGED DANGERS OF CIGARETTE-SMOKING




Causality in Practice

All models are wrong, but some are
useful.

- Ge.&fzge..- E P Bex —

AZ QUOTES
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Causality in Practice: What is our model’s use?
* Models are simplifications of reality—they can never be
entirely correct.

* The key questioniis:
 How can we use models to make better decisions?

« Causal inference vs. Prediction:

« Prediction models optimize accuracy but may not reveal why outcomes
occur.

« Causal models aim to uncover mechanisms, guide interventions, and
inform policy.
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Example: Sensitive features

* Suppose we have access to a sensitive feature (e.g. race,
gender) that we don't want to make decisions based on.

* Should we exclude this feature from our model training?
* But holding it out won't get rid of the effect:

* Indirect bias, hide disparities rather than eliminate them.

» Better strategy: Learn the causal effect of the sensitive
feature, then choose what to do with it:
* Throw out the effect of the feature (counterfactual fairness)
* Sweep over all possible values of the sensitive feature
e Learn an invariant representation
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Example: Process-based decisions in medicine

* Medicine is a continuous process, not a one-time prediction.

No man ever steps in the same river twice,
for it is not the same river
and he:is not the-same man

- Heraclitus

* Upstream influences are missing not-at-random.
« Correcting for missing not-at-random can drive us toward biological causality.

« BUT if the missing not-at-random will persist in the real world, then the causal
model is LESS useful than the model biased by upstream influences.
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Questions?

IIIIIIIIIIIIIIIIIIIIIIIIIIII




