
STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich
Lecture 11: Normalization / Initialization

October 8, 2025

A quick note about projects

Ben Lengerich © University of Wisconsin-Madison 2025

How to decide on good model architectures before we’ve studied
them in depth?

A note on research papers

Ben Lengerich © University of Wisconsin-Madison 2025

How we imagine
research papers:

How research papers
actually are:

Holes big
enough to
drive a car
through!

A note on research papers → let’s be optimists.

Ben Lengerich © University of Wisconsin-Madison 2025

papers

Last Time: Regularization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data augmentation

3. Reducing network capacity & early stopping

4. Adding norm penalties to the loss: L1 & L2 regularization

5. Dropout

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

Normalization and gradient descent

Ben Lengerich © University of Wisconsin-Madison 2025

In deep models…

Ben Lengerich © University of Wisconsin-Madison 2025

Normalizing the inputs only affects the first hidden layer…what
about the rest?

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

• Normalizes hidden layer inputs
• Helps with exploding/vanishing gradient problems
• Can increase training stability and convergence rate
• Can be understood as additional (normalization) layers (with

additional parameters)

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 1: Normalize Net Inputs

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 2: Pre-Activation Scaling

Ben Lengerich © University of Wisconsin-Madison 2025

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance

BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025

Ben Lengerich © University of Wisconsin-Madison 2025

Can we learn BatchNorm params by backprop?

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

BatchNorm in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-
learningss21/blob/main/L11/code/batchnorm.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

BatchNorm in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm at Test-Time

Ben Lengerich © University of Wisconsin-Madison 2025

• Use exponentially weighted average (moving average) of mean and
variance

running_mean = momentum * running_mean + (1 - momentum) *
sample_mean

(where momentum is typically ~0.1; and same for variance)

• Alternatively, can also use global training set mean and variance

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

Why does BatchNorm work?

Ben Lengerich © University of Wisconsin-Madison 2025

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

Hmm…do we know anything about covariate shift?

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Why does BatchNorm work?

Ben Lengerich © University of Wisconsin-Madison 2025

Smooth Optimization → Larger Learning Rates

Ben Lengerich © University of Wisconsin-Madison 2025

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In
Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604

https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604

BatchNorm benefit seems unrelated to covariate shift

Ben Lengerich © University of Wisconsin-Madison 2025

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In
Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604

https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604

A note on research papers

Ben Lengerich © University of Wisconsin-Madison 2025

How we imagine
research papers:

How research papers
actually are:

Holes big
enough to
drive a car
through!

Many interpretations

Ben Lengerich © University of Wisconsin-Madison 2025

2015: Reduces covariate shift. Ioffe, S., & Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

2018: Networks with BatchNorm train well with or without ICS. Hypothesis is that
BatchNorm makes the optimization landscape smoother. Santurkar, S., Tsipras, D., Ilyas,
A., & Madry, A. (2018). How does batch normalization help optimization? In Advances in
Neural Information Processing Systems (pp. 2483-2493).

2018:
"Batch normalization implicitly discourages single direction reliance" (here, "single
direction reliance" means that an input influences only a single unit or linear combination
of single units) Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., & Botvinick, M. (2018). On
the importance of single directions for generalization. arXiv preprint arXiv:1803.06959.

Many interpretations

Ben Lengerich © University of Wisconsin-Madison 2025

2018: BatchNorm acts as an implicit regularizer and improves generalization
accuracy Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding
regularization in batch normalization. arXiv preprint arXiv:1809.00846.

2019: BatchNorm causes exploding gradients, requiring careful tuning when training deep
neural nets without skip connections (more about skip connections soon) Yang, G.,
Pennington, J., Rao, V., Sohl-Dickstein, J., & Schoenholz, S. S. (2019). A mean field theory of
batch normalization. arXiv preprint arXiv:1902.08129.

Should BatchNorm happen after activation?

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu

Practical Consideration

• BatchNorm becomes more stable with larger mini-batch sizes

Related: LayerNorm

• Layer normalization (LN)

• BN calculates mean/std based on
a mini batch, whereas LN
calculates mean/std based on
feature/embedding vectors

• In the stats language, BN zero
mean unit variance, whereas LN
projects feature vector to unit
sphere

• LN in Transformers

Normalize everything?

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

Weight initialization

Ben Lengerich © University of Wisconsin-Madison 2025

• Recall: Can’t initialize all weights to 0 (symmetry problem)

• But we want weights to be relatively small.
• Traditionally, we can initialize weights by sampling from a random uniform

distribution in range [0, 1], or better, [-0.5, 0.5]

• Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 or 0.01)

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Method:

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to
the layer
• (For the first hidden layer, that is the number of features in the dataset; for the

second hidden layer, that is the number of units in the 1st hidden layer, etc.)

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Method:

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to
the layer
• (For the first hidden layer, that is the number of features in the dataset; for the

second hidden layer, that is the number of units in the 1st hidden layer, etc.)

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

He Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.

• Assuming activations with mean 0, which is reasonable, Xavier
Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

• For ReLU, the activations are not centered at zero
• He initialization takes this into account

• The result is that we add a scaling factor of √2

Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

• When neural network models change, proper initialization schemes may
change; we will see this in transformers

• Research frontier: training very deep neural networks requires control of
the weight matrix spectrum
• Random matrix theory suggests a sophisticated initialization for training 10,000 layer

network, https://arxiv.org/abs/1806.05393

https://arxiv.org/abs/1806.05393

Today: Feature Normalization & Weight Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch

Weight initialization in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86

https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86

.

Questions?

	Slide 1: STAT 453: Introduction to Deep Learning and Generative Models
	Slide 2: A quick note about projects
	Slide 3: A note on research papers
	Slide 4: A note on research papers  let’s be optimists.
	Slide 5: Last Time: Regularization
	Slide 6: Today: Feature Normalization & Weight Initialization
	Slide 7: Normalization and gradient descent
	Slide 8: In deep models…
	Slide 9: Today: Feature Normalization & Weight Initialization
	Slide 10: Batch Normalization (“BatchNorm”)
	Slide 11: Batch Normalization (“BatchNorm”)
	Slide 12: Batch Normalization (“BatchNorm”)
	Slide 13: BatchNorm Step 1: Normalize Net Inputs
	Slide 14: BatchNorm Step 2: Pre-Activation Scaling
	Slide 15: BatchNorm Steps 1+2 Together
	Slide 16: BatchNorm Steps 1+2 Together
	Slide 17
	Slide 18: BatchNorm and Backprop
	Slide 19: BatchNorm and Backprop
	Slide 20: BatchNorm and Backprop
	Slide 21: Today: Feature Normalization & Weight Initialization
	Slide 22: BatchNorm in PyTorch
	Slide 23: BatchNorm in PyTorch
	Slide 24: BatchNorm at Test-Time
	Slide 25: Today: Feature Normalization & Weight Initialization
	Slide 26: Why does BatchNorm work?
	Slide 27: Why does BatchNorm work?
	Slide 28: Smooth Optimization  Larger Learning Rates
	Slide 29: BatchNorm benefit seems unrelated to covariate shift
	Slide 30: A note on research papers
	Slide 31: Many interpretations
	Slide 32: Many interpretations
	Slide 33: Should BatchNorm happen after activation?
	Slide 34: Practical Consideration
	Slide 35: Related: LayerNorm
	Slide 36: Normalize everything?
	Slide 37: Today: Feature Normalization & Weight Initialization
	Slide 38: Weight initialization
	Slide 39: Today: Feature Normalization & Weight Initialization
	Slide 40: Xavier Initialization
	Slide 41: Xavier Initialization
	Slide 42: Xavier Initialization
	Slide 43: He Initialization
	Slide 44: Initialization
	Slide 45: Today: Feature Normalization & Weight Initialization
	Slide 46: Weight initialization in PyTorch
	Slide 47: .

