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A quick note about projects
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How to decide on good model architectures before we’ve studied 
them in depth?



A note on research papers
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How we imagine 
research papers:

How research papers 
actually are:

Holes big 
enough to 
drive a car 
through!



A note on research papers → let’s be optimists.
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papers



Last Time: Regularization
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1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data augmentation

3. Reducing network capacity & early stopping

4. Adding norm penalties to the loss: L1 & L2 regularization

5. Dropout



Today: Feature Normalization & Weight Initialization
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1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch



Normalization and gradient descent
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In deep models…
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Normalizing the inputs only affects the first hidden layer…what 
about the rest?



Today: Feature Normalization & Weight Initialization
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1. Input normalization

2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch



Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift. In International 
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

• Normalizes hidden layer inputs
• Helps with exploding/vanishing gradient problems
• Can increase training stability and convergence rate
• Can be understood as additional (normalization) layers  (with 

additional parameters)

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html


Batch Normalization (“BatchNorm”)
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Batch Normalization (“BatchNorm”)
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BatchNorm Step 1: Normalize Net Inputs
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BatchNorm Step 2: Pre-Activation Scaling
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Technically, a BatchNorm layer could learn to perform 
"standardization" with zero mean and unit variance



BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025



BatchNorm Steps 1+2 Together
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Can we learn BatchNorm params by backprop?



BatchNorm and Backprop
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BatchNorm and Backprop
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BatchNorm and Backprop
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Today: Feature Normalization & Weight Initialization
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4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch



BatchNorm in PyTorch
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https://github.com/rasbt/stat453-deep-
learningss21/blob/main/L11/code/batchnorm.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
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BatchNorm in PyTorch
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BatchNorm at Test-Time
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• Use exponentially weighted average (moving average) of mean and 
variance

running_mean = momentum * running_mean + (1 - momentum) * 
sample_mean

(where momentum is typically ~0.1; and same for variance)

• Alternatively, can also use global training set mean and variance



Today: Feature Normalization & Weight Initialization
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2. Batch normalization

3. BatchNorm in PyTorch

4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch



Why does BatchNorm work?

Ben Lengerich © University of Wisconsin-Madison 2025

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift. In International 
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

Hmm…do we know anything about covariate shift?

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html


Why does BatchNorm work?
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Smooth Optimization → Larger Learning Rates
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Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In 
Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604

https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604


BatchNorm benefit seems unrelated to covariate shift
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Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In 
Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604

https://arxiv.org/abs/1805.11604
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A note on research papers
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How we imagine 
research papers:

How research papers 
actually are:

Holes big 
enough to 
drive a car 
through!



Many interpretations
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2015: Reduces covariate shift. Ioffe, S., & Szegedy, C. (2015). Batch normalization: 
Accelerating deep network training by reducing internal covariate shift. arXiv preprint 
arXiv:1502.03167.

2018: Networks with BatchNorm train well with or without ICS. Hypothesis is that 
BatchNorm makes the optimization landscape smoother. Santurkar, S., Tsipras, D., Ilyas, 
A., & Madry, A. (2018). How does batch normalization help optimization? In Advances in 
Neural Information Processing Systems (pp. 2483-2493).

2018:
"Batch normalization implicitly discourages single direction reliance" (here, "single 
direction reliance" means that an input influences only a single unit or linear combination 
of single units) Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., & Botvinick, M. (2018). On 
the importance of single directions for generalization. arXiv preprint arXiv:1803.06959.



Many interpretations
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2018: BatchNorm acts as an implicit regularizer and improves generalization 
accuracy Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding 
regularization in batch normalization. arXiv preprint arXiv:1809.00846.

2019: BatchNorm causes exploding gradients, requiring careful tuning when training deep 
neural nets without skip connections (more about skip connections soon) Yang, G., 
Pennington, J., Rao, V., Sohl-Dickstein, J., & Schoenholz, S. S. (2019). A mean field theory of 
batch normalization. arXiv preprint arXiv:1902.08129.



Should BatchNorm happen after activation?
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https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
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Practical Consideration

• BatchNorm becomes more stable with larger mini-batch sizes



Related: LayerNorm

• Layer normalization (LN)

• BN calculates mean/std based on 
a mini batch, whereas LN 
calculates mean/std based on 
feature/embedding vectors

• In the stats language, BN zero 
mean unit variance, whereas LN 
projects feature vector to unit 
sphere

• LN in Transformers



Normalize everything?



Today: Feature Normalization & Weight Initialization
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4. Why does BatchNorm work?

5. Weight initialization -- why do we care?

6. Xavier & He Initialization

7. Weight initialization schemes in PyTorch



Weight initialization
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• Recall: Can’t initialize all weights to 0 (symmetry problem)

• But we want weights to be relatively small.
• Traditionally, we can initialize weights by sampling from a random uniform 

distribution in range [0, 1], or better, [-0.5, 0.5]

• Or, we could sample from a Gaussian distribution with mean 0 and small variance 
(e.g., 0.1 or 0.01)
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Xavier Initialization
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Method: 

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to 
the layer 
• (For the first hidden layer, that is the number of features in the dataset; for the 

second hidden layer, that is the number of units in the 1st hidden layer, etc.)

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. 
2010.



Xavier Initialization
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Method: 

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to 
the layer 
• (For the first hidden layer, that is the number of features in the dataset; for the 

second hidden layer, that is the number of units in the 1st hidden layer, etc.)



Xavier Initialization
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He Initialization
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing 
human-level performance on imagenet classification." In Proceedings of the IEEE international 
conference on computer vision, pp. 1026-1034. 2015.

• Assuming activations with mean 0, which is reasonable, Xavier 
Initialization assumes a derivative of 1 for the activation function (which 
is reasonable for tanH)

• For ReLU, the activations are not centered at zero
• He initialization takes this into account

• The result is that we add a scaling factor of √2



Initialization
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• When neural network models change, proper initialization schemes may 
change; we will see this in transformers

• Research frontier: training very deep neural networks requires control of 
the weight matrix spectrum
• Random matrix theory suggests a sophisticated initialization for training 10,000 layer 

network, https://arxiv.org/abs/1806.05393

https://arxiv.org/abs/1806.05393
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Weight initialization in PyTorch
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https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
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.

Questions?
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