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A quick note about projects

How to decide on good model architectures before we’ve studied
them in depth?
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A note on research papers

How we imagine How research papers
research papers: actually are:

Holes big
enough to
drive a car
through!
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A note on research papers = let’s be optimists.

papers
Allswcacis are wrong, but some are

useful.

— Gesnge €. P. Box —

AZ QUOTES
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Last Time: Regularization

Improving generalization performance

Avoiding overfitting with (1) more data and (2) data augmentation
Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization

ks

Dropout
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Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?
Xavier & He Initialization

N O ks iR

Weight initialization schemes in PyTorch
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Normalization and gradient descent

— Surface of a convex cost function

" minimum (for simplicity)
N
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(Keep in mind that we are using
the same learning rate for all weights, so large parameters
will dominate the updates)
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"Standardization"” of input features
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(scaled feature will have zero mean,
> unit variance)
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In deep models...

Normalizing the inputs only affects the first hidden layer...what
about the rest?
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Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?
Xavier & He Initialization

N o s WNPe

Weight initialization schemes in PyTorch
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Batch Normalization (“BatchNorm”)

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

* Normalizes hidden layer inputs

* Helps with exploding/vanishing gradient problems

* Canincrease training stability and convergence rate

e Can be understood as additional (normalization) layers (with
additional parameters)
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Batch Normalization (“BatchNorm”)
(2)

— Suppose, we have net input z;
associated with an activation in the 2nd hidden layer
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Batch Normalization (“BatchNorm”)

Now, consider all examples in a minibatch such that the net input

of a given training example at layer 2 is written as Z§2) [7’]

where ¢ € {1,...,n}

In the next slides, let's omit the
layer index, as it may be
distracting...

o)

Hip)
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BatchNorm Step 1: Normalize Net Inputs
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In practice:
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For numerical stability, where
epsilon is a small number like 1E-5




BatchNorm Step 2: Pre-Activation Scaling
o A
;[z] — My
Jj

R

Controls the mean

Controls the spread or scale

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance
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BatchNorm Steps 1+2 Together
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BatchNorm Steps 1+2 Together

o} =72 + B,

N

This parameter makes the bias units redundant

Also, note that the batchnorm parameters
are vectors with the same number of
elements as the bias vector

Ty

i)

Ben Lengerich © University of Wisconsin-Madison 2025



Can we learn BatchNorm params by backprop?
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BatchNorm and Backprop
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BatchNorm and Backprop

e P @-0-0

Since the minibatch mean and
variance act as parameters, we
can/have to apply the
multivariable chain rule

(1)
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BatchNorm and Backprop
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If you like math & engineering, you can solve the remaining terms
as an ungraded HW exercise ;)
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Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?
Xavier & He Initialization

N oA WNe

Weight initialization schemes in PyTorch
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BatchNorm in PyTorch

class MultilayerPerceptron(torch.nn.Module):

def __init_ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1, bias=False)
torch.nn.BatchNormld (num_hidden_1),
torch.nn.RelLU(),
# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False)
torch.nn.BatchNormld (num_hidden_2),
torch.nn.ReLU(),
# output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

https://github.com/rasbt/stat453-deep-
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BatchNorm in PyTorch

I def train_model(model, num_epochs, train_loader,
valid_loader, test_loader, optimizer, device):

start_time = time.time()
minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
for epoch in range(num_epochs):

model.train()
for batch_idx, (features, targets) in enumerate(train_loader):

features = features.to(device)
targets = targets.to(device)

# ## FORWARD AND BACK PROP

logits = model(features)

loss = torch.nn.functional.cross_entropy(logits, targets)
optimizer.zero_grad()

loss.backward()

# ## UPDATE MODEL PARAMETERS don't forget mOdel'train()
optimizer.step() and modeleval()
# ## LOGGING in training and test loops

minibatch_loss_list.append(loss.item())
if not batch_idx % 50:
print(f'Epoch: {epoch+1:03d}/{num_epochs:@3d} '
f'| Batch {batch_idx:04d}/{len(train_loader):04d} '
f'| Loss: {loss:.4f}')

model.eval()
with torch.no_grad(): # save memory during inference
train_acc = compute_accuracy(model, train_loader, device=device)
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BatchNorm at Test-Time

e Use exponentially weighted average (moving average) of mean and
variance

running_mean = momentum * running_mean + (1 - momentum) *
sample_mean

(Where momentum is typically ~0.1; and same for variance)

* Alternatively, can also use global training set mean and variance
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Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?
Xavier & He Initialization

N o Uk wWNRE

Weight initialization schemes in PyTorch
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Why does BatchNorm work?

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

Hmm...do we know anything about covariate shift?
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Why does BatchNorm work?

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it

makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

at. ML] 6 Mar 2019
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Smooth Optimization = Larger Learning Rates
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Figure 1: Comparison of (a) training (optimization) and (b) test (generalization) performance of a
standard VGG network trained on CIFAR-10 with and without BatchNorm (details in Appendix A).
There is a consistent gain in training speed in models with BatchNorm layers. (¢) Even though the
gap between the performance of the BatchNorm and non-BatchNorm networks is clear, the difference
in the evolution of layer input distributions seems to be much less pronounced. (Here, we sampled
activations of a given layer and visualized their distribution over training steps.)

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In
Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604
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BatchNorm benefit seems unrelated to covariate shift
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Figure 2: Connections between distributional stability and BatchNorm performance: We compare
VGG networks trained without BatchNorm (Standard), with BatchNorm (Standard + BatchNorm)
and with explicit “covariate shift” added to BatchNorm layers (Standard + “Noisy” BatchNorm).
In the later case, we induce distributional instability by adding time-varying, non-zero mean and
non-unit variance noise independently to each batch normalized activation. The “noisy” BatchNorm
model nearly matches the performance of standard BatchNorm model, despite complete distributional
instability. We sampled activations of a given layer and visualized their distributions (also cf. Figure 7).

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In
Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604
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A note on research papers

How we imagine How research papers
research papers: actually are:

Holes big
enough to
drive a car
through!
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Many interpretations

2015: Reduces covariate shift. loffe, S., & Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

2018: Networks with BatchNorm train well with or without ICS. Hypothesis is that
BatchNorm makes the optimization landscape smoother. Santurkar, S., Tsipras, D., llyas,
A., & Madry, A. (2018). How does batch normalization help optimization? In Advances in
Neural Information Processing Systems (pp. 2483-2493).

2018:

"Batch normalization implicitly discourages single direction reliance" (here, "single
direction reliance" means that an input influences only a single unit or linear combination
of single units) Morcos, A.S., Barrett, D. G., Rabinowitz, N. C., & Botvinick, M. (2018). On
the importance of single directions for generalization. arXiv preprint arXiv:1803.06959.
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Many interpretations

2018: BatchNorm acts as an implicit regularizer and improves generalization
accuracy Luo, P, Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding
regularization in batch normalization. arXiv preprint arXiv:1809.00846.

2019: BatchNorm causes exploding gradients, requiring careful tuning when training deep
neural nets without skip connections (more about skip connections soon) Yang, G.,
Pennington, J., Rao, V., Sohl-Dickstein, J., & Schoenholz, S. S. (2019). A mean field theory of
batch normalization. arXiv preprint arXiv:1902.08129.
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Should BatchNorm happen after activation?

BN -- before or after ReLU?

Name Accuracy LoglLoss Comments
Before 0.474 2.35 Asin paper
Before + scale&bias layer 0.478 2.33 Asin paper
After 0.499 2.21
After + scale&bias layer 0.493 2.24

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
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Practical Consideration

* BatchNorm becomes more stable with larger mini-batch sizes

34| o Groum Nerm Figure 1. ImageNet classification error vs. batch
sizes. The model is ResNet-50 trained in the Ima-
geNet training set using 8 workers (GPUs) and evalu-
ated in the validation set. BN’s error increases rapidly
when reducing the batch size. GN’s computation is in-
dependent of batch sizes, and its error rate is stable
despite the batch size changes. GN has substantially

22 : '
% atch aize (imaages per “forker) ° lower error (by 10%) than BN with a batch size of 2.

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).




Related: LayerNorm

e Layer normalization (LN)

X141

* BN calculates mean/std based on
a mini batch, whereas LN

Pre-LLN Transformer

calculates mean/std based on o lem)
feature/embedding vectors ;gjij;jif; ;*Nj;ffff,p;;, -
[ 12’ - RZLU(I{%E’II‘[I{” R LG
* |[n the stats language, BN zero el R ATET T i
. . Final LayerNorm: 2% ; ; + LayerNorm(z}"5, ;)
mean unit variance, whereas LN Ml s
projects feature vector to unit
sphere /l
X1

* LN in Transformers




Normalize everything?

Batch Norm Layer Norm Instance Norm Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C' as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).




Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?
Xavier & He Initialization

N o s wWwNhe

Weight initialization schemes in PyTorch
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Weight initialization

e Recall: Can’t initialize all weights to O (symmetry problem)

* But we want weights to be relatively small.

* Traditionally, we can initialize weights by sampling from a random uniform
distribution in range [0, 1], or better, [-0.5, 0.5]

* Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 or 0.01)
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Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?
Xavier & He Initialization

N O A WwWNhRE

Weight initialization schemes in PyTorch
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Xavier Initialization

Method:
 Step 1: Initialize weights from Gaussian or uniform distribution

* Step 2: Scale the weights proportional to the number of inputs to
the layer

* (For the first hidden layer, that is the number of features in the dataset; for the
second hidden layer, that is the number of units in the 1st hidden layer, etc.)

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.
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Xavier Initialization

Method:

 Step 1: Initialize weights from Gaussian or uniform distribution

* Step 2: Scale the weights proportional to the number of inputs to
the layer

* (For the first hidden layer, that is the number of features in the dataset; for the
second hidden layer, that is the number of units in the 1st hidden layer, etc.)

where m is the
1 number of input
m=1) units to the next
layer

WO .— wO .

e.g, \
Wi ;W ~ N(u=0,02 =0.01)

(or uniform distr. in a fixed interval, as in the original paper)
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Xavier Initialization

|
Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of
independent variables is the sum of the variances); square root for

standard deviation

mp_1
Var (zj(-l)) — Var Z Wj(,?ag_l)
j=1
m(l_l) m(l—l)
= Z Var [Wj(,?a,g_l)] = Z Var [WJ(?] Var [a,(cl_l)]
j=1 i=1
m (=1
= Z Var [W(l)] Var [a(l_l)] = m{~1 Var [W(l)] Var [a(l_l)]
j=1
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He Initialization

* Assuming activations with mean 0, which is reasonable, Xavier

Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

* For RelU, the activations are not centered at zero
 He initialization takes this into account

 The result is that we add a scaling factor of V2

2
) .— w .
wh .—w \/m(u)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.
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Initialization

 When neural network models change, proper initialization schemes may
change; we will see this in transformers

* Research frontier: training very deep neural networks requires control of
the weight matrix spectrum

Random matrix theory suggests a sophisticated initialization for training 10,000 layer
network, https://arxiv.org/abs/1806.05393
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https://arxiv.org/abs/1806.05393

Today: Feature Normalization & Weight Initialization

Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?

Xavier & He Initialization

N O U AR W e

Weight initialization schemes in PyTorch
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Weight initialization in PyTorch

PyTorch (now) uses the Kaiming He scheme by default

def __init__ (self, in_features: int, out_features: int, bias: bool = True) —> None:
super(Linear, self).__init__ ()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()

def reset_parameters(self) —> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqgrt(fan_in)
init.uniform_(self.bias, -bound, bound)

https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86
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Questions?
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