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Today
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• Partially-Observed GMs
• Expectation-Maximization

• K-Means Clustering



Partially Observed GMs



Partially-Observed GMs
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Partially-Observed GMs
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Mixture Models



Partially-Observed GMs: Mixture models
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• A density model 𝑝(𝑥) may be multi-modal
• Can we model it as a mixture of uni-modal distributions?



Unobserved Variables

Ben Lengerich © University of Wisconsin-Madison 2025

• A variable can be unobserved (latent) because:
• It is difficult or impossible to measure

• e.g. Causes of a disease, evolutionary ancestors
• It is only sometimes measured

• e.g. faulty sensors
• It is an imaginary quantity meant to provide some simplified but 

useful view of the data generation process
• e.g. Mixture assignments

• Discrete latent variables can be used for as cluster assignments
• Continuous latent variables can be used for dimensionality reduction



Why is learning with latent variables harder?
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• In fully-observed IID settings, the log-likelihood 
decomposes into a sum of local terms:

• With latent variables, all parameters become coupled 
via marginalization

Sum over z is inside log



Strategy:

Ben Lengerich © University of Wisconsin-Madison 2025

1. Guess value of Z
2. Apply MLE to estimate best model parameters based on Z
3. Inference most likely Z based on MLE parameter estimates
4. Return to step 2 until Z stops changing



Expectation-Maximization



Gaussian Mixture Models (GMMs)
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• Consider a mixture of K Gaussian components:

• This model can be used for unsupervised clustering



Gaussian Mixture Models (GMMs)
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• Consider a mixture of K Gaussian components:
• Z is a latent class indicator

• X is a conditional Gaussian variable with a class-
specific mean/covariance:

• Likelihood



Expectation-Maximization for GMMs

Ben Lengerich © University of Wisconsin-Madison 2025

• Start
• Guess the value of centroids 𝜇! and covariances Σ! of each of the 
𝐾 clusters

• Loop



Towards Expectation-Maximization

Ben Lengerich © University of Wisconsin-Madison 2025

• Start from MLE for completely-observed data:

• Gives nice MLE estimators:

We don’t know z



Towards Expectation-Maximization
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• Likelihood for unobserved z:

• The expected log-likelihood is then: Expectation over current p(z|x)



Expectation-Maximization algorithm
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• E-step:
• Compute the expected value of the sufficient statistics of the 

hidden variables under current estimates of parameters

• M-step:
• Using the current expected value of the hidden variables, 

compute the parameters that maximize the likelihood.



Expectation-Maximization for our GMM
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• E-step:
• Compute the expected value of the sufficient statistics of the 

hidden variables under current estimates of parameters



Expectation-Maximization algorithm
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• M-step:
• Using the current expected value of the hidden variables, 

compute the parameters that maximize the likelihood.



K-Means vs EM
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• K-means clustering algorithm is hard-assignment version of EM for 
mixture of Gaussians



Why does EM work? (Approximation view)
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• For a distribution 𝑞(𝑧) define the expected complete log-likelihood

• The expected complete log-likelihood is a lower-bound on the 
log-likelihood:

Jensen’s inequality



Why does EM work?

𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 ) = 𝐸!∼# log
𝑞(𝑧 ∣ 𝑥)
𝑝(𝑧 ∣ 𝑥, 𝜃)

𝐸!∼#[log 𝑝(𝑧 ∣ 𝑥, 𝜃)] =𝐸!∼#[log 𝑞(𝑧 ∣ 𝑥)] − 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

𝑝 𝑧 𝑥, 𝜃 =
𝑝(𝑥, 𝑧 ∣ 𝜃)
𝑝(𝑥 ∣ 𝜃)

log 𝑝 𝑧 𝑥, 𝜃 = log 𝑝 𝑥, 𝑧 𝜃 − log 𝑝(𝑥 ∣ 𝜃)

E!∼#[log 𝑝 𝑧 𝑥, 𝜃 ] = 𝐸$∼#[log 𝑝 𝑥, 𝑧 𝜃 ] − log 𝑝(𝑥 ∣ 𝜃)

𝐸!∼#[log 𝑝 𝑥, 𝑧 𝜃 ] − log 𝑝(𝑥 ∣ 𝜃) = 𝐸!∼#[log 𝑞(𝑧 ∣ 𝑥)] − 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

log 𝑝(𝑥 ∣ 𝜃) = 𝐸!∼#[log 𝑝 𝑥, 𝑧 𝜃 ] −𝐸!∼#[log 𝑞(𝑧 ∣ 𝑥)] + 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

log 𝑝(𝑥 ∣ 𝜃) = 𝐸3∼5[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞) + 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

EM: Let 𝑞6 𝑧 𝑥 = 𝑝(𝑧 ∣ 𝑥, 𝜃6). Then at convergence:
log 𝑝(𝑥 ∣ 𝜃) = 𝐸3∼5![log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞6) + 0

𝑄 𝜃′, 𝜃6 = 𝐸3∼7(3∣8!)[log 𝑝 𝑥, 𝑧 𝜃′ ]
𝜃69: = argmax8;𝑄(𝜃′, 𝜃6)



Foreshadowing Variational Inference

log 𝑝(𝑥 ∣ 𝜃) = 𝐸3∼5[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞) + 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

Variational Inference: Let 𝑞 𝑧 𝑥 be 
some family that’s easier to optimize.

log 𝑝(𝑥 ∣ 𝜃) ≥ 𝐸!∼#[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞)

“ELBO”: Evidence Lower Bound

EM: Let 𝑞6 𝑧 𝑥 = 𝑝(𝑧 ∣ 𝑥, 𝜃6).
Max 𝑝 𝑥 𝜃 by iterating:

𝑄 𝜃′, 𝜃6 = 𝐸3∼7(3∣8!)[log 𝑝 𝑥, 𝑧 𝜃′ ]
𝜃69: = argmax8;𝑄(𝜃′, 𝜃6)

equivalently, 
ELBO = log 𝑝 𝑥 𝜃 − 𝐾𝐿(𝑞 𝑧 𝑥 ||𝑝 𝑧, 𝑥𝜃 )

What’s the implication of the entropy term 𝐻5?



Another example of EM: Baum-Welch for HMMs
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Another example of EM: Mixture of Linear Experts
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Questions?


