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Reading: See course homepage




Logistics

* Next week:
« HW5 due March 18.
* Midterm exam March 20 in-class.
* Study guide released.
* Looking ahead:
* Project midway report due April 11.
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Project Proposals

Dynamically Pruning PGMs Inferred from
an LLM

Modeling Mental and Physical Health
with PGMs

Use PGMs to Intelligently Route LLM
Queries

Predicting Wildfire Occurrence using
Bayesian Networks

Contextualized PGMs for Cancer
Genomic Analysis

Optimizing Variable Elimination in PGMs

Discovering Macroeconomic Factors of
Stock Market with BNs
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HMM-Based Offline Handwriting
Recognition

PGMs for Social Network Analysis

Time-varying Co-occurrence networks with
Graph Networks

Integrating Multi-source Medical Data

Simulating Stock Market Trajectories with
Diffusion-based PGMs

Hybrid PGMs and DL for Robust Deepfake
Detection

Reducing Dimensionality of Cancer
Genomic PGMs




Today

e Variational Inference
« Mean-field variational inference
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Variational Inference
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A Brief Recap of our Roadmap
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A Brief Recap of our Roadmap

Local Structure <——— Prior Knowledge

Graphs -
Lectures 4,5

Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation . 5 Inference
MLE / MAP - Lecture 2 Exact - Lecture 6
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A Brief Recap of our Roadmap

Architecture Design,
Lectures 16-23

Local Structure <——— Prior Knowledge

Struct L ) Graphs -
ructure Learning - Lectures 4.5
Lectures 10, 11 ! ’

Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation 5 Inference

> > Ps(-
MLE / MAP - Lecture 2 Exact - Lecture 6 9( )
Learning on Graphs ) Approximate — Lectures 13-14
Lectures7-9, 12-13
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Motivation for Variational Inference (VI)

* We can’'t compute the posterior for many interesting models.
* Consider the Bayesian mixture of Gaussians

1. Draw i o N(0,7°%)Hor k = 1 ... K.
2. Fori=1...n:

(a) Draw z; ~ Mult(n);
(b) Draw z; ~ N (u,,,0?).
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Motivation for Variational Inference (VI)

 For the Bayesian mixture of Gaussians, the posterior distribution

> Hlfy{zl p(p) H?:l p(zi)p(z; | zis p1:x)

f#l:K Zzl:n Hf:l p(#k) H?:l p(zi)p(xi | iy /»‘fl:K) .
\

Hard to compute!

* Let's try to compute it. First, we can take advantage of the
conditional independence of the z_i 's given the cluster centers,

P(Z1n) = / HP(.Uk) HZP(Zz)p(SEz | 2i, p1:kc).-

H1:K =1 =1 %

\

KAn terms!

p(l-l'l:Ka R1:n | xl:n) —
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Variational Inference
* The main idea behind variational methods is to pick a family of
distributions over the latent variables with its own variational
parameters,

q(zlzm | V)-
* Then, find the setting of the parameters that makes g close to
the posterior of interest.

» Use g with the fitted parameters as a proxy for the posterior,
e.g., to form predictions about future data or to investigate the
posterior distribution of the hidden variables




Variational Inference

palx) |

" KL(q(zv*) || p(z] %))

VI solves inference with optimization.




Recall EM and the ELBO

logp(x | 0) = E;qllogp(x,z16)]+H(q) + KL(q(z | x) Il p(z | x,0))
EM: Letq;(z | x) =p(z | x,60;). Variational Inference: Let g(z | x ) be
Max p(x | 8) by iterating: some family that’s easier to optimize.
/ !/ 1 8 2 EZ~ l ) 8 + H
Q(0',0,) = Ez~p(z|9t)[logp(x,z 1 6')] ogp(x | 6) : qllogp(x,z 1 6)] (Q)’

|

0., = aremax g’ 0
t+1 & 6:Q( t) “ELBO”: Evidence Lower Bound

equivalently,

ELBO = logp(x |1 6) —KL(q(z | x)||p(z, x0))

Can we optimize g to maximize the ELBO?




Variational Inference

logp(x | 8) = E;q[logp(x,z | 6)] + H(q)
\ J

Y
“ELBO”: Evidence Lower Bound

* We choose a family of variational distributions (i.e., a
parameterization of a distribution of the latent variables) such
that the expectations are computable.

* Then, we maximize the ELBO to find the parameters that gives
as tight a bound as possible on the marginal probability of x.

Is ELBO convex? How to pick g?




Mean-Field VI
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Mean-field VI

* In mean field variational inference, we assume that the
variational family factorizes

m

q(21, -+ 2m) = H q(2;)-

* Each variable is independent. (We are suppressing the
parametersvj.)

* This is more general that it initially appears—the hidden variables
can be grouped and the distribution of each group factorizes.

Does this family include the true posterior for the
Guassian mixture model?




Optimizing the ELBO for a factorized distribution

* We will use coordinate ascent inference, interatively optimizing
each variational distribution holding the others fixed.

* First, decompose the joint
m
P(lem,icm = CU1n H Zg |Z1:(j—1),$1:n)

* Notice that the z variables can occur in any order in this chain.
The indexing from 1to mis arbitrary. (This will be important later.)

* Second, decompose the entropy of the variational distribution,

Eflog q(z1.m)] = Y _ E;llog q(2))],
* where Ej denotes an expectatlonlwrch respect to q(z_)).




Optimizing the ELBO for a factorized distribution

* This makes the ELBO:

L =logp(r1n) + Z Bllog p(z; | 21:(j-1), T1:m)] — Ej[log q(2;)].

7=1

* Consider the ELBO as a function of q(z).
* This leads to the objective function

L = E[log p(zx | z—k, )] — E;[log q(2x)] 4 const.




Optimizing the ELBO for a factorized distribution

L = Ellog p(zx | z2—k, )| — E;|log q(zx)| + const.
 As a function of g_k:

Lp = /q(zk)E_k[logp(zk|z_k,x)]dzk — /q(zk) log q(2zx)dzg.

* Optimize:
dLl;

dq (Zk

) = E_[logp(2k | z—x, z)] —logq(2r) =1 =0

q*(2x) o< exp{E_g[log p(zx, Z_k, )]}




Optimizing the ELBO for a factorized distribution

* Bottom line:
* The coordinate ascent algorithm is to iteratively update each q(zk).

« The ELBO converges to a local maximum.
« Use the resulting qis as a proxy for the true posterior.




Example: Multinomial conditionals

q*(zx) o< exp{E_g[log p(zx, Z_k, )]}

— Suppose the conditional is multinomial
p(zj | R—jy xl:n) = 7T(Z_j, :El:n)
— Then the optimal ¢(z,) is also a multinomial,

q"(2;) oc exp{E[logm(z;, z)|}




Example: Exponential Family Conditionals

q*(zx) o< exp{E_g[log p(zx, Z_k, )]}

Suppose each conditional is in the exponential family
(2| 2—, ) = h(z;) exp{n(z_;, =) " t(2;) — a(n(z_;, z))}

Then
q*(2;) o< h(z;) exp{E[n(z_j, )] ' t(2;)}

and the normalizing constant is a(E[n(z_;,x)]).

Optimal g is in the same family as the conditional.




Example: Exponential Family Conditionals

[
Coordinate ascent algorithm

— Give each hidden variable a variational parameter v;, and put each one in the
same exponential family as its model conditional,

q(z1:m | V) = quJ|VJ

The coordinate ascent algorithm 1terat1vely sets each natural variational parameter
v; equal to the expectation of the natural conditional parameter for variable z;
given all the other variables and the observations,

— Eln(z_, ).




Example: Bayesian Mixture of Gaussians

q*(z; = k) o< exp{log my + z;E[us] — E[u:]/2}.

po/ap + Y iy El2f]z;
1/05 4+ > i El2f]
1/(1/05 + > B[2F]).

Elpr] =

Var(ux)




Example: Variational Autoencoder

encode = decode >
Inference Generative

Reconstructed
Image

) 2

nput hidden o
0
g (2|z) By el
T 5 '% .9 i
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Lé?ént
Distribution
https://theaisummer.com/Autoencoder/



https://theaisummer.com/Autoencoder/

Example: Latent Dirichlet Allocation

]
ipoF] Latent dirichlet allocation

DM Blei, AY Ng, Ml Jordan - Journal of machine Learning research, 2003 - jmlr.org

We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections
of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in ...

¢ Save DY Cite Cited by 56217 Related articles 99
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latent-dirichlet-allocation-lda-in-nlp-6cfa7825034e
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Questions?
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