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Today: CNNs
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1. What CNNs Can Do

2. Image Classification

3. Convolutional Neural Network Basics

4. Cross-Correlation vs Convolution

5. CNNs & Backpropagation

6. CNNs in PyTorch



CNNs for Image Classification



CNNs for Object Detection



CNNs for Object Segmentation
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Why images are hard

Do deep fully-connected nets solve this?



Full connectivity is a problem for large inputs
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• 3x200x200 images imply 120,000 weights per neuron in first hidden layer
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Convolutional Neural Networks [LeCun 1989]
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• Let’s share parameters.

• Instead of learning position-specific weights, learn weights 
defined for relative positions
• Learn “filters” that are reused across the image

• Generalize across spatial translation of input

• Key idea:
• Replace matrix multiplication in neural networks with a convolution

• Later, we will see that this can work for any graph-
structured data, not just images.



Weight sharing in kernels
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Reused weights (small)!



Alternative visualization of kernels
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A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

A feature detector that works well in one region may also work well in another region
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Kernels for each channel

Ben Lengerich © University of Wisconsin-Madison 2025



Convolutional Neural Networks [LeCun 1989]
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Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of 
IEEE, 86(11):2278–2324, 1998.



Convolutional Neural Networks [LeCun 1989]
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Each "bunch" of feature maps represents one hidden layer in the neural network. 

Counting the FC layers, this network has 5 layers



Convolutional Neural Networks [LeCun 1989]
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“Pooling”: lossy compression
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Main ideas of CNNs

• Sparse-connectivity: A single element in the feature map is connected 
to only a small patch of pixels. (This is very different from connecting 
to the whole input image, in the case of multi-layer perceptrons.)

• Parameter-sharing: The same weights are used for different patches of 
the input image.

• Many layers: Combining extracted local patterns to global patterns
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Convolution: Adding two random variables
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• Let X ∼ 𝑃𝑋, 𝑌 ∼ 𝑃𝑌 be independent RVs. What’s 𝐸 𝑋 + 𝐸 𝑌 ?

• What’s 𝑃(𝑋 + 𝑌 = 𝑧)?

𝑃 𝑋 + 𝑌 = 𝑧 = න𝑃 𝑋 = 𝑥, 𝑌 = 𝑧 − 𝑥 𝑑𝑥

= න𝑃𝑋 𝑋 = 𝑥)𝑃𝑌(𝑌 = 𝑧 − 𝑥 𝑑𝑥

= න𝑃𝑋 𝑥 𝑃𝑌 𝑧 − 𝑥 𝑑𝑥

• This is known as a convolution of 𝑃𝑋 and PY:
(𝑃𝑋 ∗ 𝑃𝑌) 𝑧 = ∫ 𝑃𝑋 𝑥 𝑃𝑌 𝑧 − 𝑥 𝑑𝑥



Convolution: Adding two random variables
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• Let X ∼ 𝑃𝑋, 𝑌 ∼ 𝑃𝑌 be indep. discrete RVs. What’s 𝐸 𝑋 + 𝐸 𝑌 ?

• What’s 𝑃(𝑋 + 𝑌 = 𝑧)?

• This is a convolution of 𝑃𝑋 and PY:

(𝑃𝑋 ∗ 𝑃𝑌) 𝑧 = ෍

𝑥

𝑃𝑋 𝑥 𝑃𝑌(𝑧 − 𝑥)

• More generally:
• Discrete:

𝑃𝑋+𝑌(𝑧) = ෍

𝑥

𝑃𝑋,𝑌 (𝑥, 𝑧 − 𝑥)

• Continuous:

𝑓𝑋+𝑌 𝑧 = ∫ 𝑓𝑋,𝑌 𝑥, 𝑧 − 𝑥 𝑑𝑥



Where’s the “Convolution” in CNNs?

• Kernel sliding over the activation window:
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Actually, this is a “cross-correlation”
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CNNs give sparse connectivity
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Receptive fields grow over depth
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Parameter sharing
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Impact of convolutions on size
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Padding
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Dumoulin, Vincent, and Francesco Visin. "A guide to 
convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).



Kernel dimensions and trainable parameters

What’s the output size for this 
28x28 image?



CNNs and Translation/Rotation/Scale Invariance

CNNs aren’t really invariant to translation/rotation/scale:



Convolutional Neural Networks [LeCun 1989]
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Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an 
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025



Recall: Weight sharing in computation graphs
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Backpropagation in CNNs
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CNNs in PyTorch

https://github.com/rasbt/stat453-deep-learning-

ss20/tree/master/L12-cnns/code
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Convolutions on non-image data?
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Graph Convolutional Networks
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[Kipf 2016]

https://tkipf.github.io/graph-convolutional-networks/


.

Questions?
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