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CNNs for Image Classification
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Image Source: https://www.pinterest.com/pin/
244742560974520446




CNNs for Object Detection
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Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 779-788).




CNNs for Object Segmentation

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask R-CNN." In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2961-2969. 2017.
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Why images are hard

Different lighting, contrast, viewpoints, etc.

Image Source: Image Source: https://www.123rf.com/
twitter.com%2Fcats&psig=AOvVaw30_o-PCM- photo_76714328_side-view-of-tabby-cat-face-over-
K21DIMAJQimQ4&ust=1553887775741551 white.html

Or even simple translation

2 5.' ; Do deep fully-connected nets solve this?
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Full connectivity is a problem for large inputs

input layer
hidden layer 1 hidden layer 2

* 3x200x200 images imply 120,000 weights per neuron in first hidden layer
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Convolutional Neural Networks [LeCun 1989]

* Let’s share parameters.

* |Instead of learning position-specific weights, learn weights
defined for relative positions
* Learn “filters” that are reused across the image
* Generalize across spatial translation of input

e Key idea:

e Replace matrix multiplication in neural networks with a convolution

* Later, we will see that this can work for any graph-
structured data, not just images.
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Weight sharing in kernels
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map
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The pixels are —::
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as "receptive field"
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"feature map”

A feature detector that works well in one region may also work well in another region
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Alternative visualization of kernels
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map
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Kernels for each channel |
— D o Z

54

Multiple "feature detectors'
(kernels) are used

to create multiple feature
maps
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Q: Do you see sparse
connectivity & weight
sharing?
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Convolutional Neural Networks [LeCun 1989]
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Fig. 2. Architecture of LeNet-5, a Contlutional Neural Network
whose weights are constrained to be idefigal.

tre for digits recognition. EachNglane is a featyfe map, i.e. a set of units

"Automatic feature extractor" "Regular classifier"

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of
IEEE, 86(11):2278-2324, 1998.
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Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER 1998 7

' f. maps 16@5x5
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Fig. 2. Architecture of LeNet-5, a pfolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained t& be identical.

Each "bunch" of feature maps represents one hidden layer in the neural network.

Counting the FC layers, this network has 5 layers
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Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER 1998 Size of the resulting lavers
— Number of feature detectors P g'ay

C3:f. maps 16@10x10

14 feature maps S4: f. maps 16@5x5 I-
INPUT o P Multi-layer perceptron
32x32 S2: f. maps “laver OUTPUT
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Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architgctlire of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)
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“Pooling”: lossy compression

Sebastian Raschka, Vahid Mirjalili. Python Machine

Pooling (P,,.)
e 7 N

2 | 1 7‘*\1\_\2 S Max-pooling Mean-pooling
51013 "

11718 3.78|(2.33
(032 3 |[1.22
6|25

31610

No-te: Learning. 3rd Edition. Birmingham, UK: Packt
) ¥ stride=(3, 3) Publishing, 2019. ISBN: 978-1789955750
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Main ideas of CNNs

* Sparse-connectivity: A single element in the feature map is connected
to only a small patch of pixels. (This is very different from connecting
to the whole input image, in the case of multi-layer perceptrons.)

 Parameter-sharing: The same weights are used for different patches of
the input image.

 Many layers: Combining extracted local patterns to global patterns
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Convolution: Adding two random variables

* Let X ~ Py,Y ~ P, be independent RVs. What’s E|X] + E[Y]?
* What's P(X +Y = z)?
PIX +Y = 7) =jP(X=x,Y=z—x)dx

— _[PX(X = x)Py(Y =z —x)dx

_ j P. ()P, (z — x)dx

* This is known as a convolution of Py and Py:
(Py * Py)(2) = | Px(x)Py(z — x)dx
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Convolution: Adding two random variables

* Let X ~ Py,Y ~ P, be indep. discrete RVs. What’s E[X] + E[Y]?
* What's P(X +Y = z)?
* This is a convolution of Py and Py:

(Pe+ P)(2) = ) Py(0) Py(z = )

* More generally:
* Discrete:

Peoy(2) = ) Py (62— )

e Continuous:

fx+v(2) = ffx,y(x;Z — x)dx

Ben Lengerich © University of Wisconsin-Madison 2025



Where’s the “Convolution” in CNNs?

e Kernel sliding over the activation window:

k k
Zli, 7] = Z Z Klu,v|Ali — u,j — v]
u=—k v=—k
Zli,jl=K = A
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Actually, this is a “cross-correlation”

]
k

k
Cross-Correlation: Zli.jl= >

Z Klu,v]Ali + u,j + v]

Zli,jl=K®A

k k
Convolution: Z[i,j]l= Y Y Klu,v]Ali —u,j — ]
u=—kv=—k

Zli,j]=K=* A 9) 8) 7)

1,-1| -1,0 | -1,1
Basically, we are flipping the kernel (or the 6) 5) 4
receptive field) horizontally and vertically )

0,-1 0,0 0,1
3) 2) 1)

1-1 | 1,0 | 1,1
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CNNs give sparse connectivity

Sparse
connections
due to small
convolution

kernel

Dense
connections

(Gioodhaliow 2016
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Receptive fields grow over depth

Figure 9.4 (oot 2016
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Parameter sharing
Convolution .
shares the same

parameters
across all spatial
locations

Traditional
matrix
multiplication

does not share @
any parameters

(-
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F|g ure g 5 (Goadislicw 2016)
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Impact of convolutions on size

Feature map size: nout width kernel width
/ padding
W K 2P
0 — R
/ S
output width stride
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Padding Siftpu

input

No padding, stride=1

padding=2, stride=1

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

No padding, stride=2
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Kernel dimensions and trainable parameters

]
5

For a grayscale image with a

5x5 feature detector (kernel),
we have the following dimensions

15 -

20

25

N (number of parameters to learn)
a.shape
(1, 28, 28)
inport toreh What's the output size for this
T T Ot Channets=s, 28x28 image?

kernel_size=(5, 5),
stride=(1, 1))

conv.weight.size()

torch.Size([8, 1, 5, 5])

conv.bias.size()

torch.Size([8])




CNNs and Translation/Rotation/Scale Invariance

CNNs aren’t really invariant to translation/rotation/scale:

The activations are still
dependent on the location,
etc.




Convolutional Neural Networks [LeCun 1989]
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Fig. 2. Architgctlire of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)
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Backpropagation in CNNs

* Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint
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Recall: Weight sharing in computation graphs

—
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Backpropagation in CNNs

* Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Due to weight sharing: w; = ws

gEES =01
20 =S ___——_‘w2?_._|
6 5 W 15 2 % Optional averaging
| . s
weight update: 1/ 0, oL
w1y =W =W — N
1= W =W (8w1 8w2)
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CNNs in PyTorch
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https://qithub.com/rasbt/stat453-deep-learning-
ss20/tree/master/L12-cnns/code

class LeNet5(nn.Module):

def

def

__init__(self, num_classes, grayscale=False):

super(LeNet5, self).__init_ ()

self.grayscale = grayscale
self.num_classes = num_classes

if self.grayscale:
in_channels = 1
else:

in_channels = 3

self.features = nn.Sequential(
nn.Conv2d(in_channels, 6, kernel_size=5),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(6, 16, kernel_size=5),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2)

)

self.classifier = nn.Sequential(
nn.Linear(16%5%5, 120),
nn.Tanh(),
nn.Linear(120, 84),
nn.Tanh(),
nn.Linear(84, num_classes),

)

forward(self, x):

x = self.features(x)

x = torch.flatten(x, 1)

logits = self.classifier(x)
probas = F.softmax(logits, dim=1)
return logits, probas



https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
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https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
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https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code

Convolutions on non-image data?
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Graph Convolutional Networks

Hidden layer

Hidden layer
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[Kipf 2016]
o



https://tkipf.github.io/graph-convolutional-networks/

Questions?
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