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Logistics
* Next week:
 HWS5 due Tuesday, March 18.
« Midterm exam Thursday, March 20 in-class.
* Study guide released.
* Looking ahead:

* Project midway report due April 11.
« Updated expectations on course website.
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Today

» Approximate Inference, Monte Carlo Methods
* Markov Chain Monte Carlo

* Metropolis-Hastings
« Gibbs Sampling
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Approximate Inference
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A Brief Recap of our Roadmap
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A Brief Recap of our Roadmap

Architecture Design,
Lectures 16-23

Local Structure <——— Prior Knowledge

Struct L ) Graphs -
ructure Learning - Lectures 4.5
Lectures 10, 11 ! ’

Parametric Family Py Regularizer / Prior

Disc / Gen Models -
Lecture 3

Probability Distribution Observations

Estimation 5 Inference

> > Ps(-
MLE / MAP - Lecture 2 Exact - Lecture 6 9( )
Learning on Graphs ) Approximate — Lectures 13-14
Lectures7-9, 12-13
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Inference

e Inference

* How do | answer questions/queries according to my model and/or based
on observed data?

e.g. Py (X;|D)

* We have seen exact inference:
* Py, (X;|D) is factorized according to graph structure
« Computational difficulty can be changed by variable elimination order

What should we do if Py, (X;|D) is a very complicated distribution?
- Approximate inference
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Approximate Inference

e Variational Inference
* Mean-field: Replace Py, (X;|D) with:

max exp(Eqpllog P(X,Z|D)] — E ¢ [log q(Z)])

p(z|x)

" KL(g(z:v*) || p@z|x)

What should we do if the approximation class g is too far
from the actual p?

- Monte Carlo methods

Ben Lengerich © University of Wisconsin-Madison 2025



Monte Carlo Methods
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How to define a distribution?

* Parametric family with specific parameter values.
 Collection of samples
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Monte Carlo methods: define dist by samples

* Draw random samples from desired distribution
* Yield a stochastic representation of desired distribution

|m|

- Asymptotically exact

 Challenges:
* How to draw samples from desired distribution?
* How to know we've sampled enough?
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Why “Monte Carlo™?

 Stanislaw Ulam
* Manhattan Project
* Inspired by his uncle’s gambling habits

Monte Carlo casino from “"Goldeneye”
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How to draw samples from a distribution?

* Suppose we have a generator function g(-) that gives us
samples from Uniform(0, 1)

* How do we generate samples from Bernoulli(8)?
* Drawxfromg(:).lfx>1—-6 =1, else 0.

» How do we generate samples from N(u, 62)?
* Precompute k bins such that each bin has the same AUC.

* Draw x from g(:). Map x to a bin.
* Drawy from g(+). Scale y to the width of chosen bin and outputy.
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Monte Carlo Methods

* Direct sampling

* Rejection sampling

* Likelihood weighting

* Markov chain Monte Carlo (MCMC)
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Rejection Sampling

* Instead of sampling from P(X), sample x* from Q(X) and accept
sample with probability:

Mpé’((xl), where M is some constant such that P(x) < MQ(x) V x

» Works with un-normalized P(X), too.

* Paccept(X*) —
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Unnormalized Importance Sampling

* Instead of hard rejecting samples we can just reweight them:
Eplf(X)] = jP(x)f(X)dx - [ P )Q(x)f(X)dx = Eq (X)]

x Q(x)
* Approximate with empirical:
1
EplfCOI == > flew(x)
i=1,..n

Q (X)

where x; ~ Q and w; = gg%

What characteristic do we need for this to work?
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Normalized Importance Sampling
* Instead of needing access to the normalized probability
distribution P, we can also perform importance sampling with an
un-normalized P = aP by normalizing the weights according to

the sample:
o 7 =
' 2 Wi
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Weighted resampling

* Problem of importance sampling:
* Performance depends on how well Q matches P.

 If P(x)f(x) is strongly varying and has a significant proportion of its mass
concentrated in a small region, ratio will be dominated by a few samples.

 Solution: use a heavy-tailed Q and weighted resampling.
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Limitations of “simple” Monte Carlo

» Hard to get rare events in high-dimensional spaces
* We need a good proposal Q(x) that is not very different than P(x)

* What if we had an adaptive proposal Q(x)?
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Markov Chain Monte Carlo (MCMC)
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Markov Chain Monte Carlo

MCMC algorithms feature adaptive proposals

* Instead of Q(x’) use Q(x’|x) where x’ is the new state being sampled and x is the
previous sample

* As x changes Q(x’|x) can also change

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x’|x)

Q(x)
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Metropolis-Hastings
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MCMC: Metropolis-Hastings

* Draw a sample x’ from Q(x’ |x) where x is the previous sample
 The new sample x’ is accepted or rejected with some probability A(x’ | x)

* Acceptance prob: A(x'|x)= min(l. Px)O(x X‘)]

- P(x)Q(x'| x)

e A(x"|x) is like a ration of importance sampling weights
e P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance
weight for x
* We divide the importance weight for x’ by that of x
* Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x)

* A(x"|x) ensures that after sufficiently many draws, our samples come
from the true distribution.
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MCMC: Metropolis-Hastings

1. Initialize starting state x{%), set t =0

2. Burn-in: while samples have “not converged”
o Xx=x) \
o t=t+1,
e sample x* ~ Q(x*|x) // draw from proposal
e sample u~ Uniform(0,1) // draw acceptance threshold

: ; P(x*)Q0(x | x*) Function
- |f U< A(x* | X) =min ], P(x)Q(x* I x) Draw Sample (x(t))
x) = x* // transition
- else
x) = x // stay in current state )
e Take samples from P(x) = : Reset t=0, for t =1:N

e x(t+1) € Draw sample (x(t))
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MCMC: Metropolis-Hastings example

* We are trying to sample from a bimodal P(x)
* Let Q(X'|x) be a Gaussian centered on x

Initialize x©

A(x'| x) :min(

 PGHO(x | x')
' P()Q(x'| %)

|
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MCMC: Metropolis-Hastings example

* We are trying to sample from a bimodal P(x)
* Let Q(X'|x) be a Gaussian centered on x

Initialize x®
Draw, accept x’
Draw, accept x*

P(x)

Q(x?|x")
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A(x'| x) :min(

 PGHO(x | x')
' P()Q(x'| %)

|




MCMC: Metropolis-Hastings example

* We are trying to sample from a bimodal P(x)
* Let Q(X'|x) be a Gaussian centered on x

Initialize x(©

Draw, accept x’

Draw, accept x? P(x)
Draw but reject; set x3=x?

° o
x! x0 x? x (rejected)
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A(x'| x) :min(

 PGHO(x | x')
' P()Q(x'| %)
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MCMC: Metropolis-Hastings example

* We are trying to sample from a bimodal P(x)
* Let Q(X'|x) be a Gaussian centered on x

We reject because P(x')/Q(x’|x?) < 1 and
Initialize x(% P(x2)/Q(x2[x") > 1, hence A(x'|x?) is close to zero!
Draw, accept x’

Draw, accept x?

Draw but reject; set x3=x?

P(x)

Q(*x?)

@ ® .. @
x! x° xi X' (rejected)
X
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A(x'| x) :min(

 PGHO(x | x')
' P()Q(x'| %)
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, P(x')Q(XIX')]

A(x'| x) = min( .
P(x)Q(x'| x)

MCMC: Metropolis-Hastings example

* We are trying to sample from a bimodal P(x)
* Let Q(X'|x) be a Gaussian centered on x

Initialize x(©

Draw, accept x’

Draw, accept x?

Draw but reject; set x3=x2
Draw, accept x*

Draw, accept x°

Q(x3]x?)
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, P(x')Q(XIX')]

A(x'| x) = min( .
P(x)Q(x'| x)

MCMC: Metropolis-Hastings example

* We are trying to sample from a bimodal P(x)
* Let Q(X'|x) be a Gaussian centered on x

The adaptive proposal Q(x'|x) allows
Initialize x'* us to sample both modes of P(x)!
Draw, accept x’

Draw, accept x?

Draw but reject; set x3=x2
Draw, accept x*

Draw, accept x°

Q(x3)x2)
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MCMC: Some theory

* The MH algorithm has a burn-in period
* |nitial samples are not truly from P

 Why are the MH samples guaranteed to be from P(x)?

* The proposal Q(x’|x) keeps changing with the value of x; how do we know the
samples will eventually come from P(x)?

* Why Markov Chain?
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MCMC: Some theory

e Stationary distributions are of great importance in MCMC. Some
notions

* Irreducible: an MC is irreducible if you can get from any state x to any other
state x” with probability x > 0 in a finite number of steps

e Aperiodic: an MC is aperiodic if you can return to any state x at any time
 Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

* Ergodicity is important: it implies you can reach the stationary
distribution no matter the initial distribution.
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MCMC: Some theory

* Reversible (detailed balance): an MC is reversible if there exists a
distribution mt(x) such that the detailed balance condition holds

(X (x| x")=#7(x)T(x'| x)

* Reversible MCs always have a stationary distribution

a(xY(x|x")=m(x)T(x'| x)
Z(ﬂ(x')f(x x") :ZI’T(X)T(X' x)
n(x')z_\_ T(x|x)= ZI x(x)T(x'| x)

7(xN)=) m(x)T(x'|x)
2.

e The last line is the definition of a stationary distribution!
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Why does Metropolis-Hastings work?

* We draw a sample x’ according to Q(x’|x) and then accept/reject
according to A(x’|x). Hence the transition kernel is:

T(x'| x) = O(x'| X) A(x' )

* We can prove that MH satisfies detailed balance.

o Recall that S =5 /M
A(x'| x) = min(l, Al )Q(x'! . Q(x")
P(x)Q(x | x) ), \Q(x,x’)
| Q(x)
P(x)Q(x,x)Q(x)  Px)Q(x)
P(x)Q(x,x")Q(x") P(x)Q(x")
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Why does Metropolis-Hastings work?

* Since MH satisfies detailed balance:

 The MH algorithm leads to a stationary distribution P(x)
* We defined P(x) to be the true distribution of x
* Thus, MH eventually converges to the true distribution
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Gibbs Sampling

* Gibbs Sampling is an MCMC algorithm that samples each random
variable of a graphical model, one at a time

* GS is fairly easy to derive for many graphical models

* GS has reasonable computation and memory requirements (because we
sample one r.v. at a time)
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Gibbs Sampling

Suppose the graphical model contains variables x,,...,X,
2. Initialize starting values for x.,... X,
3. Do until convergence:
Pick an ordering of the n variables (can be fixed or random)

For each vanable Xx; in order:

1. Sample xfrom P(x; | x,, ..., X1, Xis1, ---, %), 1. the conditional distribution of x, given
the current values of all other variables

2. Update x; +— X
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Questions?
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