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Logistics
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• Next week:
• HW5 due Tuesday, March 18.
• Midterm exam Thursday, March 20 in-class.

• Study guide released.
• Looking ahead:

• Project midway report due April 11.
• Updated expectations on course website.



Today
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• Approximate Inference, Monte Carlo Methods
• Markov Chain Monte Carlo

• Metropolis-Hastings
• Gibbs Sampling



Approximate Inference



A Brief Recap of our Roadmap
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Inference
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• Inference
• How do I answer questions/queries according to my model and/or based 

on observed data?

e.g. 𝑃! 𝑋" 𝐷)

What should we do if 𝑃! 𝑋" 𝐷) is a very complicated distribution?
à Approximate inference

• We have seen exact inference:
• 𝑃! 𝑋" 𝐷) is factorized according to graph structure
• Computational difficulty can be changed by variable elimination order



Approximate Inference

Ben Lengerich © University of Wisconsin-Madison 2025

• Variational Inference
• Mean-field: Replace 𝑃! 𝑋" 𝐷 with:

max
#
exp 𝐸# $ log 𝑃 𝑋, 𝑍 𝐷 − 𝐸# $ log 𝑞 𝑍

What should we do if the approximation class q is too far 
from the actual p?
à Monte Carlo methods



Monte Carlo Methods



How to define a distribution?
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• Parametric family with specific parameter values.
• Collection of samples



Monte Carlo methods: define dist by samples

Ben Lengerich © University of Wisconsin-Madison 2025

• Draw random samples from desired distribution
• Yield a stochastic representation of desired distribution

• Asymptotically exact
• Challenges:
• How to draw samples from desired distribution?
• How to know we’ve sampled enough?

• 𝐸% 𝑓 𝑥 = ∑( ' ((
)



Why “Monte Carlo”?
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• Stanislaw Ulam
• Manhattan Project
• Inspired by his uncle’s gambling habits

Monte Carlo casino from ”Goldeneye”



How to draw samples from a distribution?
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• Suppose we have a generator function 𝑔(⋅) that gives us 
samples from Uniform(0, 1)
• How do we generate samples from Bernoulli(𝜃)?

• How do we generate samples from 𝑁(𝜇, 𝜎#)?
• Precompute k bins such that each bin has the same AUC.
• Draw x from 𝑔(⋅). Map x to a bin.
• Draw y from 𝑔(⋅). Scale y to the width of chosen bin and output y.

• Draw x from 𝑔(⋅). If x > 1 − 𝜃 ⇒ 1, else 0.



Monte Carlo Methods
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• Direct sampling
• Rejection sampling
• Likelihood weighting
• Markov chain Monte Carlo (MCMC)



Rejection Sampling
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• Instead of sampling from 𝑃(𝑋), sample 𝑥∗ from 𝑄(𝑋) and accept 
sample with probability:
• 𝑃#$$%&' 𝑥∗ = )(+∗)

!-(.∗)
, where 𝑀 is some constant such that 𝑃 𝑥 ≤ 𝑀𝑄 𝑥 ∀ 𝑥

• Works with un-normalized 𝑃(𝑋), too.



Unnormalized Importance Sampling
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• Instead of hard rejecting samples, we can just reweight them:

𝐸% 𝑓 𝑋 = ;
&
𝑃 𝑥 𝑓(𝑥)𝑑𝑥 = ;

&

𝑃 𝑥
𝑄 𝑥

𝑄 𝑥 𝑓(𝑥)𝑑𝑥 = 𝐸'
𝑃 𝑥
𝑄 𝑥

𝑓(𝑥)

• Approximate with empirical:

𝐸% 𝑓 𝑋 ≈
1
𝑛

?
"(),…,,

𝑓 𝑥" 𝑤 𝑥"

where 𝑥" ∼ 𝑄 and 𝑤" =
%(&')
'(&')

What characteristic do we need for this to work?



Normalized Importance Sampling
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• Instead of needing access to the normalized probability 
distribution P, we can also perform importance sampling with an 
un-normalized B𝑃 = 𝑎𝑃 by normalizing the weights according to 
the sample:

• D𝑤" =
/'
∑'/'



Weighted resampling
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• Problem of importance sampling:
• Performance depends on how well Q matches P. 
• If P(x)f(x) is strongly varying and has a significant proportion of its mass 

concentrated in a small region, ratio will be dominated by a few samples.

• Solution: use a heavy-tailed Q and weighted resampling.



Limitations of “simple” Monte Carlo
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• Hard to get rare events in high-dimensional spaces
• We need a good proposal Q(x) that is not very different than P(x)

• What if we had an adaptive proposal Q(x)?



Markov Chain Monte Carlo (MCMC)



Markov Chain Monte Carlo
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Metropolis-Hastings



MCMC: Metropolis-Hastings
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MCMC: Metropolis-Hastings
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MCMC: Metropolis-Hastings example
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• We are trying to sample from a bimodal P(x)
• Let Q(x’|x) be a Gaussian centered on x
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MCMC: Some theory
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MCMC: Some theory
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Why does Metropolis-Hastings work?
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𝑄 𝑥, 𝑥"

𝑄(𝑥")
𝑄 𝑥, 𝑥"

𝑄(𝑥)
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Why does Metropolis-Hastings work?
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• Since MH satisfies detailed balance:



Gibbs Sampling
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Gibbs Sampling

Ben Lengerich © University of Wisconsin-Madison 2025



Questions?


