

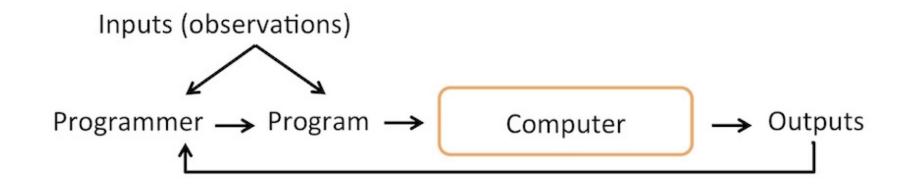
STAT 453: Introduction to Deep Learning and Generative Models

Ben Lengerich

Lecture 14: Review

October 20, 2025

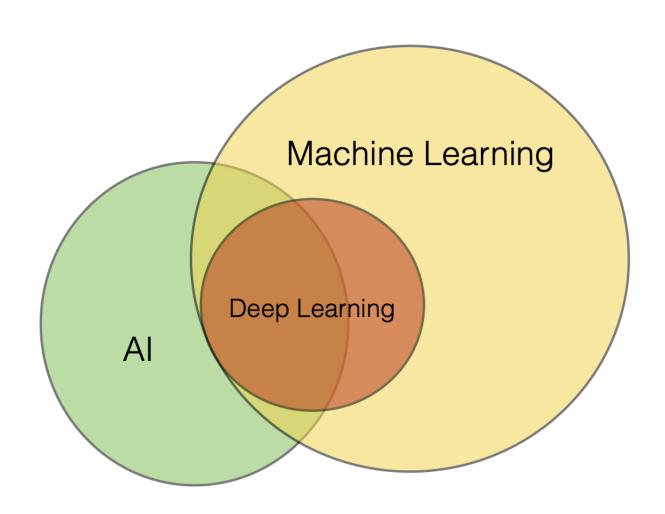
Course Schedule / Calendar


Week	Lecture Dates	Topic	Assignments				
Module 1: Introduction and Foundations							
1	9/3	Course Introduction					
2	9/8, 9/10	A Brief History of DL, Statistics / linear algebra / calculus review					
3	9/15, 9/17	Single-layer networks Parameter Optimization and Gradient Descent					
4	9/22, 9/24	Automatic differentiation with PyTorch, Cluster and cloud computing resources	HW 2				
	Module 2: Neural Networks						
5	9/29, 10/1	/1 Multinomial logistic regression, Multi-layer perceptrons and backpropagation					
6	10/6, 10/8	Regularization Normalization / Initialization	HW 3				
7	10/13, 10/15	Optimization, Learning Rates CNNs	Project Proposal				
8	10/20, 10/22	Review, Midterm Exam	In-class Exam				

Week	Lecture Dates	Topic	Assignments			
Module 3: Intro to Generative Models						
9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs				
10	11/3, 11/5	Generative Adversarial Networks, Diffusion Models	Project Midway Report			
Module 4: Large Language Models						
11	11/10, 11/12	Sequence Learning with RNNs Attention, Transformers	HW4			
12	11/17, 11/19	GPT Architectures, Unsupervised Training of LLMs				
13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning	HW5			
14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research				
15	12/8, 12/10	Project Presentations	Project Final Report			
16	12/17	Final Exam	Final Exam			

What is Machine Learning?

The Traditional Programming Paradigm



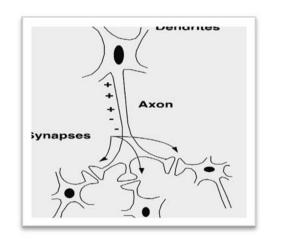
Machine Learning

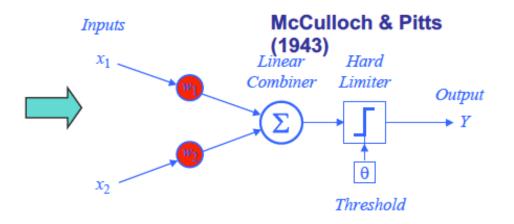
The Connection Between Fields

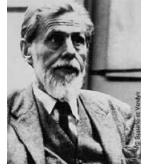
What is Machine Learning?

Formally, a computer program is said to **learn** from experience \mathcal{E} with respect to some task \mathcal{T} and performance measure \mathcal{P} if its **performance** at \mathcal{T} as measured by \mathcal{P} improves with \mathcal{E} .

Supervised Learning	> Labeled data> Direct feedback> Predict outcome/future	 Task <i>T</i>: Experience ε: Performance <i>P</i>: 	Learn a function $h\colon \mathcal{X} \to \mathcal{Y}$ Labeled samples $\{(\mathbf{x_i},\mathbf{y_i})\}_{i=1}^n$ A measure of how good h is
Unsupervised Learning	No labels/targetsNo feedbackFind hidden structure in data	• Task \mathcal{T} : • Experience \mathcal{E} : • Performance \mathcal{P} :	Discover structure in data $ \text{Unlabeled samples } \{x_i\}_{i=1}^n $ $ \text{Measure of fit or utility} $
Reinforcement Learning	Decision processReward systemLearn series of actions	• Task \mathcal{T} : • Experience \mathcal{E} : • Performance \mathcal{P} :	Learn a policy $\pi\colon S\to A$ Interaction with environment Expected reward

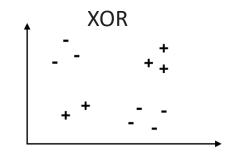

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

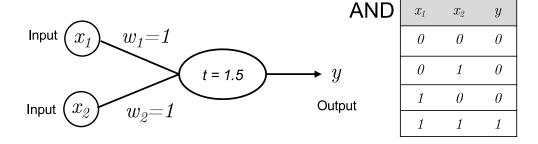


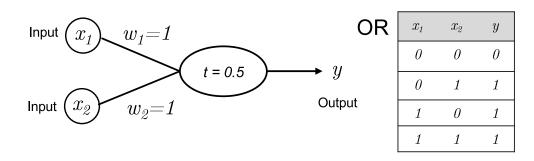

The building blocks of Deep Learning

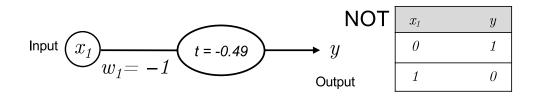
McCulloch & Pitt's neuron model (1943)

Warren McCulloch

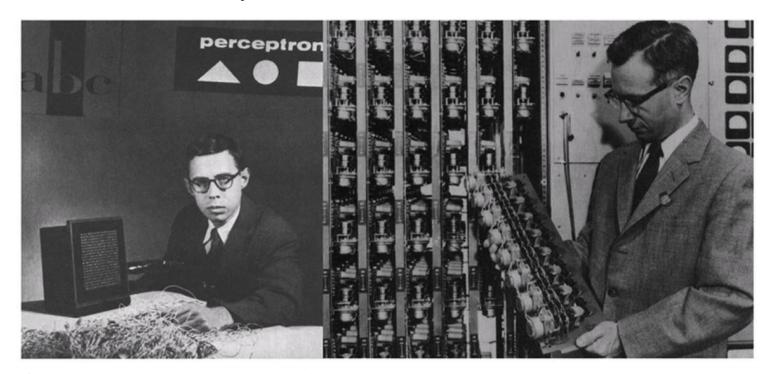



Walter Pitts



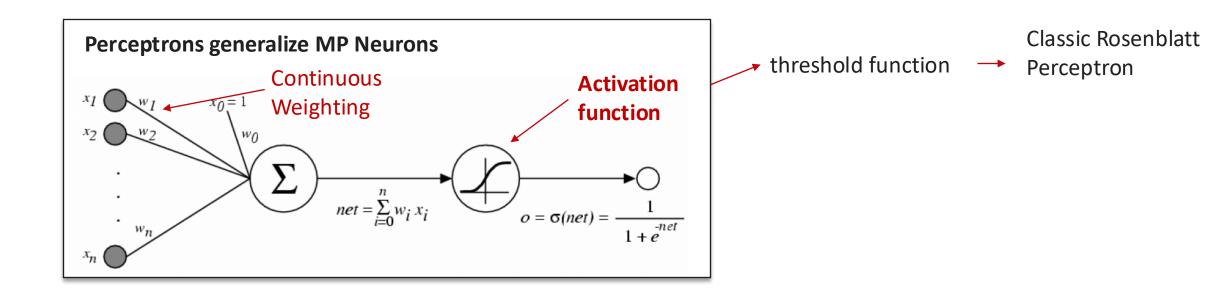

From biological neuron to artificial neuron

- McCulloch & Pitts neuron: Threshold and (+1, -1) weights
- Can represent "AND", "OR", "NOT"
- But not "XOR"

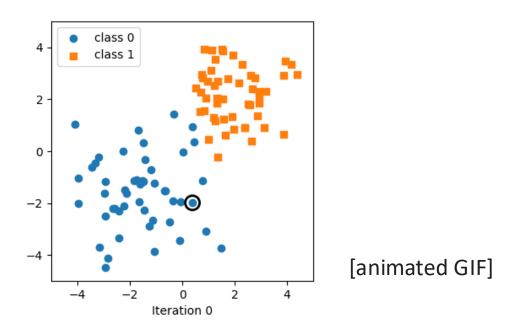


Rosenblatt's Perceptron

A learning rule for the computational/mathematical neuron model


Rosenblatt, F. (1957). *The perceptron, a perceiving and recognizing automaton. Project Para*. Cornell Aeronautical Laboratory.

Source: http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4/Rosen-2.jpg


Rosenblatt's Perceptron

Perceptron Learning Algorithm

- Assume binary classification task
- Perceptron finds decision boundary is classes are separable

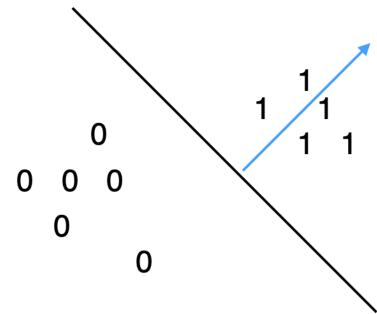
Code at https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Perceptron Learning Algorithm (pseudocode)

Let

$$\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, ..., \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n$$

- 1. Initialize $\mathbf{w} \coloneqq 0^m$ (assume weight incl. bias)
- 2. For every training epoch:
 - 1. For every $\langle x^{[i]}, y^{[i]} \rangle \in D$:


2.
$$err := (y^{[i]} - \hat{y}^{[i]})$$
 Only -1, 0, or 1

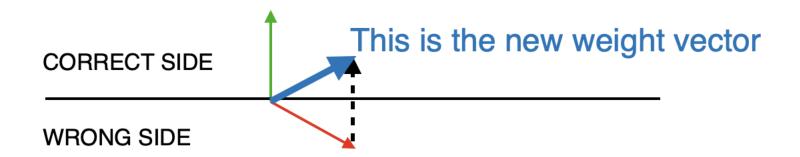
3.
$$\mathbf{w} \coloneqq \mathbf{w} + err \times \mathbf{x}^{[i]}$$

Perceptron Geometric Intuition

Weight vector is perpendicular to the boundary. Why?

Remember,

$$\hat{y} = \begin{cases} 0, \ \mathbf{w}^T \mathbf{x} \le 0 \\ 1, \ \mathbf{w}^T \mathbf{x} > 0 \end{cases}$$

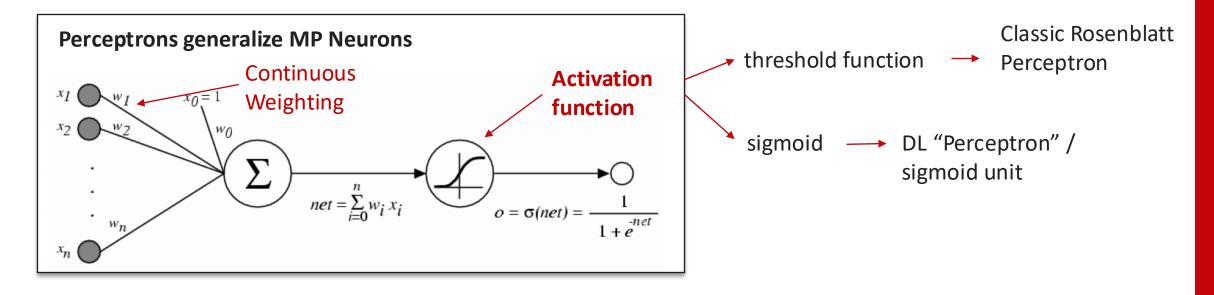

$$\mathbf{w}^T \mathbf{x} = ||\mathbf{w}|| \cdot ||\mathbf{x}|| \cdot \cos(\theta)$$

So this needs to be 0 at the boundary, and it is zero at 90°

Perceptron Geometric Intuition: Learning

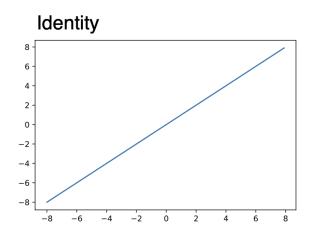
input vector for an example with label 1

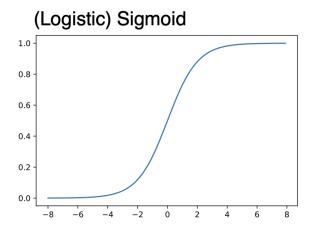
For this weight vector, we make a wrong prediction; hence, we update

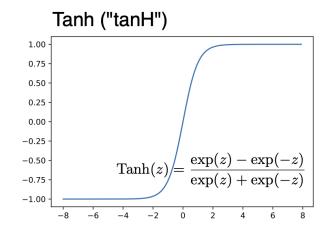


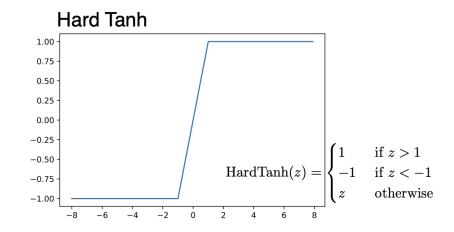
Perceptron Limitations

- Rosenblatt's Perceptron has many problems
 - Linear classifier, no non-linear boundaries
 - Binary classifier, cannot solve XOR problems
 - Does not converge if classes are not linearly separable
 - Many "optimal" solutions in terms of 0/1 loss on the training data
 - Most will not be optimal in terms of generalization performance

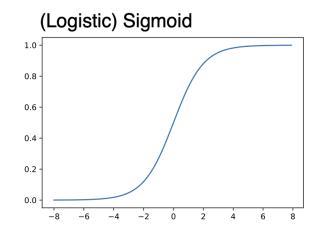

Beyond Rosenblatt's Perceptron



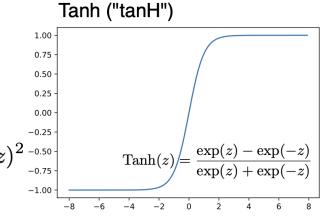

- Many activation functions:
 - Threshold function (perceptron, 1950+)
 - Sigmoid function (before 2000)
 - ReLU function (popular since CNNs)
 - Many variants of ReLU, e.g. leaky ReLU, GeLU



A Selection of Common Activation Functions



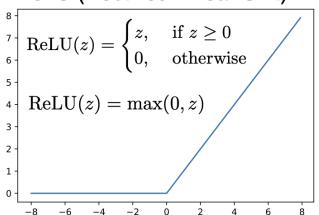
A Selection of Common Activation Functions


Advantages of Tanh

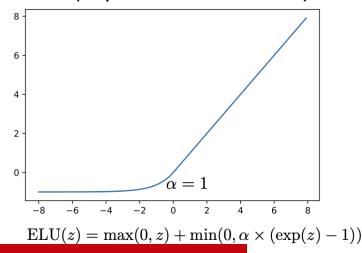
- Mean centering
- Positive and negative values
- Larger gradients

Also simple derivative:

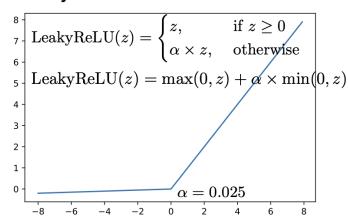
$$rac{d}{dz} Tanh(z) = 1 - Tanh(z)^{2 - 0.50} - 0.75 + 0.00$$



Important to normalize inputs to mean zero and use random weight initialization with avg. weight centered at zero



A Selection of Common Activation Functions (cont.)


ReLU (Rectified Linear Unit)

ELU (Exponential Linear Unit)

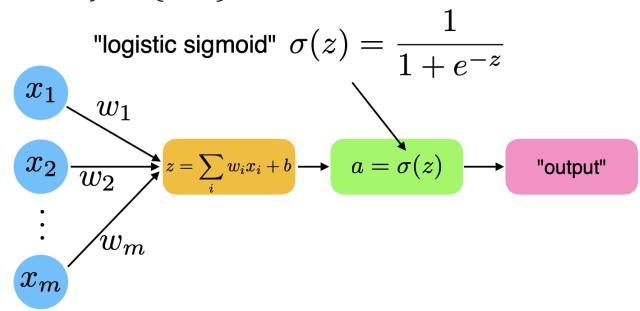
Leaky ReLU

PReLU (Parameterized Rectified Linear Unit)

here, alpha is a trainable parameter

$$PReLU(z) = \begin{cases} z, & \text{if } z \ge 0\\ \alpha z, & \text{otherwise} \end{cases}$$

$$PReLU(z) = \max(0, z) + \alpha \times \min(0, z)$$



Logistic Regression: A Bridge from Perceptron to Probabilistic Model

Logistic Regression Neuron

• For binary classes $y \in \{0, 1\}$

Logistic Regression

• Given the output:

$$h(\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$$

We compute the probability as

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{if } y = 1\\ 1 - h(\mathbf{x}) & \text{if } y = 0 \end{cases}$$

$$\downarrow$$

$$P(y|\mathbf{x}) = a^y (1 - a)^{(1-y)}$$

Recall Bernoulli distribution...

Logistic Regression: Estimation

Given the probability:

$$P(y|\mathbf{x}) = a^y (1-a)^{(1-y)}$$

• Under MLE estimation, we would like to maximize the multi-sample likelihood:

$$P(y^{[i]}, ..., y^{[n]} | \mathbf{x}^{[1]}, ..., \mathbf{x}^{[n]}) = \prod_{i=1}^{n} P(y^{[i]} | \mathbf{x}^{[i]})$$

$$= \prod_{i=1}^{n} \left(\sigma(z^{(i)}) \right)^{y^{(i)}} \left(1 - \sigma(z^{(i)}) \right)^{1 - y^{(i)}}$$

Likelihood

Logistic Regression: Estimation

$$P(y^{[i]}, ..., y^{[n]} | \mathbf{x}^{[1]}, ..., \mathbf{x}^{[n]}) = \prod_{i=1}^{n} \left(\sigma(z^{(i)})\right)^{y^{(i)}} \left(1 - \sigma(z^{(i)})\right)^{1 - y^{(i)}}$$
Likelihood

 We are going to optimize via gradient descent, so let's apply the logarithm to separate components:

$$\begin{split} l(\mathbf{w}) &= \log L(\mathbf{w}) \\ &= \sum_{i=1}^{n} \left[y^{(i)} \log \left(\sigma(z^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \sigma(z^{(i)}) \right) \right] \end{split}$$

Log-Likelihood

Logistic Regression: Gradient Descent Learning Rule

$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial a} \frac{da}{dz} \frac{\partial z}{\partial w_j}$$

$$\frac{\partial \mathcal{L}}{\partial a} = \frac{a - y}{a - a^2}$$

$$\frac{da}{dz} = \frac{e^{-z}}{(1 + e^{-z})^2} = a \cdot (1 - a)$$

$$\frac{\partial z}{\partial w_j} = x_j$$

$$\frac{\partial \mathcal{L}}{\partial w_j} = (a - y)x_j$$

Logistic Regression: Learning Rule

Stochastic gradient descent:

- 1. Initialize $\mathbf{w} := \mathbf{0} \in \mathbb{R}^m$, $\mathbf{b} := 0$
- 2. For every training epoch:

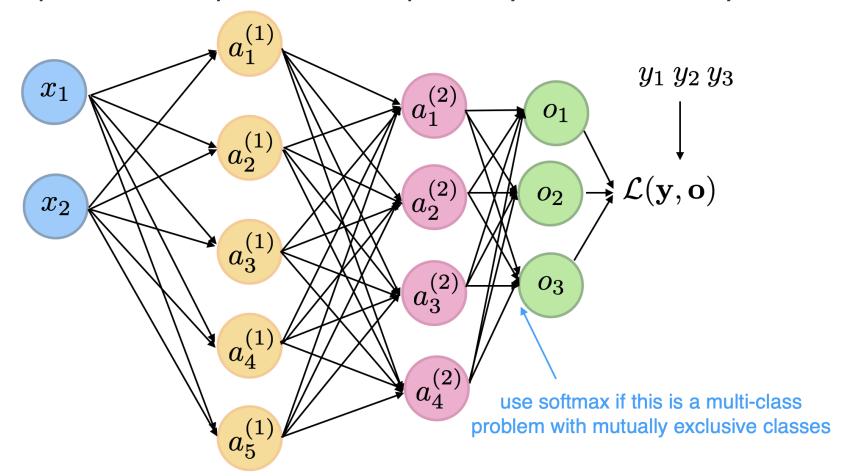
A. For every
$$\langle \mathbf{x}^{[i]}, y^{[i]}
angle \in \mathcal{D}$$

(a)
$$\hat{y}^{[i]} := \sigma ig(\mathbf{x}^{[i]T} \mathbf{w} + b ig)$$

(b)
$$abla_{\mathbf{w}} \mathcal{L} = -ig(y^{[i]} - \hat{y}^{[i]}ig)\mathbf{x}^{[i]} \
abla_b \mathcal{L} = -ig(y^{[i]} - \hat{y}^{[i]}ig)$$

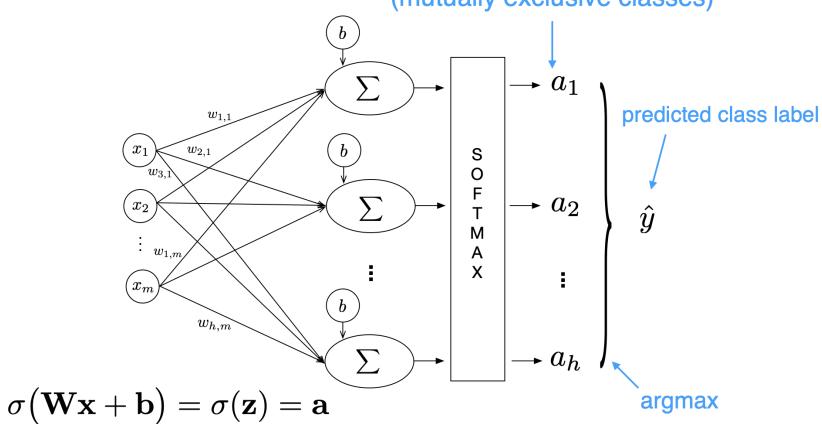
(c)
$$\mathbf{w} := \mathbf{w} + \eta \times (-\nabla_{\mathbf{w}} \mathcal{L})$$

$$b := b + \eta \times \underbrace{(-\nabla_{b} \mathcal{L})}$$
 learning rate negative gradient


Note

$$a - y \Leftrightarrow -(y^{[i]} - \hat{y}^{[i]})$$

Multilayer Perceptron

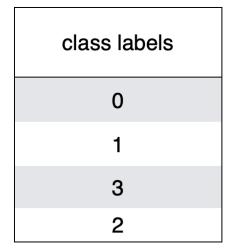

Computation Graph with Multiple Fully-Connected Layers

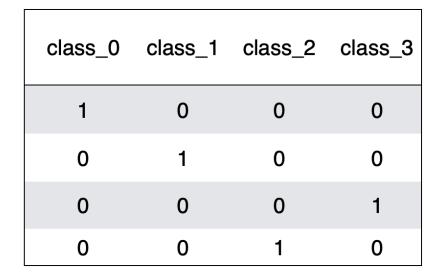
Multinomial ("Softmax") Logistic Regression

activations are class-membership probabilities (mutually exclusive classes)

"Softmax"

$$P(y = t \mid z_t^{[i]}) = \sigma_{\text{softmax}}(z_t^{[i]}) = \frac{e^{z_t^{[i]}}}{\sum_{j=1}^{h} e^{z_j^{[i]}}}$$


$$t \in \{j...h\}$$


h is the number of class labels

A "soft" (differentiable) version of "max"

Requires one-hot encoding

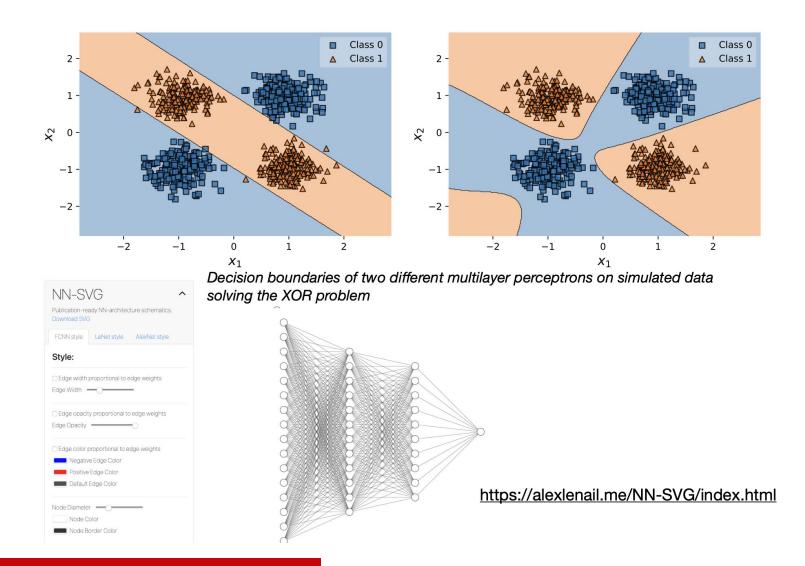
Loss Function (assuming one-hot encoding)

(Multi-category) Cross Entropy for *h* different class labels

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{j=1}^{h} -y_j^{[i]} \log \left(a_j^{[i]} \right)$$

Loss Function (assuming one-hot encoding)

$$\mathcal{L}_{\text{binary}} = -\sum_{i=1}^{n} \left(y^{[i]} \log(a^{[i]}) + (1 - y^{[i]}) \log(1 - a^{[i]}) \right)$$


This assumes one-hot encoded labels!

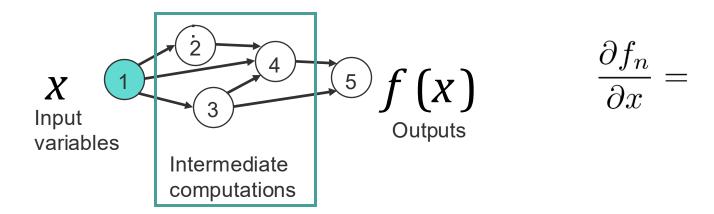
$$\mathcal{L} = \sum_{i=1}^{n} \sum_{j=1}^{h} -y_j^{[i]} \log \left(a_j^{[i]} \right)$$

for *h* different class labels (Multi-category) Cross Entropy

Multilayer Perceptrons Can Solve XOR

A new problem: Training

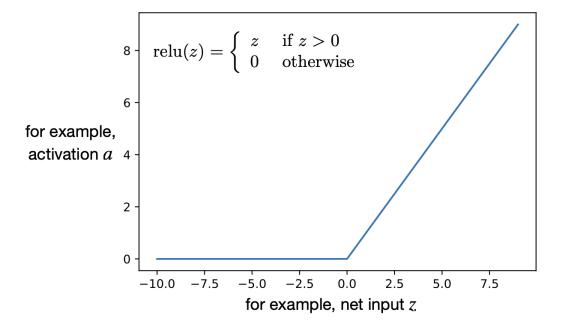
- How can we train a multilayer model?
 - No targets / ground truth for the hidden nodes
- Solution: Backpropagation



An algorithm to train models with hidden variables

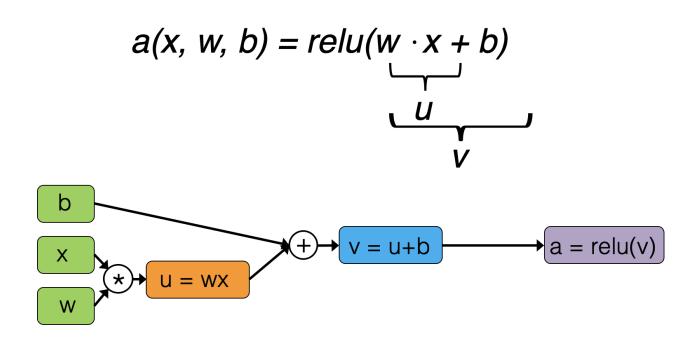
Backpropagation

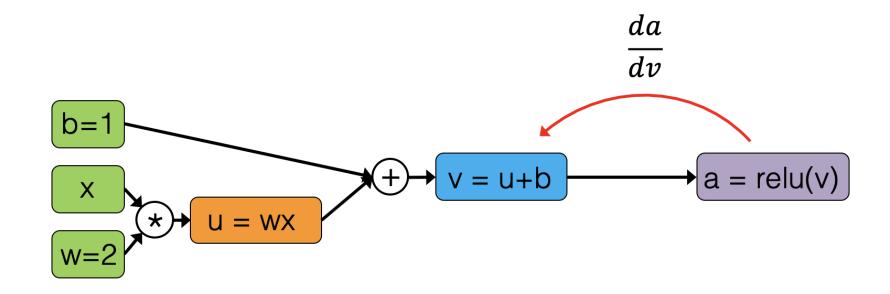
 Neural networks are function compositions that can be represented as computation graphs:


• By applying the chain rule, and working in reverse order, we get:

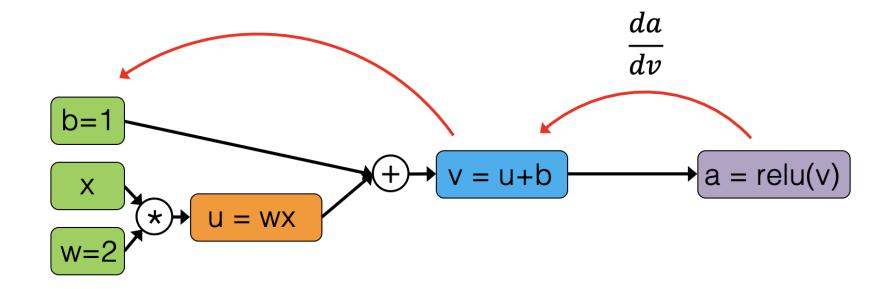
$$\frac{\partial f_n}{\partial x} = \sum_{i_1 \in \pi(n)} \frac{\partial f_n}{\partial f_{i_1}} \frac{\partial f_{i_1}}{\partial x} = \sum_{i_1 \in \pi(n)} \frac{\partial f_n}{\partial f_{i_1}} \sum_{i_2 \in \pi(i_1)} \frac{\partial f_{i_1}}{\partial f_{i_2}} \frac{\partial f_{i_1}}{\partial x} = \dots$$

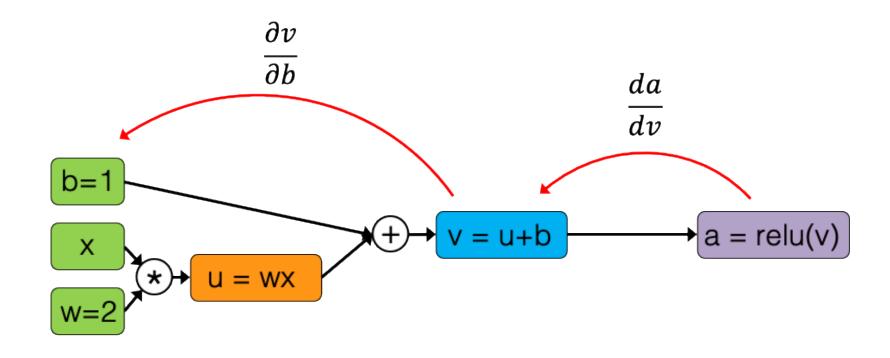
Suppose we have the following activation function:

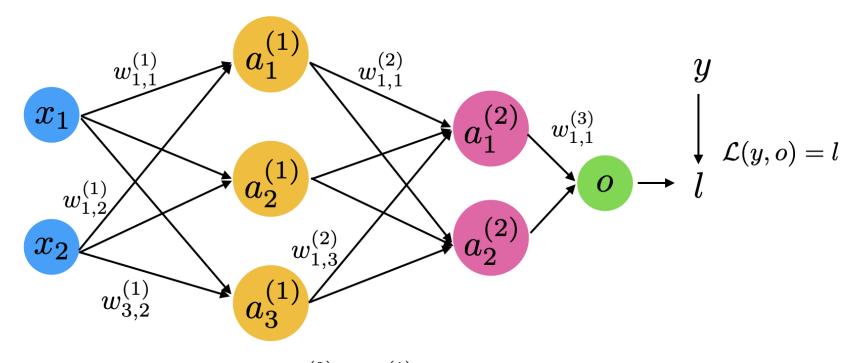

$$a(x, w, b) = relu(w \cdot x + b)$$


ReLU = Rectified Linear Unit

(prob. the most commonly used activation function in DL)



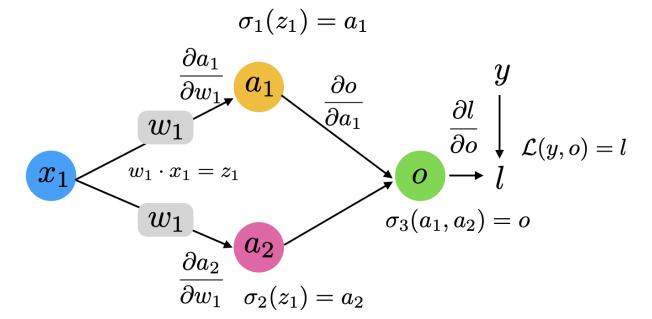



Computation graphs: Single-path

$$\mathcal{L}ig(y,\sigma_1(w_1\cdot x_1)ig) egin{array}{c} y \ \hline x_1 & w_1 & \hline rac{\partial a_1}{\partial w_1} & rac{\partial o}{\partial a_1} \ \hline \end{pmatrix} \mathcal{L}(y,o) = 0$$

$$\frac{\partial l}{\partial w_1} = \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1} \quad \text{(univariate chain rule)}$$

Computation graphs: Fully-Connected Layer



$$\frac{\partial l}{\partial w_{1,1}^{(1)}} = \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_1^{(2)}} \cdot \frac{\partial a_1^{(2)}}{\partial a_1^{(1)}} \cdot \frac{\partial a_1^{(1)}}{\partial w_{1,1}^{(1)}} + \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_2^{(2)}} \cdot \frac{\partial a_2^{(2)}}{\partial a_1^{(1)}} \cdot \frac{\partial a_1^{(1)}}{\partial w_{1,1}^{(1)}} + \frac{\partial a_1^{(1)}}{$$

Computation graphs: Weight-Sharing

$$\mathcal{L}(y, \sigma_3[\sigma_1(w_1 \cdot x_1), \sigma_2(w_1 \cdot x_1)])$$

Upper path

$$\frac{\partial l}{\partial w_1} = \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1} + \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_2} \cdot \frac{\partial a_2}{\partial w_1} \quad \text{(multivariable chain rule)}$$

Lower path

PyTorch: Automated Differentiation

PyTorch Usage: Step 1 (Definition)

```
class MultilayerPerceptron(torch.nn.Module): 
   def __init__(self, num features, num classes):
        super(MultilayerPerceptron, self). init ()
        ### 1st hidden layer
        self.linear 1 = torch.nn.Linear(num feat, num h1)
       ### 2nd hidden layer
        self.linear 2 = torch.nn.Linear(num h1, num h2)
       ### Output layer
        self.linear out = torch.nn.Linear(num_h2, num_classes)
   def forward(self, x):
        out = self.linear 1(x)
        out = F.relu(out)
        out = self.linear 2(out)
        out = F.relu(out)
        logits = self.linear out(out)
        probas = F.log softmax(logits, dim=1)
        return logits, probas
```

Backward will be inferred automatically if we use the nn.Module class!

Define model parameters that will be instantiated when created an object of this class

Define how and it what order the model parameters should be used in the forward pass

PyTorch Usage: Step 2 (Creation)

PyTorch Usage: Step 3 (Training)

```
Run for a specified number of
                                           epochs
                                                                          Iterate over minibatches
for epoch in range(num epochs):
                                                                          in epoch
    model.train()
    for batch idx, (features, targets) in enumerate(train loader):
                                                                          If your model is on the
         features = features.view(-1, 28*28).to(device)
                                                                          GPU, data should also
         targets = targets.to(device)
         ### FORWARD AND BACK PROP
                                                                          on the GPU
         logits, probas = model(features)
         cost = F.cross entropy(probas, targets)
         optimizer.zero grad()
         cost.backward()
                                                              y = model(x) calls. call and then .forward(), where some
                                                              extra stuff is done in __call__;
         ### UPDATE MODEL PARAMETERS
                                                              don't run y = model.forward(x) directly
         optimizer.step()
    model.eval()
    with torch.no grad():
                                      Gradients at each leaf node are accumulated under the .grad attribute, not just stored. This is why we
         # compute accuracy
                                      have to zero them before each backward pass
```


PyTorch Usage: Step 3 (Training)

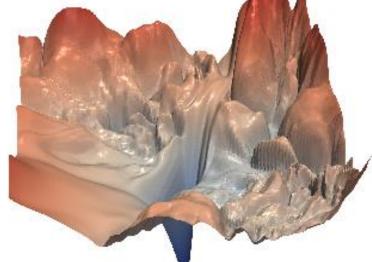
```
for epoch in range(num epochs):
    model.train()
    for batch idx, (features, targets) in enumerate(train loader):
        features = features.view(-1, 28*28).to(device)
        targets = targets.to(device)
        ### FORWARD AND BACK PROP
        logits, probas = model(features)
This will run the forward() method
        loss = F.cross_entropy(logits, targets) ← Define a loss function to optimize
        optimizer.zero_grad() ← Set the gradient to zero
                                          (could be non-zero from a previous forward pass)
         loss.backward()
                                          Compute the gradients, the backward is
        ### UPDATE MODEL PARAMETERS
                                          automatically constructed by "autograd" based on
        optimizer.step()
                                          the forward() method and the loss function
                                            Use the gradients to update the weights according to
    model.eval()
    with torch.no grad():
                                            the optimization method (defined on the previous
        # compute accuracy
                                            slide)
                                            E.g., for SGD, w := w + \text{learning\_rate } \times \text{gradient}
```


PyTorch Usage: Step 3 (Training)

```
for epoch in range(num epochs):
    model.train()
    for batch idx, (features, targets) in enumerate(train loader):
        features = features.view(-1, 28*28).to(device)
        targets = targets.to(device)
        ### FORWARD AND BACK PROP
        logits, probas = model(features)
        loss = F.cross entropy(logits, targets)
        optimizer.zero grad()
        loss.backward()
        ### UPDATE MODEL PARAMETERS
        optimizer.step()
                                      For evaluation, set the model to eval mode (will be
    model.eval()
                                      relevant later when we use DropOut or BatchNorm)
    with torch.no grad():
        # compute accuracy
                                            This prevents the computation graph for
                                            backpropagation from automatically being build in
```

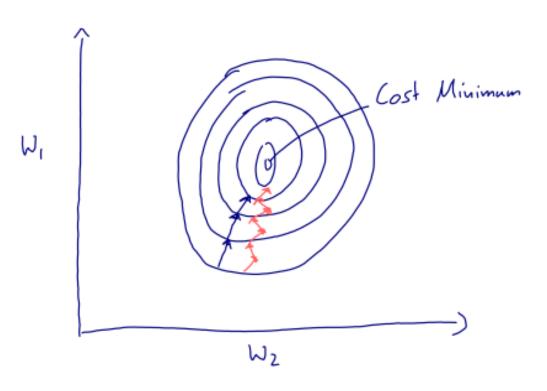
Ben Lengerich © University of Wisconsin-Madison 2025

the background to save memory



Improvements to optimization

Note that our Loss is Not Convex Anymore


- Linear regression, Adaline, Logistic Regression, and Softmax Regression have convex loss functions
- But our deep loss is no longer convex (most of the time)
 - In practice, we usually end up at different local minima if we repeat the training (e.g. by changing the random seed for weight initialization or shuffling the dataset while leaving all settings the same

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018. Visualizing the loss landscape of neural nets. In Advances in Neural Information Processing Systems (pp. 6391-6401).

Minibatch Training Recap

- Minibatch learning is a form of stochastic gradient descent
- Each minibatch can be considered a sample drawn from the training set (where the training set is in turn a sample drawn from the population)
- Hence, the gradient is noisier

A **noisy** gradient can be:

- good: chance to escape local minima
- bad: can lead to extensive oscillation

Learning Rate Decay

- Batch effects -- minibatches are samples of the training set, hence minibatch loss and gradients are approximations
- Hence, we usually get oscillations

To dampen oscillations towards the end of the training, we can

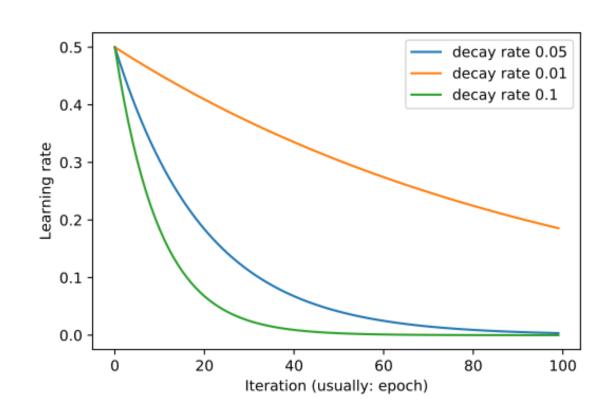
decay the learning rate

Danger of learning rate is to decrease the learning rate too early

Practical tip: try to train the model without **learning rate decay first**, then add it later \(\lambda_0 \) \(\lambda_0 \) \(\lambda_0 \)

You can also use the validation performance (e.g., accuracy) to judge whether Ir decay is useful (as opposed to using the training loss)

exponentially weighted average or Whole-training set loss minibator loss


Learning Rate Decay

Most common variants for Ir decay:

1. Exponential Decay:

where k is the decay rate

$$\eta_t \coloneqq \eta_0 \mathrm{e}^{-\mathrm{k} \cdot t}$$

Learning Rate Decay

Most common variants for Ir decay:

1. Exponential Decay:

$$\eta_t \coloneqq \eta_0 \mathrm{e}^{-\mathrm{k} \cdot t}$$

where k is the decay rate

2. Halving the learning rate:

$$\eta_t \coloneqq \eta_{t-1}/2$$

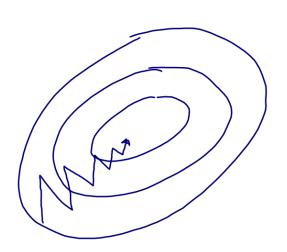
where t is a multiple of T_0 (e.g. $T_0 = 100$)

3. Inverse decay:

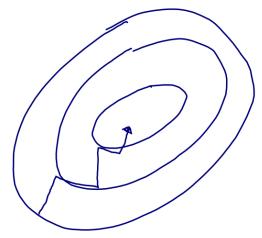
$$\eta_t \coloneqq \frac{\eta_0}{1 + k \cdot t}$$

Training with "Momentum"

• Main idea: Let's dampen oscillations by using "velocity" (the speed of the "movement" from previous updates)

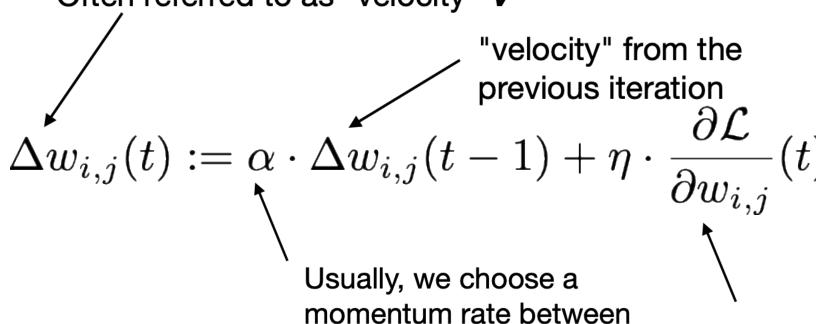


https://www.asherworldturns.com/zorbing-new-zealand/



Training with "Momentum"

 Main idea: Let's dampen oscillations by using "velocity" (the speed of the "movement" from previous updates)


With momentum

Key take-away: Not only move in the (opposite) direction of the gradient, but also move in the "weighted averaged" direction of the last few updates

Training with "Momentum"

Often referred to as "velocity" V

0.9 and 0.999; you can

think of it as a "friction" or

"dampening" parameter

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks: The Official Journal of the International Neural Network Society, 12(1), 145–151. http://doi.org/10.1016/S0893-6080(98)00116-6

Regular partial derivative/ gradient multiplied by learning rate at current time step *t*

Nesterov: A Better Momentum

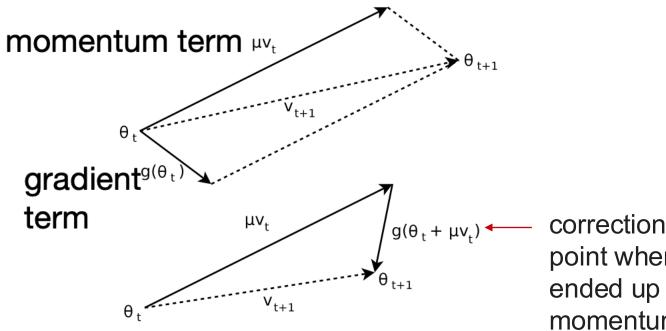
We already know where the momentum part will push us in this step. Let's calculate the **new gradient** with that update in mind:

Before:

$$\Delta \mathbf{w}_t := \alpha \cdot \Delta \mathbf{w}_{t-1} + \eta \cdot \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)$$

$$\mathbf{w}_{t+1} := \mathbf{w}_t - \Delta \mathbf{w}_t$$

Nesterov:


$$\Delta \mathbf{w}_{t} := \alpha \cdot \Delta \mathbf{w}_{t-1} + \eta \cdot \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_{t} - \alpha \cdot \Delta \mathbf{w}_{t-1})$$

$$\mathbf{w}_{t+1} := \mathbf{w}_{t} - \Delta \mathbf{w}_{t}$$

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543–547.

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in deep learning. ICML (3), 28(1139-1147), 5.

Nesterov: A Better Momentum

correction term (gradient of the point where you would have ended up via the standard momentum method)

Figure 1. (Top) Classical Momentum (Bottom) Nesterov Accelerated Gradient

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in deep learning. ICML (3), 28(1139-1147), 5.

Adaptive Learning Rates

Many different flavors of adapting the learning rate

Rule of thumb:

- 1. decrease learning if the gradient changes its direction
- 2. increase learning if the gradient stays consistent

RMSProp

- Unpublished (but very popular) algorithm by Geoff Hinton
- Based on Rprop [1]
- Very similar to another concept called AdaDelta
- Main idea: divide learning rate by an exponentially decreasing moving average of the squared gradients
 - RMS = "Root Mean Squared"
 - Takes into account that gradients can vary widely in magnitude
 - Damps oscillations like momentum (in practice, works better)

[1] Igel, Christian, and Michael Hüsken. "Improving the Rprop learning algorithm." Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.

ADAM (Adaptive Moment Estimation)

- Probably the most widely used optimization algorithm in DL
- Combination of momentum + RMSProp

Momentum-like term:

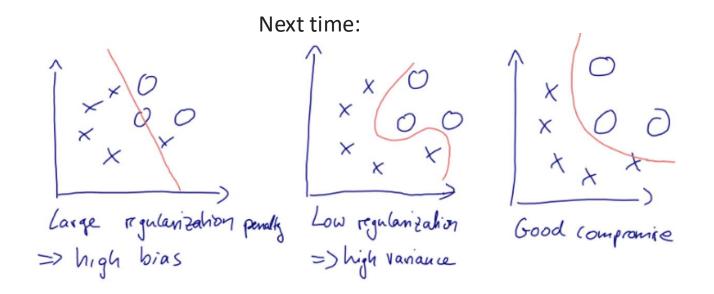
$$\frac{\Delta w_{i,j}(t) := \alpha \cdot \Delta w_{i,j}(t-1) + \eta \cdot \frac{\partial \mathcal{L}}{\partial w_{i,j}}(t)}{\partial w_{i,j}(t)}$$

$$m_t := \alpha \cdot m_{t-1} + (1 - \alpha) \cdot \frac{\partial \mathcal{L}}{\partial w_{i,j}}(t)$$

RMSProp term:

$$r := \beta \cdot MeanSquare(w_{i,j}, t-1) + (1-\beta) \left(\frac{\partial \mathcal{L}}{\partial w_{i,j}(t)} \right)^2$$

ADAM update:


$$\overline{w_{i,j}} := w_{i,j} - \eta \frac{m_t}{\sqrt{r} + \epsilon}$$

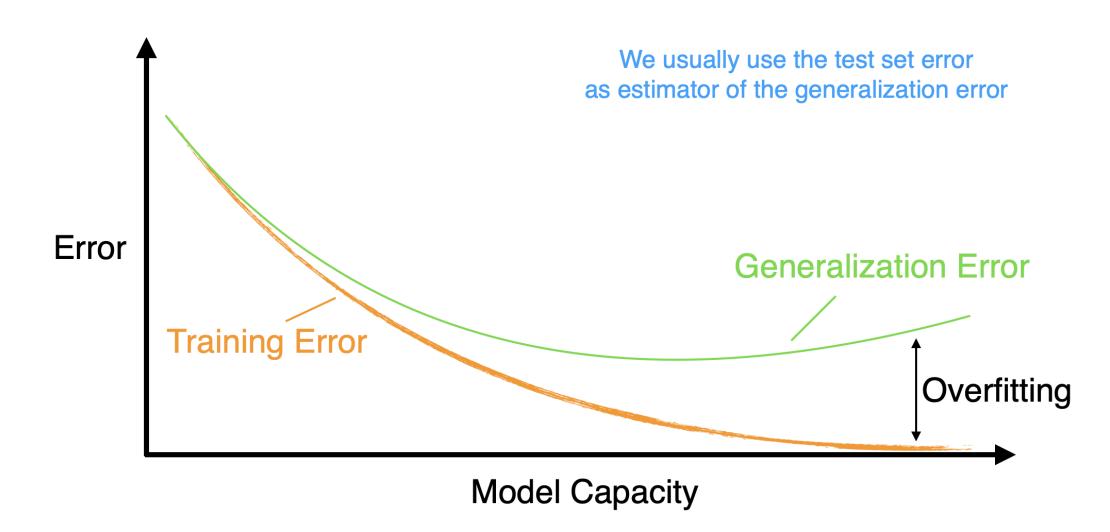
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Where we are...

- Good news: We can solve non-linear problems!
- Bad news: Our multilayer neural networks have lots of parameters and it's easy to overfit the data...

Regularization

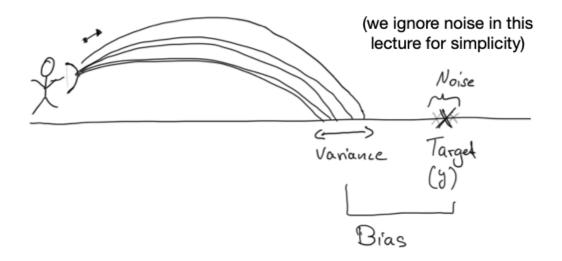
Parameters vs Hyperparameters


weights (weight parameters) biases (bias units)

minibatch size data normalization schemes number of epochs number of hidden layers number of hidden units learning rates (random seed, why?) loss function various weights (weighting terms) activation function types regularization schemes (more later) weight initialization schemes (more later) optimization algorithm type (more later)

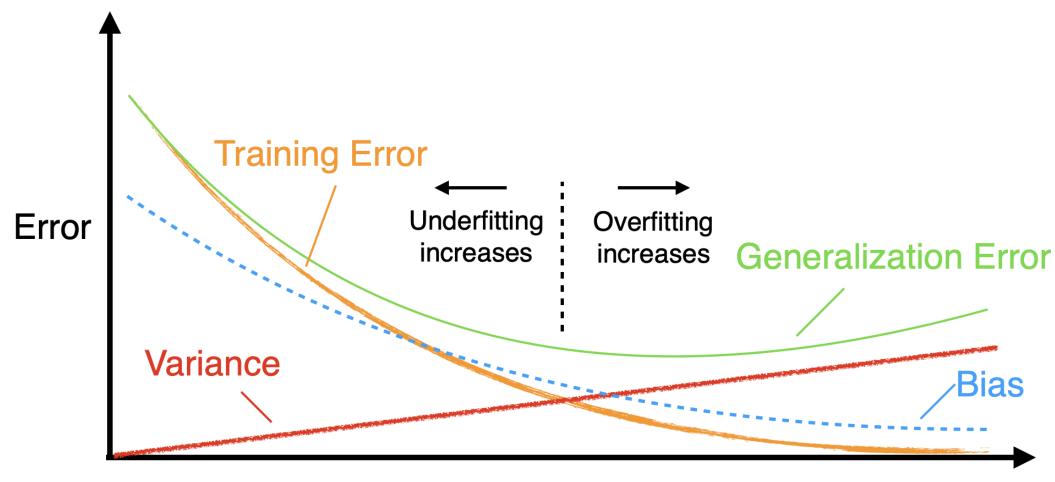
...

Overfitting and Underfitting

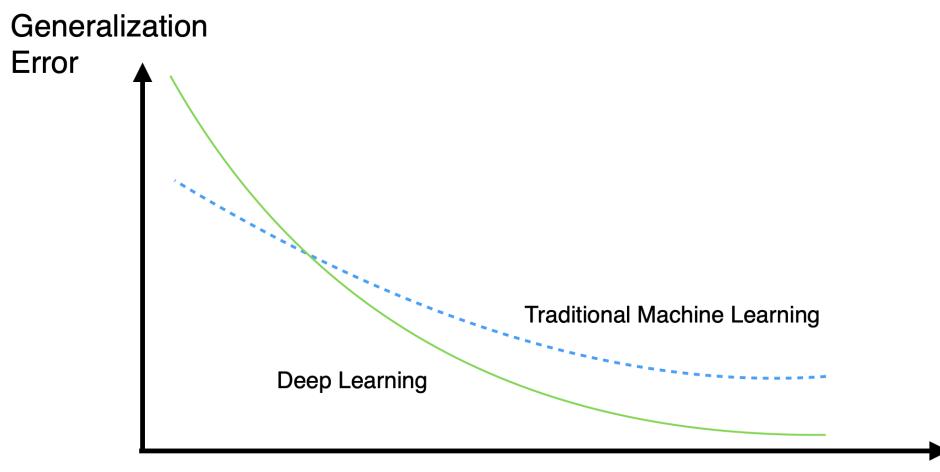


Bias-Variance Decomposition

General Definition:


$$\operatorname{Bias}_{\theta}[\hat{\theta}] = E[\hat{\theta}] - \theta$$
$$\operatorname{Var}_{\theta}[\hat{\theta}] = E[\hat{\theta}^2] - (E[\hat{\theta}])^2$$

Intuition:


Bias-Variance & Overfitting-Underfitting

Model Capacity

Deep Learning works best with large datasets

Training Dataset Size

Many ways to improve generalization

Data augmentation Label smoothing Dataset Semi-supervised Leveraging unlabeled data Self-supervised Meta-learning Leveraging related data Transfer learning Weight initialization strategies Activation functions Architecture setup Residual layers Knowledge distillation Input standardization Improving generalization BatchNorm and variants Normalization Weight standardization Gradient centralization Adaptive learning rates Training loop Auxiliary losses Gradient clipping L2 (/L1) regularization Regularization Early stopping Dropout

Collecting more data

General Strategies to Avoid Overfitting

- Collecting more data, especially high-quality data, is best & always recommended
 - Alternatively: semi-supervised learning, transfer learning, and self-supervised learning
- Data augmentation is helpful
 - Usually requires prior knowledge about data or tasks
- Reducing model capacity can help

Data Augmentation

- **Key Idea:** If we know the label shouldn't depend on a transformation h(x), then we can generate new training data $h(x^i)$, y^i
- But we must already know something that our outcome doesn't depend on
- Example: image classification
 - rotation, zooming, sepia filter, etc.

Reduce Network's Capacity

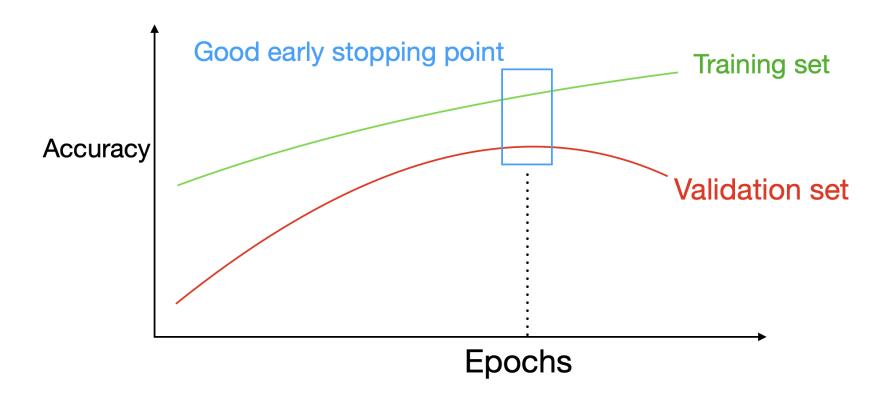
- Key Idea: The simplest model that matches the outputs should generalize the best
- Choose a smaller architecture: fewer hidden layers & units, add dropout, use ReLU + L1 penalty to prune dead activations, e tc.
- Enforce smaller weights: Early stopping, L2 norm penalty
- Add noise: Dropout
- Note: With recent LLMs and foundation models, it's possible to use a large pretrained model and perform efficient fine-tuning (updating small number of parameters of a large model)

Early Stopping

- Step 1: Split your dataset into 3 parts (as always)
 - Use test set only once at the end
 - Use validation accuracy for tuning

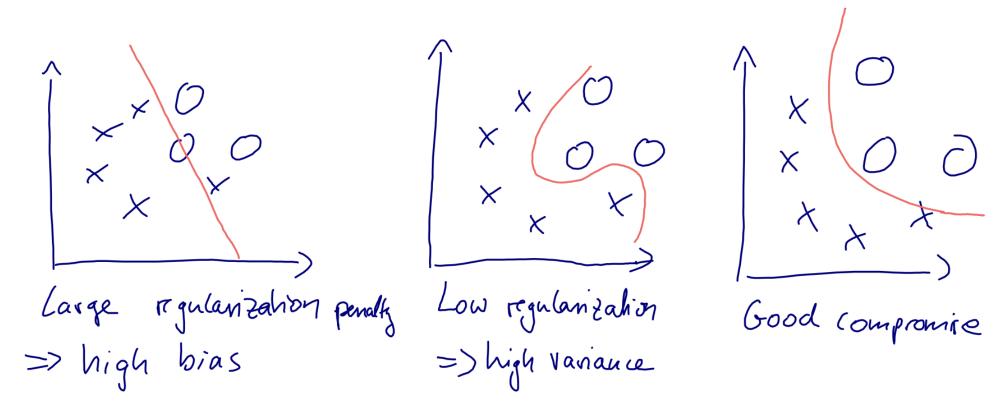
Dataset

Training dataset


Validation dataset

Test dataset

Early Stopping


- Step 2: Stop training early
 - Reduce overfitting by observing the training/validation accuracy gap during training and then stop at the "right" point

Effect of Regularization on Decision Boundary

Assume a nonlinear model

L2 regularization for Multilayer Neural Networks

L2-Regularized-Cost_{**w**,**b**} =
$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y^{[i]}, \hat{y}^{[i]}) + \frac{\lambda}{n} \sum_{l=1}^{L} ||\mathbf{w}^{(l)}||_{F}^{2}$$
 sum over layers

where $||\mathbf{w}^{(l)}||_F^2$ is the Frobenius norm (squared):

$$||\mathbf{w}^{(l)}||_F^2 = \sum_i \sum_j (w_{i,j}^{(l)})^2$$

L2 regularization for Multilayer Neural Networks

Regular gradient descent update:

$$w_{i,j} := w_{i,j} - \eta \frac{\partial \mathcal{L}}{\partial w_{i,j}}$$

Gradient descent update with L2 regularization:

$$w_{i,j} := w_{i,j} - \eta \left(\frac{\partial \mathcal{L}}{\partial w_{i,j}} \middle| + \frac{2\lambda}{n} w_{i,j} \right)$$

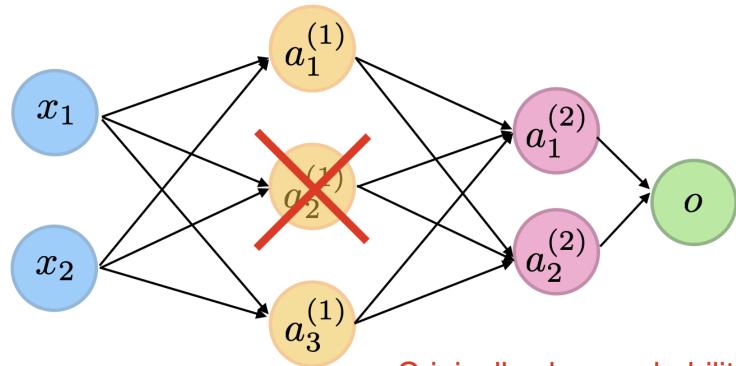
L2 regularization for Neural Networks in PyTorch

Manually:

```
# regularize loss
L2 = 0.
for name, p in model.named_parameters():
    if 'weight' in name:
        L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero_grad()
cost.backward()
```



L2 regularization for Neural Networks in PyTorch

Automatically:

```
## Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),
                        lr=0.1,
                        weight_decay=LAMBDA)
for epoch in range(num epochs):
   #### Compute outputs ####
   out = model(X train tensor)
   #### Compute gradients ####
   cost = F.binary cross entropy(out, y train tensor)
   optimizer.zero grad()
   cost.backward()
```


Dropout

Originally, drop probability 0.5

(but 0.2-0.8 also common now)

Dropout

How do we drop node activations practically / efficiently?

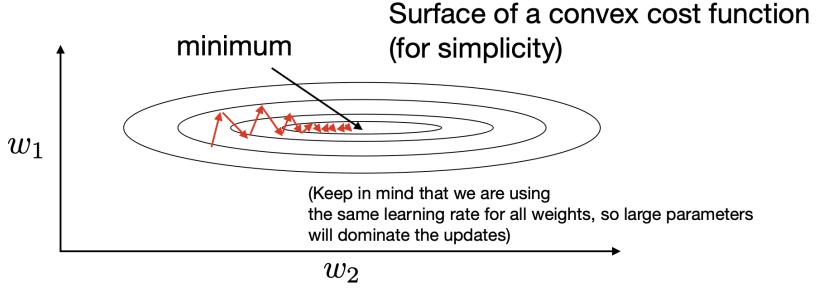
Bernoulli Sampling (during training):

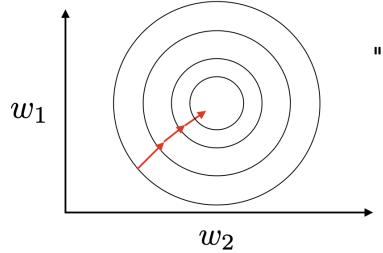
- p := drop probability
- v := random sample from uniform distribution in range [0, 1]
- $\forall i \in \mathbf{v} : v_i := 0 \text{ if } v_i$
- $\mathbf{a} := \mathbf{a} \odot \mathbf{v}$ (p × 100% of the activations a will be zeroed)

Then, after training when making predictions (during "inference")

scale activations via $\mathbf{a} := \mathbf{a} \odot (1 - p)$

Dropout in PvTorch


```
class MultilayerPerceptron(torch.nn.Module):
    def __init__(self, num_features, num_classes, drop_proba,
                 num_hidden_1, num_hidden_2):
        super().__init__()
        self.my_network = torch.nn.Sequential(
            # 1st hidden layer
            torch.nn.Flatten(),
            torch.nn.Linear(num_features, num_hidden_1),
            torch.nn.ReLU(),
            torch.nn.Dropout(drop_proba),
            # 2nd hidden layer
            torch.nn.Linear(num_hidden_1, num_hidden_2),
            torch.nn.ReLU(),
            torch.nn.Dropout(drop_proba),
            # output layer
            torch.nn.Linear(num_hidden_2, num_classes)
    def forward(self, x):
        logits = self.my_network(x)
        return logits
```



Normalization

Normalization and gradient descent

"Standardization" of input features

$$x_j^{\prime [i]} = \frac{x_j^{[i]} - \mu_j}{\sigma_j}$$

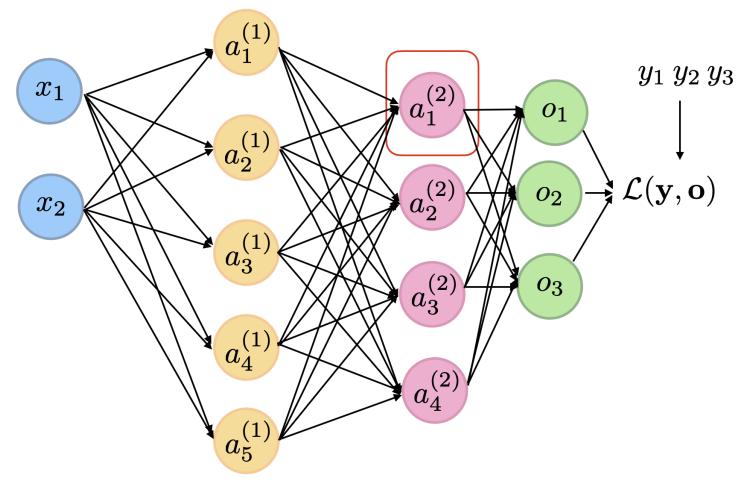
(scaled feature will have zero mean, unit variance)

In deep models...

Normalizing the **inputs** only affects the first hidden layer...what about the rest?

Batch Normalization ("BatchNorm")

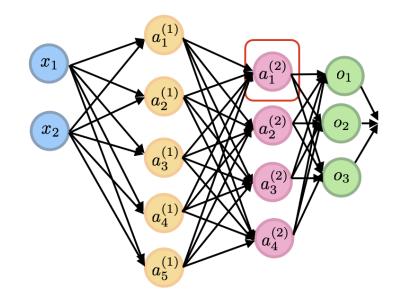
Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In *International Conference on Machine Learning* (pp. 448-456).


http://proceedings.mlr.press/v37/ioffe15.html

- Normalizes hidden layer inputs
- Helps with exploding/vanishing gradient problems
- Can increase training stability and convergence rate
- Can be understood as additional (normalization) layers (with additional parameters)

Batch Normalization ("BatchNorm")

Suppose, we have net input $z_1^{(2)}$ associated with an activation in the 2nd hidden layer



Batch Normalization ("BatchNorm")

Now, consider all examples in a minibatch such that the net input of a given training example at layer 2 is written as $z_1^{(2)[i]}$

where
$$i \in \{1,...,n\}$$

In the next slides, let's omit the layer index, as it may be distracting...

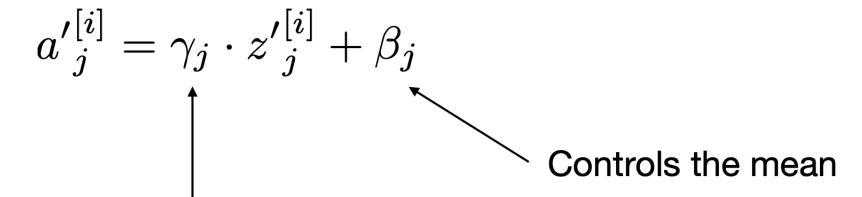
BatchNorm Step 1: Normalize Net Inputs

$$\mu_j = \frac{1}{n} \sum_{i} z_j^{[i]}$$

$$\sigma_j^2 = \frac{1}{n} \sum_{i} (z_j^{[i]} - \mu_j)^2$$

$${z'}_j^{[i]} = rac{z_j^{[i]} - \mu_j}{\sigma_j}$$

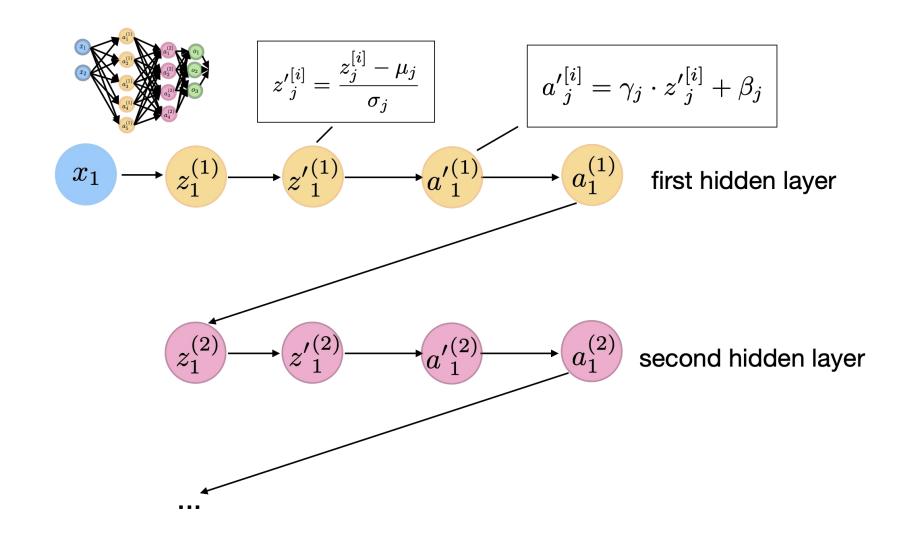
In practice:


$$z'_{j}^{[i]} = \frac{z_{j}^{[i]} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \epsilon}}$$

For numerical stability, where epsilon is a small number like 1E-5

BatchNorm Step 2: Pre-Activation Scaling

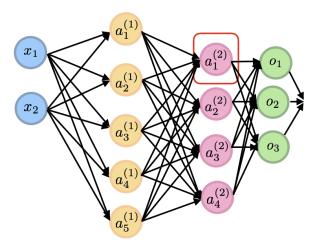
$${z'}_j^{[i]} = \frac{z_j^{[i]} - \mu_j}{\sigma_j}$$



Controls the spread or scale

Technically, a BatchNorm layer could learn to perform "standardization" with zero mean and unit variance

BatchNorm Steps 1+2 Together



BatchNorm Steps 1+2 Together

$$a_j^{[i]} = \gamma_j \cdot z_j^{[i]} + \beta_j$$

This parameter makes the bias units redundant

Also, note that the batchnorm parameters are vectors with the same number of elements as the bias vector

BatchNorm and Backprop

$$z_{j}^{\prime(2)} = \frac{z_{j}^{(2)} - \mu_{j}}{\sigma_{j}} \qquad a_{j}^{\prime(2)} = \gamma_{j} \cdot z_{j}^{\prime(2)} + \beta_{j}$$

$$x_{1} \xrightarrow{w_{j}^{(1)}} a_{j}^{(1)} \xrightarrow{w_{j}^{(2)}} z_{j}^{(2)} \rightarrow z_{j}^{\prime(2)} \rightarrow a_{j}^{\prime(2)} \xrightarrow{\sigma(\cdot)} a_{j}^{(2)} \xrightarrow{w_{j}^{(3)}}$$

$$\frac{\partial l}{\partial \beta_{j}} = \sum_{i=1}^{n} \frac{\partial l}{\partial a_{j}^{\prime(2)[i]}} \cdot \frac{\partial a_{j}^{\prime(2)[i]}}{\partial \beta_{j}} = \sum_{i=1}^{n} \frac{\partial l}{\partial a_{j}^{\prime(2)[i]}}$$

$$\frac{\partial l}{\partial \gamma_{j}} = \sum_{i=1}^{n} \frac{\partial l}{\partial a_{j}^{\prime(2)[i]}} \cdot \frac{\partial a_{j}^{\prime(2)[i]}}{\partial \gamma_{j}} = \sum_{i=1}^{n} \frac{\partial l}{\partial a_{j}^{\prime(2)[i]}} \cdot z_{j}^{\prime(2)[i]}$$

BatchNorm and Backprop

Since the minibatch mean and variance act as parameters, we can/have to apply the multivariable chain rule

$$\frac{\partial l}{\partial z_{j}^{(2)[i]}} = \frac{\partial l}{\partial z_{j}^{(2)[i]}} \cdot \frac{\partial z_{j}^{(2)[i]}}{\partial z_{j}^{(2)[i]}} + \frac{\partial l}{\partial \mu_{j}} \cdot \frac{\partial \mu_{j}}{\partial z_{j}^{(2)[i]}} + \frac{\partial l}{\partial \sigma_{j}^{2}} \cdot \frac{\partial \sigma_{j}^{2}}{\partial z_{j}^{(2)[i]}}$$

$$= \frac{\partial l}{\partial z_{j}^{(2)[i]}} \cdot \frac{1}{\sigma_{j}} + \frac{\partial l}{\partial \mu_{j}} \cdot \frac{1}{n} + \frac{\partial l}{\partial \sigma_{j}^{2}} \cdot \frac{2(z_{j}^{(2)} - \mu_{j})}{n}$$

BatchNorm and Backprop

$$\frac{\partial l}{\partial z_{j}^{(2)[i]}} = \frac{\partial l}{\partial z_{j}^{(2)[i]}} \cdot \frac{\partial z_{j}^{(2)[i]}}{\partial z_{j}^{(2)[i]}} + \frac{\partial l}{\partial \mu_{j}} \cdot \frac{\partial \mu_{j}}{\partial z_{j}^{(2)[i]}} + \frac{\partial l}{\partial \sigma_{j}^{2}} \cdot \frac{\partial \sigma_{j}^{2}}{\partial z_{j}^{(2)[i]}}
= \frac{\partial l}{\partial z_{j}^{(2)[i]}} \cdot \frac{1}{\sigma_{j}} + \frac{\partial l}{\partial \mu_{j}} \cdot \frac{1}{n} + \frac{\partial l}{\partial \sigma_{j}^{2}} \cdot \frac{2(z_{j}^{(2)} - \mu_{j})}{n}$$

If you like math & engineering, you can solve the remaining terms as an ungraded HW exercise;)

BatchNorm in PyTorch

```
class MultilayerPerceptron(torch.nn.Module):
   def __init__(self, num_features, num_classes, drop_proba,
                 num hidden 1, num hidden 2):
        super().__init__()
        self.my_network = torch.nn.Sequential(
           # 1st hidden layer
            torch.nn.Flatten(),
            torch.nn.Linear(num_features, num_hidden_1, bias=False)
            torch.nn.BatchNorm1d(num_hidden_1),
           torch.nn.ReLU(),
           # 2nd hidden layer
            torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False)
            torch.nn.BatchNorm1d(num_hidden_2),
            torch.nn.ReLU(),
           # output layer
            torch.nn.Linear(num_hidden_2, num_classes)
    def forward(self, x):
        logits = self.my_network(x)
        return logits
```

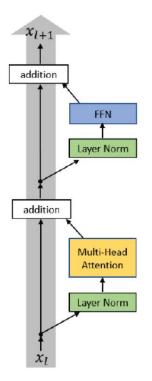

BatchNorm in PyTorch

```
def train_model(model, num_epochs, train_loader,
               valid_loader, test_loader, optimizer, device):
   start_time = time.time()
   minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
   for epoch in range(num_epochs):
       model.train()
       for batch_idx, (features, targets) in enumerate(train_loader):
           features = features.to(device)
           targets = targets.to(device)
           # ## FORWARD AND BACK PROP
           logits = model(features)
           loss = torch.nn.functional.cross_entropy(logits, targets)
           optimizer.zero_grad()
           loss.backward()
                                                                        don't forget model.train()
           # ## UPDATE MODEL PARAMETERS
                                                                        and model.eval()
           optimizer.step()
                                                                        in training and test loops
           # ## LOGGING
           minibatch_loss_list.append(loss.item())
           if not batch_idx % 50:
               print(f'Epoch: {epoch+1:03d}/{num_epochs:03d} '
                     f'| Batch {batch_idx:04d}/{len(train_loader):04d} '
                     f' | Loss: {loss:.4f}')
       model.eval()
       with torch.no_grad(): # save memory during inference
           train_acc = compute_accuracy(model, train_loader, device=device)
```


BatchNorm at Test-Time

 Use exponentially weighted average (moving average) of mean and variance

running_mean = momentum * running_mean + (1 - momentum) * sample_mean


(where momentum is typically ~0.1; and same for variance)

• Alternatively, can also use global training set mean and variance

Related: LayerNorm

- Layer normalization (LN)
- BN calculates mean/std based on a mini batch, whereas LN calculates mean/std based on feature/embedding vectors
- In the stats language, BN zero mean unit variance, whereas LN projects feature vector to unit sphere
- LN in Transformers

Pre-LN Transformer

$$\begin{array}{l} x_{l,i}^{pre,1} = \operatorname{LayerNorm}(x_{l,i}^{pre}) \\ x_{l,i}^{pre,2} = \operatorname{MultiHeadAtt}(x_{l,i}^{pre,1}, [x_{l,1}^{pre,1}, \cdots, x_{l,n}^{pre,1}]) \\ x_{l,i}^{pre,3} = x_{l,i}^{pre} + x_{l,i}^{pre,2} \\ x_{l,i}^{pre,4} = \operatorname{LayerNorm}(x_{l,i}^{pre,3}) \\ x_{l,i}^{pre,5} = \operatorname{ReLU}(x_{l,i}^{pre,4}W^{1,l} + b^{1,l})W^{2,l} + b^{2,l} \\ x_{l+1,i}^{pre} = x_{l,i}^{pre,5} + x_{l,i}^{pre,3} \end{array}$$

Final LayerNorm: $x_{Final,i}^{pre} \leftarrow \text{LayerNorm}(x_{L+1,i}^{pre})$

Normalize everything?

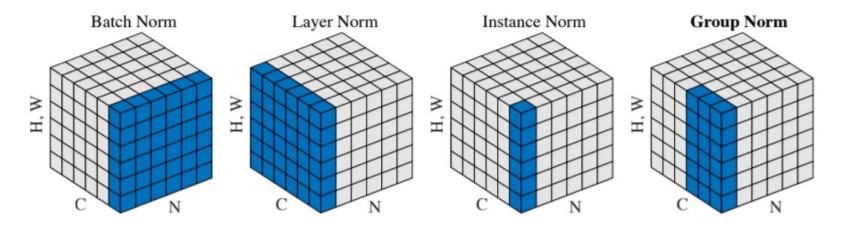


Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Wu, Y., & He, K. (2018). Group normalization. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 3-19).

Initialization

Weight initialization

- Recall: Can't initialize all weights to 0 (symmetry problem)
- But we want weights to be relatively small.
 - Traditionally, we can initialize weights by sampling from a random uniform distribution in range [0, 1], or better, [-0.5, 0.5]
 - Or, we could sample from a Gaussian distribution with mean 0 and small variance (e.g., 0.1 or 0.01)

Xavier Initialization

Method:

- Step 1: Initialize weights from Gaussian or uniform distribution
- Step 2: Scale the weights proportional to the number of inputs to the layer
 - For the first hidden layer, that is the number of features in the dataset; for the second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." *Proceedings of the thirteenth international conference on artificial intelligence and statistics*. 2010.

Xavier Initialization

Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean) linearly increases as the sample size increases (variance of the sum of independent variables is the sum of the variances); square root for standard deviation

$$\begin{aligned} &\operatorname{Var}\left(z_{j}^{(l)}\right) = \operatorname{Var}\left(\sum_{j=1}^{m_{l-1}} W_{jk}^{(l)} a_{k}^{(l-1)}\right) \\ &= \sum_{j=1}^{m^{(l-1)}} \operatorname{Var}\left[W_{jk}^{(l)} a_{k}^{(l-1)}\right] = \sum_{i=1}^{m^{(l-1)}} \operatorname{Var}\left[W_{jk}^{(l)}\right] \operatorname{Var}\left[a_{k}^{(l-1)}\right] \\ &= \sum_{i=1}^{m^{(l-1)}} \operatorname{Var}\left[W^{(l)}\right] \operatorname{Var}\left[a^{(l-1)}\right] = m^{(l-1)} \operatorname{Var}\left[W^{(l)}\right] \operatorname{Var}\left[a^{(l-1)}\right] \end{aligned}$$

He Initialization

- Assuming activations with mean 0, which is reasonable, Xavier
 Initialization assumes a derivative of 1 for the activation function (which is reasonable for tanH)
- For ReLU, the activations are not centered at zero
- He initialization takes this into account
- The result is that we add a scaling factor of $\sqrt{2}$

$$\mathbf{W}^{(l)} := \mathbf{W}^{(l)} \cdot \sqrt{rac{2}{m^{(l-1)}}}$$

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." In *Proceedings of the IEEE international conference on computer vision*, pp. 1026-1034. 2015.

Convolutional Neural Networks

Why images are hard

Different lighting, contrast, viewpoints, etc.

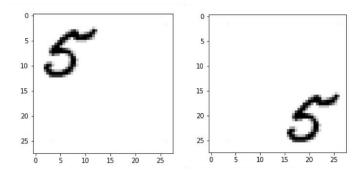
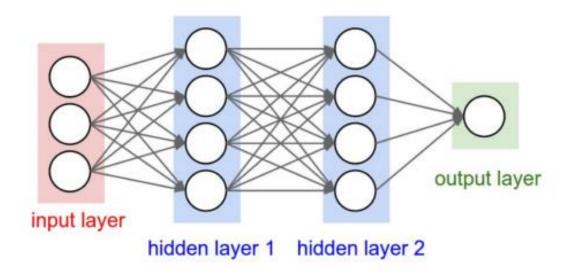

Image Source: twitter.com%2Fcats&psig=AOvVaw30_o-PCM-K21DiMAJQimQ4&ust=1553887775741551

Image Source: https://www.123rf.com/ photo_76714328_side-view-of-tabby-cat-face-overwhite.html


Or even simple translation

Do deep fully-connected nets solve this?

Full connectivity is a problem for large inputs

• 3x200x200 images imply **120,000** weights per neuron in first hidden layer


Convolutional Neural Networks [LeCun 1989]

- Let's share parameters.
- Instead of learning position-specific weights, learn weights defined for **relative positions**
 - Learn "filters" that are reused across the image
 - Generalize across spatial translation of input
- Key idea:
 - Replace matrix multiplication in neural networks with a <u>convolution</u>
- Later, we will see that this can work for any graphstructured data, not just images.

Weight sharing in kernels

7

Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER 1998

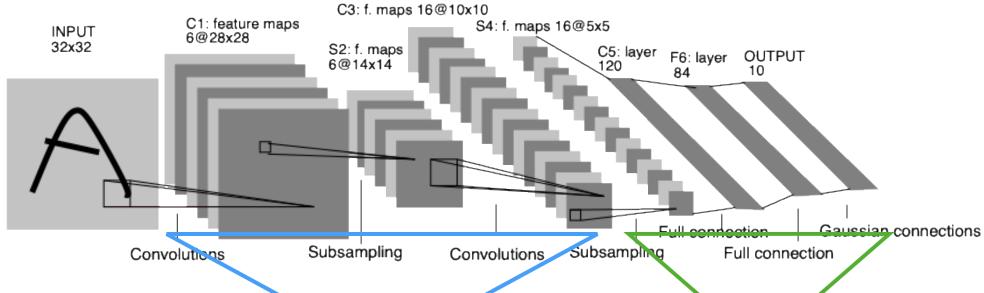


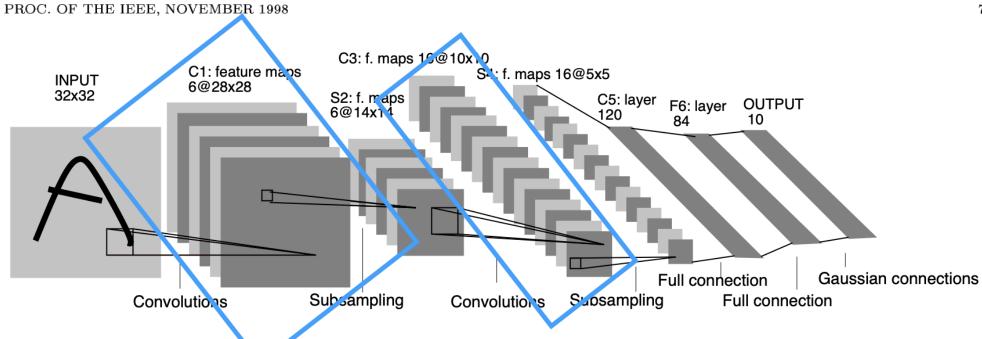
Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

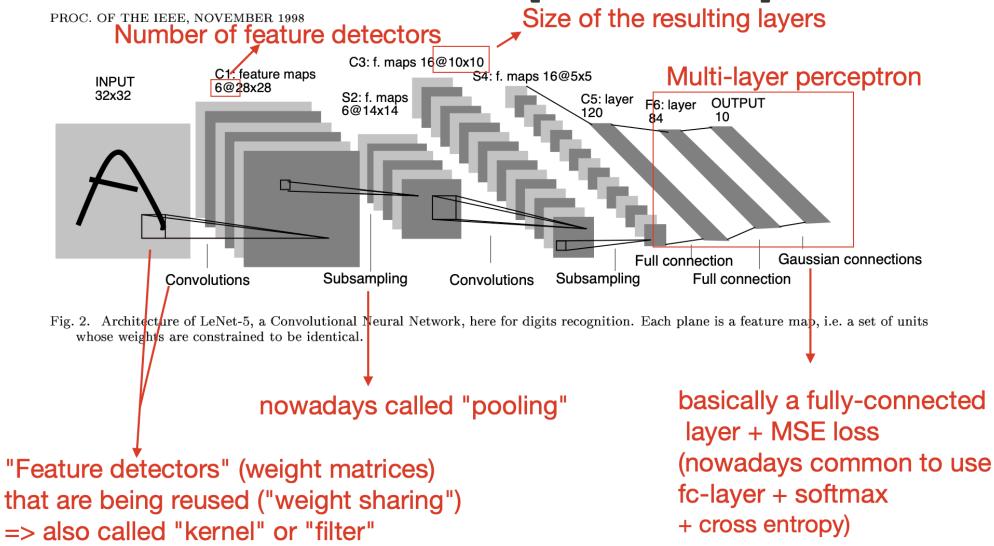
"Automatic feature extractor"

"Regular classifier"

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of IEEE, 86(11):2278–2324, 1998.

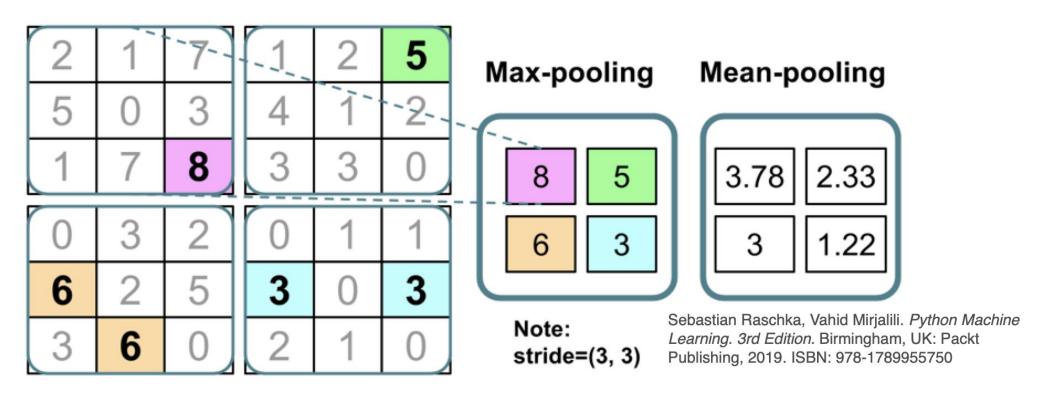
Convolutional Neural Networks [LeCun 1989]




Fig. 2. Architecture of LeNet-5, a Corvolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

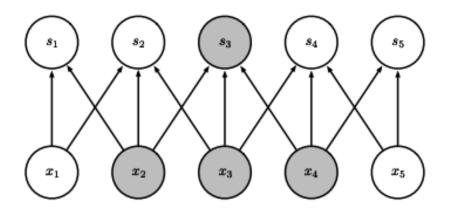
Each "bunch" of feature maps represents one hidden layer in the neural network.

Counting the FC layers, this network has **5** layers


Convolutional Neural Networks [LeCun 1989]

"Pooling": lossy compression

Pooling $(P_{3\times 3})$


Main ideas of CNNs

- **Sparse-connectivity:** A single element in the feature map is connected to only a small patch of pixels. (This is very different from connecting to the whole input image, in the case of multi-layer perceptrons.)
- Parameter-sharing: The same weights are used for different patches of the input image.
- Many layers: Combining extracted local patterns to global patterns

CNNs give sparse connectivity

Sparse connections due to small convolution kernel

Dense connections

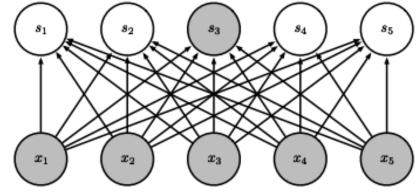
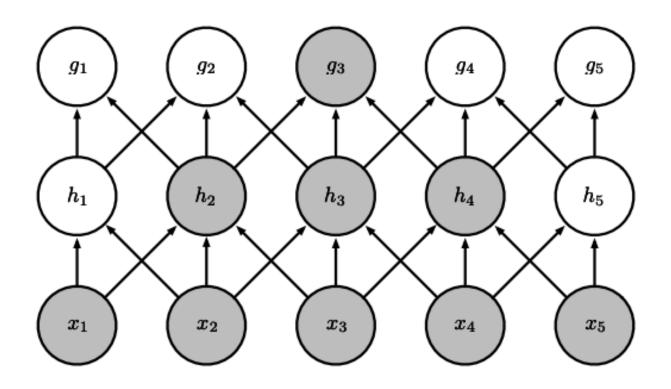
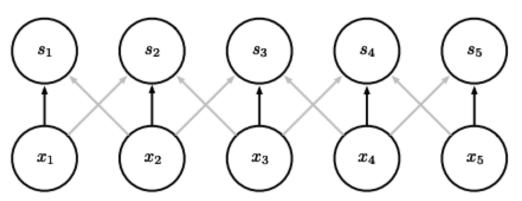


Figure 9.3

(Goodfellow 2016)

Receptive fields grow over depth




Figure 9.4

(Goodfellow 2016)

Parameter sharing

Convolution shares the same parameters across all spatial locations

Traditional matrix multiplication does not share any parameters

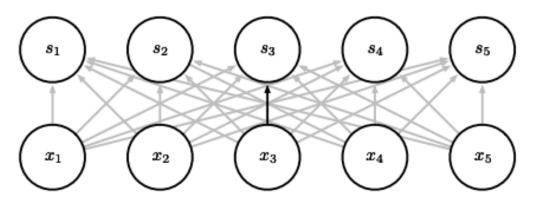
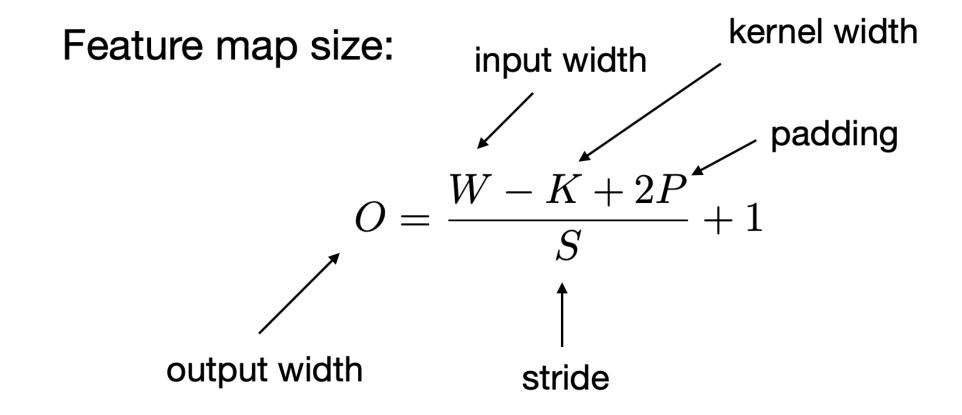
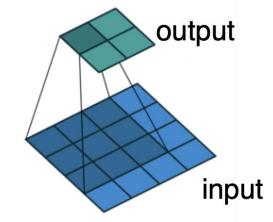
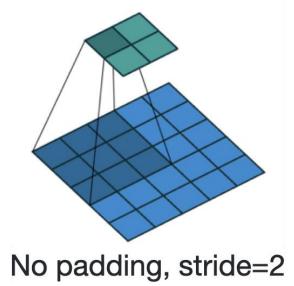



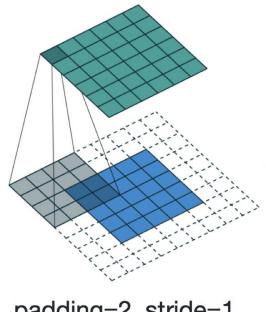
Figure 9.5

(Goodfellow 2016)



Impact of convolutions on size





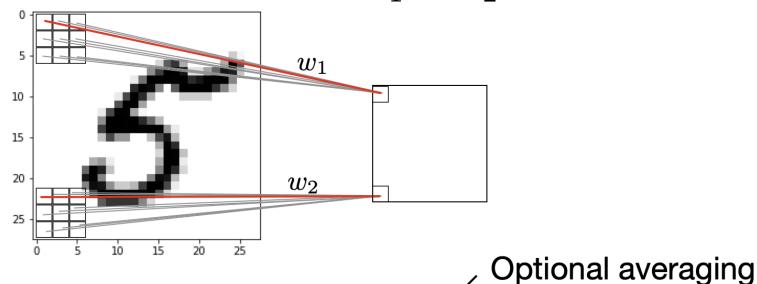
Padding

No padding, stride=1

padding=2, stride=1

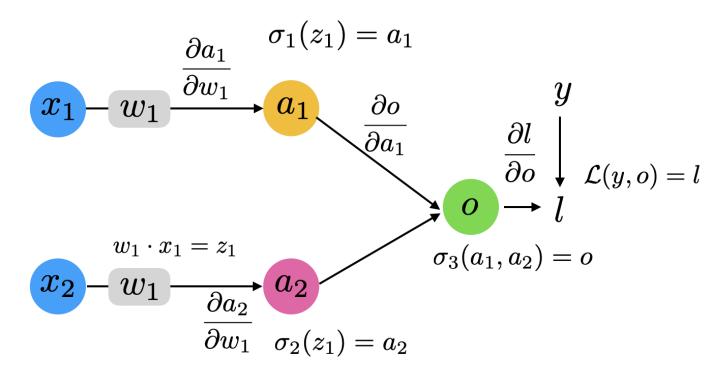
Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Backpropagation in CNNs


 Same concept as before: Multivariable chain rule, and now with an additional weight-sharing constraint

Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an additional weight-sharing constraint


Due to weight sharing: $w_1 = w_2$

weight update:
$$w_1:=w_2:=w_1-\eta\cdotrac{1}{2}igg(rac{\partial\mathcal{L}}{\partial w_1}+rac{\partial\mathcal{L}}{\partial w_2}igg)$$

Recall: Weight sharing in computation graphs

Upper path

$$\frac{\partial l}{\partial w_1} = \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1} + \frac{\partial l}{\partial o} \cdot \frac{\partial o}{\partial a_2} \cdot \frac{\partial a_2}{\partial w_1} \quad \text{(multivariable chain rule)}$$

Lower path

Questions?

