
STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich
Lecture 14: Review

October 20, 2025

Course Schedule / Calendar

Ben Lengerich © University of Wisconsin-Madison 2025

What is Machine Learning?

Ben Lengerich © University of Wisconsin-Madison 2025

The Connection Between Fields

Ben Lengerich © University of Wisconsin-Madison 2025

What is Machine Learning?

Ben Lengerich © University of Wisconsin-Madison 2025

Formally, a computer program is said to learn from experience ℇ with
respect to some task 𝒯 and performance measure 𝒫 if its performance
at 𝓣 as measured by 𝓟 improves with ℇ.

• Task 𝒯: Learn a function ℎ: 𝒳 → 𝒴

• Experience ℇ: Labeled samples xi, yi i=1
𝑛

• Performance 𝒫: A measure of how good ℎ is

• Task 𝒯: Discover structure in data

• Experience ℇ: Unlabeled samples xi i=1
𝑛

• Performance 𝒫: Measure of fit or utility

• Task 𝒯: Learn a policy 𝜋: 𝑆 → 𝐴

• Experience ℇ: Interaction with environment

• Performance 𝒫: Expected reward

The building blocks of Deep Learning

McCulloch & Pitt’s neuron model (1943)

Ben Lengerich © University of Wisconsin-Madison 2025

Warren McCulloch Walter Pitts

From biological neuron to artificial neuron

Ben Lengerich © University of Wisconsin-Madison 2025

• McCulloch & Pitts
neuron: Threshold and
(+1, -1) weights

• Can represent “AND”,
“OR”, “NOT”

• But not “XOR”

XOR

Rosenblatt’s Perceptron

Ben Lengerich © University of Wisconsin-Madison 2025

A learning rule for the computational/mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para.

Cornell Aeronautical Laboratory.

Rosenblatt’s Perceptron

Ben Lengerich © University of Wisconsin-Madison 2025

Continuous
Weighting

Activation
function

threshold function
Classic Rosenblatt
Perceptron

Perceptrons generalize MP Neurons

Perceptron Learning Algorithm

Ben Lengerich © University of Wisconsin-Madison 2025

• Assume binary classification task

• Perceptron finds decision boundary is classes are separable

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

[animated GIF]

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Perceptron Learning Algorithm (pseudocode)

Ben Lengerich © University of Wisconsin-Madison 2025

Let

1. Initialize 𝒘 ≔ 0𝑚 (assume weight incl. bias)

2. For every training epoch:
1. For every 𝒙 𝑖 , 𝑦 𝑖 ∈ 𝐷:

1. ො𝑦[𝑖] ≔ 𝜎 𝒙 𝑖 𝑇𝒘

2. 𝑒𝑟𝑟 ≔ 𝑦 𝑖 − ො𝑦 𝑖

3. 𝒘 ≔ 𝒘 + 𝑒𝑟𝑟 × 𝒙[𝒊]

Only -0 or 1

Only -1, 0, or 1

Perceptron Geometric Intuition

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Geometric Intuition: Learning

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Limitations

Ben Lengerich © University of Wisconsin-Madison 2025

• Rosenblatt’s Perceptron has many problems
• Linear classifier, no non-linear boundaries

• Binary classifier, cannot solve XOR problems

• Does not converge if classes are not linearly separable

• Many “optimal” solutions in terms of 0/1 loss on the training data

• Most will not be optimal in terms of generalization performance

Beyond Rosenblatt’s Perceptron

Ben Lengerich © University of Wisconsin-Madison 2025

Continuous
Weighting

Activation
function

threshold function

sigmoid DL “Perceptron” /
sigmoid unit

Classic Rosenblatt
Perceptron

Perceptrons generalize MP Neurons

• Many activation functions:
• Threshold function (perceptron, 1950+)

• Sigmoid function (before 2000)

• ReLU function (popular since CNNs)

• Many variants of ReLU, e.g. leaky ReLU, GeLU

A Selection of Common Activation Functions

Ben Lengerich © University of Wisconsin-Madison 2025

A Selection of Common Activation Functions

Ben Lengerich © University of Wisconsin-Madison 2025

Advantages of Tanh
• Mean centering
• Positive and negative values
• Larger gradients

Important to normalize inputs to mean zero and
use random weight initialization with avg. weight
centered at zero

A Selection of Common Activation Functions (cont.)

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: A Bridge from
Perceptron to Probabilistic Model

Logistic Regression Neuron

• For binary classes 𝑦 ∈ {0, 1}

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression

• Given the output:

• We compute the probability as

Recall Bernoulli distribution…

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Estimation

• Given the probability:

• Under MLE estimation, we would like to maximize the multi-sample
likelihood:

Ben Lengerich © University of Wisconsin-Madison 2025

Likelihood

Logistic Regression: Estimation

• We are going to optimize via gradient descent, so let’s apply the
logarithm to separate components:

Likelihood

Log-Likelihood

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Gradient Descent Learning Rule

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Learning Rule

Stochastic gradient descent:

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Perceptron

• Computation Graph with Multiple Fully-Connected Layers

Ben Lengerich © University of Wisconsin-Madison 2025

Multinomial (“Softmax”) Logistic Regression

Ben Lengerich © University of Wisconsin-Madison 2025

“Softmax”

Ben Lengerich © University of Wisconsin-Madison 2025

A “soft” (differentiable) version of ”max”

Requires one-hot encoding

Ben Lengerich © University of Wisconsin-Madison 2025

Loss Function (assuming one-hot encoding)

Ben Lengerich © University of Wisconsin-Madison 2025

Loss Function (assuming one-hot encoding)

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Perceptrons Can Solve XOR

Ben Lengerich © University of Wisconsin-Madison 2025

A new problem: Training

Ben Lengerich © University of Wisconsin-Madison 2025

• How can we train a multilayer model?
• No targets / ground truth for the hidden nodes

• Solution: Backpropagation

An algorithm to train models with hidden
variables

Backpropagation

Ben Lengerich © University of Wisconsin-Madison 2025

• Neural networks are function compositions that can be represented as
computation graphs:

:

1

2

3

4
5

Input

variables

x f (x)
Outputs

Intermediate

computations

• By applying the chain rule, and working in reverse order, we get:

Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Single-path

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Fully-Connected Layer

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Weight-Sharing

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch: Automated Differentiation

PyTorch Usage: Step 1 (Definition)

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 2 (Creation)

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

Ben Lengerich © University of Wisconsin-Madison 2025

Improvements to optimization

Note that our Loss is Not Convex Anymore

Ben Lengerich © University of Wisconsin-Madison 2025

• Linear regression, Adaline, Logistic Regression, and Softmax Regression
have convex loss functions

• But our deep loss is no longer convex (most of the time)
• In practice, we usually end up at different local minima if we repeat the training

(e.g. by changing the random seed for weight initialization or shuffling the dataset
while leaving all settings the same

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018. Visualizing the loss landscape of neural nets.
In Advances in Neural Information Processing Systems (pp. 6391-6401).

Minibatch Training Recap

Ben Lengerich © University of Wisconsin-Madison 2025

• Minibatch learning is a form of
stochastic gradient descent

• Each minibatch can be considered a
sample drawn from the training set
(where the training set is in turn a
sample drawn from the population)

• Hence, the gradient is noisier

A noisy gradient can be:
• good: chance to escape local minima
• bad: can lead to extensive oscillation

Learning Rate Decay

Ben Lengerich © University of Wisconsin-Madison 2025

• Batch effects -- minibatches are samples of the training
set, hence minibatch loss and gradients are approximations

• Hence, we usually get oscillations

• To dampen oscillations towards the end of the training, we can
decay the learning rate

• Danger of learning rate is to decrease the
learning rate too early

• Practical tip: try to train the model without
learning rate decay first, then add it later

• You can also use the validation performance
(e.g., accuracy) to judge whether lr decay is
useful (as opposed to using the training loss)

Learning Rate Decay

Ben Lengerich © University of Wisconsin-Madison 2025

Most common variants for lr decay:

1. Exponential Decay:
𝜂𝑡 ≔ 𝜂0e−k⋅𝑡

where 𝑘 is the decay rate

Learning Rate Decay

Ben Lengerich © University of Wisconsin-Madison 2025

Most common variants for lr decay:

1. Exponential Decay:
𝜂𝑡 ≔ 𝜂0e−k⋅𝑡

where 𝑘 is the decay rate

2. Halving the learning rate:
𝜂𝑡 ≔ 𝜂𝑡−1/2

where 𝑡 is a multiple of 𝑇0 (e.g. 𝑇0 = 100)

3. Inverse decay:

𝜂𝑡 ≔
𝜂0

1 + 𝑘 ⋅ 𝑡

Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

• Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

https://www.asherworldturns.com/zorbing-new-zealand/

https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/

Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

• Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

Key take-away: Not only move in the (opposite) direction of the
gradient, but also move in the “weighted averaged" direction of the
last few updates

Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

Qian, N. (1999). On the momentum term in gradient descent
learning algorithms. Neural Networks : The Official Journal of the
International Neural Network Society, 12(1), 145–151.
http://doi.org/10.1016/S0893-6080(98)00116-6

Nesterov: A Better Momentum

Ben Lengerich © University of Wisconsin-Madison 2025

Nesterov, Y. (1983). A method for unconstrained convex minimization
problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated
as Soviet.Math.Docl.), vol. 269, pp. 543– 547.

We already know where the momentum part will push us in this step. Let’s
calculate the new gradient with that update in mind:

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147), 5.

Nesterov: A Better Momentum

Ben Lengerich © University of Wisconsin-Madison 2025

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147), 5.

correction term (gradient of the

point where you would have

ended up via the standard

momentum method)

Adaptive Learning Rates

Ben Lengerich © University of Wisconsin-Madison 2025

Many different flavors of adapting the learning rate

Rule of thumb:

1. decrease learning if the gradient changes its direction

2. increase learning if the gradient stays consistent

RMSProp

Ben Lengerich © University of Wisconsin-Madison 2025

• Unpublished (but very popular) algorithm by Geoff Hinton

• Based on Rprop [1]

• Very similar to another concept called AdaDelta

• Main idea: divide learning rate by an exponentially decreasing
moving average of the squared gradients
• RMS = “Root Mean Squared”

• Takes into account that gradients can vary widely in magnitude

• Damps oscillations like momentum (in practice, works better)

[1] Igel, Christian, and Michael Hüsken. "Improving the Rprop learning algorithm." Proceedings of the Second
International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.

ADAM (Adaptive Moment Estimation)

Ben Lengerich © University of Wisconsin-Madison 2025

• Probably the most widely used optimization algorithm in DL

• Combination of momentum + RMSProp

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Momentum-like term:

RMSProp term:

ADAM update:

Where we are…

Ben Lengerich © University of Wisconsin-Madison 2025

• Good news: We can solve non-linear problems!
• Bad news: Our multilayer neural networks have lots of

parameters and it’s easy to overfit the data…

Next time:

Regularization

Parameters vs Hyperparameters

Ben Lengerich © University of Wisconsin-Madison 2025

weights (weight parameters)
biases (bias units)

minibatch size
data normalization schemes
number of epochs
number of hidden layers
number of hidden units
learning rates
(random seed, why?)
loss function
various weights (weighting terms)
activation function types
regularization schemes (more later)
weight initialization schemes (more later)
optimization algorithm type (more later)
...

Overfitting and Underfitting

Ben Lengerich © University of Wisconsin-Madison 2025

Bias-Variance Decomposition

Ben Lengerich © University of Wisconsin-Madison 2025

General Definition: Intuition:

Bias-Variance & Overfitting-Underfitting

Ben Lengerich © University of Wisconsin-Madison 2025

Deep Learning works best with large datasets

Ben Lengerich © University of Wisconsin-Madison 2025

Many ways to improve generalization

Ben Lengerich © University of Wisconsin-Madison 2025

General Strategies to Avoid Overfitting

Ben Lengerich © University of Wisconsin-Madison 2025

• Collecting more data, especially high-quality data, is best & always
recommended
• Alternatively: semi-supervised learning, transfer learning, and self-supervised

learning

• Data augmentation is helpful
• Usually requires prior knowledge about data or tasks

• Reducing model capacity can help

Data Augmentation

Ben Lengerich © University of Wisconsin-Madison 2025

• Key Idea: If we know the label shouldn’t depend on a transformation
h(x), then we can generate new training data ℎ 𝑥𝑖 , 𝑦𝑖

• But we must already know something that our outcome doesn’t
depend on

• Example: image classification
• rotation, zooming, sepia filter, etc.

Reduce Network’s Capacity

Ben Lengerich © University of Wisconsin-Madison 2025

• Key Idea: The simplest model that matches the outputs should
generalize the best

• Choose a smaller architecture: fewer hidden layers & units, add
dropout, use ReLU + L1 penalty to prune dead activations,e tc.

• Enforce smaller weights: Early stopping, L2 norm penalty

• Add noise: Dropout

• Note: With recent LLMs and foundation models, it’s possible to use a
large pretrained model and perform efficient fine-tuning (updating
small number of parameters of a large model)

Early Stopping

Ben Lengerich © University of Wisconsin-Madison 2025

• Step 1: Split your dataset into 3 parts (as always)
• Use test set only once at the end

• Use validation accuracy for tuning

Early Stopping

Ben Lengerich © University of Wisconsin-Madison 2025

• Step 2: Stop training early
• Reduce overfitting by observing the training/validation accuracy gap during training

and then stop at the “right” point

Effect of Regularization on Decision Boundary

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

• How do we drop node activations practically / efficiently?

Dropout in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Normalization

Normalization and gradient descent

Ben Lengerich © University of Wisconsin-Madison 2025

In deep models…

Ben Lengerich © University of Wisconsin-Madison 2025

Normalizing the inputs only affects the first hidden layer…what
about the rest?

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

• Normalizes hidden layer inputs
• Helps with exploding/vanishing gradient problems
• Can increase training stability and convergence rate
• Can be understood as additional (normalization) layers (with

additional parameters)

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 1: Normalize Net Inputs

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 2: Pre-Activation Scaling

Ben Lengerich © University of Wisconsin-Madison 2025

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance

BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-
learningss21/blob/main/L11/code/batchnorm.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

BatchNorm in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm at Test-Time

Ben Lengerich © University of Wisconsin-Madison 2025

• Use exponentially weighted average (moving average) of mean and
variance

running_mean = momentum * running_mean + (1 - momentum) *
sample_mean

(where momentum is typically ~0.1; and same for variance)

• Alternatively, can also use global training set mean and variance

Related: LayerNorm

• Layer normalization (LN)

• BN calculates mean/std based on
a mini batch, whereas LN
calculates mean/std based on
feature/embedding vectors

• In the stats language, BN zero
mean unit variance, whereas LN
projects feature vector to unit
sphere

• LN in Transformers

Normalize everything?

Initialization

Weight initialization

Ben Lengerich © University of Wisconsin-Madison 2025

• Recall: Can’t initialize all weights to 0 (symmetry problem)

• But we want weights to be relatively small.
• Traditionally, we can initialize weights by sampling from a random uniform

distribution in range [0, 1], or better, [-0.5, 0.5]

• Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 or 0.01)

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Method:

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to
the layer
• For the first hidden layer, that is the number of features in the dataset; for the

second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

He Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.

• Assuming activations with mean 0, which is reasonable, Xavier
Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

• For ReLU, the activations are not centered at zero
• He initialization takes this into account

• The result is that we add a scaling factor of √2

Convolutional Neural Networks

Why images are hard

Do deep fully-connected nets solve this?

Full connectivity is a problem for large inputs

Ben Lengerich © University of Wisconsin-Madison 2025

• 3x200x200 images imply 120,000 weights per neuron in first hidden layer

Convolutional Neural Networks [LeCun 1989]

Ben Lengerich © University of Wisconsin-Madison 2025

• Let’s share parameters.

• Instead of learning position-specific weights, learn weights
defined for relative positions
• Learn “filters” that are reused across the image

• Generalize across spatial translation of input

• Key idea:
• Replace matrix multiplication in neural networks with a convolution

• Later, we will see that this can work for any graph-
structured data, not just images.

Weight sharing in kernels

Ben Lengerich © University of Wisconsin-Madison 2025

Reused weights (small)!

Convolutional Neural Networks [LeCun 1989]

Ben Lengerich © University of Wisconsin-Madison 2025

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of
IEEE, 86(11):2278–2324, 1998.

Convolutional Neural Networks [LeCun 1989]

Ben Lengerich © University of Wisconsin-Madison 2025

Each "bunch" of feature maps represents one hidden layer in the neural network.

Counting the FC layers, this network has 5 layers

Convolutional Neural Networks [LeCun 1989]

Ben Lengerich © University of Wisconsin-Madison 2025

“Pooling”: lossy compression

Ben Lengerich © University of Wisconsin-Madison 2025

Main ideas of CNNs

• Sparse-connectivity: A single element in the feature map is connected
to only a small patch of pixels. (This is very different from connecting
to the whole input image, in the case of multi-layer perceptrons.)

• Parameter-sharing: The same weights are used for different patches of
the input image.

• Many layers: Combining extracted local patterns to global patterns

CNNs give sparse connectivity

Ben Lengerich © University of Wisconsin-Madison 2025

Receptive fields grow over depth

Ben Lengerich © University of Wisconsin-Madison 2025

Parameter sharing

Ben Lengerich © University of Wisconsin-Madison 2025

Impact of convolutions on size

Ben Lengerich © University of Wisconsin-Madison 2025

Padding

Ben Lengerich © University of Wisconsin-Madison 2025

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025

Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025

Recall: Weight sharing in computation graphs

Ben Lengerich © University of Wisconsin-Madison 2025

.

Questions?

	Slide 1: STAT 453: Introduction to Deep Learning and Generative Models
	Slide 2: Course Schedule / Calendar
	Slide 3: What is Machine Learning?
	Slide 4: The Connection Between Fields
	Slide 5: What is Machine Learning?
	Slide 6: The building blocks of Deep Learning
	Slide 7: McCulloch & Pitt’s neuron model (1943)
	Slide 8: From biological neuron to artificial neuron
	Slide 9: Rosenblatt’s Perceptron
	Slide 10: Rosenblatt’s Perceptron
	Slide 11: Perceptron Learning Algorithm
	Slide 12: Perceptron Learning Algorithm (pseudocode)
	Slide 13: Perceptron Geometric Intuition
	Slide 14: Perceptron Geometric Intuition: Learning
	Slide 15: Perceptron Limitations
	Slide 16: Beyond Rosenblatt’s Perceptron
	Slide 17: A Selection of Common Activation Functions
	Slide 18: A Selection of Common Activation Functions
	Slide 19: A Selection of Common Activation Functions (cont.)
	Slide 20: Logistic Regression: A Bridge from Perceptron to Probabilistic Model
	Slide 21: Logistic Regression Neuron
	Slide 22: Logistic Regression
	Slide 23: Logistic Regression: Estimation
	Slide 24: Logistic Regression: Estimation
	Slide 25: Logistic Regression: Gradient Descent Learning Rule
	Slide 26: Logistic Regression: Learning Rule
	Slide 27: Multilayer Perceptron
	Slide 28: Multinomial (“Softmax”) Logistic Regression
	Slide 29: “Softmax”
	Slide 30: Requires one-hot encoding
	Slide 31: Loss Function (assuming one-hot encoding)
	Slide 32: Loss Function (assuming one-hot encoding)
	Slide 33: Multilayer Perceptrons Can Solve XOR
	Slide 34: A new problem: Training
	Slide 35: An algorithm to train models with hidden variables
	Slide 36: Backpropagation
	Slide 37: Computation graphs: ReLU
	Slide 38: Computation graphs: ReLU
	Slide 39: Computation graphs: ReLU
	Slide 40: Computation graphs: ReLU
	Slide 41: Computation graphs: ReLU
	Slide 42: Computation graphs: Single-path
	Slide 43: Computation graphs: Fully-Connected Layer
	Slide 44: Computation graphs: Weight-Sharing
	Slide 45: PyTorch: Automated Differentiation
	Slide 46: PyTorch Usage: Step 1 (Definition)
	Slide 47: PyTorch Usage: Step 2 (Creation)
	Slide 48: PyTorch Usage: Step 3 (Training)
	Slide 49: PyTorch Usage: Step 3 (Training)
	Slide 50: PyTorch Usage: Step 3 (Training)
	Slide 51: Improvements to optimization
	Slide 52: Note that our Loss is Not Convex Anymore
	Slide 53: Minibatch Training Recap
	Slide 54: Learning Rate Decay
	Slide 55: Learning Rate Decay
	Slide 56: Learning Rate Decay
	Slide 57: Training with “Momentum”
	Slide 58: Training with “Momentum”
	Slide 59: Training with “Momentum”
	Slide 60: Nesterov: A Better Momentum
	Slide 61: Nesterov: A Better Momentum
	Slide 62: Adaptive Learning Rates
	Slide 63: RMSProp
	Slide 64: ADAM (Adaptive Moment Estimation)
	Slide 65: Where we are…
	Slide 66: Regularization
	Slide 67: Parameters vs Hyperparameters
	Slide 68: Overfitting and Underfitting
	Slide 69: Bias-Variance Decomposition
	Slide 70: Bias-Variance & Overfitting-Underfitting
	Slide 71: Deep Learning works best with large datasets
	Slide 72: Many ways to improve generalization
	Slide 73: General Strategies to Avoid Overfitting
	Slide 74: Data Augmentation
	Slide 75: Reduce Network’s Capacity
	Slide 76: Early Stopping
	Slide 77: Early Stopping
	Slide 78: Effect of Regularization on Decision Boundary
	Slide 79: L2 regularization for Multilayer Neural Networks
	Slide 80: L2 regularization for Multilayer Neural Networks
	Slide 81: L2 regularization for Neural Networks in PyTorch
	Slide 82: L2 regularization for Neural Networks in PyTorch
	Slide 83: Dropout
	Slide 84: Dropout
	Slide 85: Dropout in PyTorch
	Slide 86: Normalization
	Slide 87: Normalization and gradient descent
	Slide 88: In deep models…
	Slide 89: Batch Normalization (“BatchNorm”)
	Slide 90: Batch Normalization (“BatchNorm”)
	Slide 91: Batch Normalization (“BatchNorm”)
	Slide 92: BatchNorm Step 1: Normalize Net Inputs
	Slide 93: BatchNorm Step 2: Pre-Activation Scaling
	Slide 94: BatchNorm Steps 1+2 Together
	Slide 95: BatchNorm Steps 1+2 Together
	Slide 96: BatchNorm and Backprop
	Slide 97: BatchNorm and Backprop
	Slide 98: BatchNorm and Backprop
	Slide 99: BatchNorm in PyTorch
	Slide 100: BatchNorm in PyTorch
	Slide 101: BatchNorm at Test-Time
	Slide 102: Related: LayerNorm
	Slide 103: Normalize everything?
	Slide 104: Initialization
	Slide 105: Weight initialization
	Slide 106: Xavier Initialization
	Slide 107: Xavier Initialization
	Slide 108: He Initialization
	Slide 109: Convolutional Neural Networks
	Slide 110: Why images are hard
	Slide 111: Full connectivity is a problem for large inputs
	Slide 112: Convolutional Neural Networks [LeCun 1989]
	Slide 113: Weight sharing in kernels
	Slide 114: Convolutional Neural Networks [LeCun 1989]
	Slide 115: Convolutional Neural Networks [LeCun 1989]
	Slide 116: Convolutional Neural Networks [LeCun 1989]
	Slide 117: “Pooling”: lossy compression
	Slide 118: Main ideas of CNNs
	Slide 119: CNNs give sparse connectivity
	Slide 120: Receptive fields grow over depth
	Slide 121: Parameter sharing
	Slide 122: Impact of convolutions on size
	Slide 123: Padding
	Slide 124: Backpropagation in CNNs
	Slide 125: Backpropagation in CNNs
	Slide 126: Recall: Weight sharing in computation graphs
	Slide 127: .

