STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich

Lecture 14: Review

October 20, 2025

Course Schedule / Calendar

Week Lecture Dates Topic Assignments
Module 3: Intro to Generative Models
9 10/27, 10/29 A Linear Intro to Generative Models,
Factor Analysis, Autoencoders, VAEs
11/3, 11/5 Generative Adversarial Networks, Project Midway Report
10 . .
Diffusion Models
Module 4: Large Language Models
1 11/10, 11/12 Sequence Learning with RNNs HW4
Attention, Transformers
12 11/17,11/19 GPT Architectures,
Unsupervised Training of LLMs
13 11/24, 11/26 Supervised Fine-tuning of LLMs, HWS5
Prompts and In-context learning
14 12/1,12/3 Foundation models, alignment, explainability
Open directions in LLM research
15 12/8, 12/10 Project Presentations Project Final Report
16 12/17 Final Exam Final Exam

[
Week Lecture Dates Topic Assighments
Module 1: Introduction and Foundations
1 9/3 Course Introduction
2 9/8,9/10 A Brief History of DL, HW1
Statistics / linear algebra / calculus review
3 9/15, 9/17 Single-layer networks
Parameter Optimization and Gradient Descent
a 9/22,9/24 Automatic differentiation with PyTorch, HW 2
Cluster and cloud computing resources
Module 2: Neural Networks
5 9/29, 10/1 Multinomial logistic regression,
Multi-layer perceptrons and backpropagation
6 10/6, 10/8 Regularization HW 3
Normalization / Initialization
7 10/13, 10/15 Optimization, Learning Rates Project Proposal
CNNs
8 10/20, 10/22 Review, In-class Exam
Midterm Exam

Ben Lengerich © University of Wisconsin-Madison 2025

What is Machine Learning?

The Traditional Programming Paradigm

Inputs (observations)

7N

Programmer —» Program —> Computer —> Outputs

(h |

Machine Learning

Inputs —
Computer —> Program

Outputs —

Ben Lengerich © University of Wisconsin-Madison 2025

The Connection Between Fields

Machine Learning

Ben Lengerich © University of Wisconsin-Madison 2025

What is Machine Learning?

Formally, a computer program is said to learn from experience € with
respect to some task 77 and performance measure P if its performance
at 7' as measured by P improves with E.

> Labeled data

Supervised Learning > Direct feedback

Task T°:

Experience €:

Performance P:

Learn a function h: X - Y
Labeled samples {(x;, yi)}t,

A measure of how good h is

> Predict outcome/future
> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

Task T°:

Experience €:

Performance P:

Discover structure in data
Unlabeled samples {x;}IL,

Measure of fit or utility

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Task T°:

Experience €:

Performance P:

Learn a policym: S = A
Interaction with environment

Expected reward

The building blocks of Deep Learning

McCulloch & Pitt’s neuron model (1943)

Inputs McCulloch & Pitts
(1943)
X Linear Hard

Combiner Limiter

‘:> Output
J_ BN,
*

Threshold

2% "%
Warren McCulloch Walter Pitts

Ben Lengerich © University of Wisconsin-Madison 2025

From biological neuron to artificial neuron

* McCulloch & Pitts AND I
neuron: Threshold and 0 10
(+1, ‘1) WelghtS Output ! 0 0

e Can represent “AND”,
IIORH’ IINOT”

Ty Y
* But not ”XOR” 0 0
11
N XOR 0 1
- + 1 1

+ 4+

+ + --

y
1

Ben Lengerich © University of Wisconsin-Madison 2025

Rosenblatt’s Perceptron

A learning rule for the computational/mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para.
Cornell Aeronautical Laboratory.

. -

perceptror{ ég 3 3
g i

AON.

Lo}
h - }

Source: hitp://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4/Rosen-2.jpg

Ben Lengerich © University of Wisconsin-Madison 2025

Rosenblatt’s Perceptron

Perceptrons generalize MP Neurons Classic Rosenblatt
i —>
Continuous Activation threshold function Perceptron

/ function

e

o = G(net) =

-net
+ée

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Learning Algorithm

e Assume binary classification task
* Perceptron finds decision boundary is classes are separable

4. ® class0
m class1 -...l. .
"l.- am
2 T
b ° * S ‘...I.I
0 @ ¢ .. =0 - .
® ’. Q.. s)
®
-2 ® .J@
L ‘ ®
® ® .
—4 .. ® ® .
. [animated GIF]
—4 -2 (I] 2 4

Iteration 0

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Perceptron Learning Algorithm (pseudocode)

Let
D= ({(xyl), (x®,), ., (i) € (R™ x {0,1})"

1. Initialize w :== 0™ (assume weight incl. bias)

2. For every training epoch:
1. For every(['],y[']) eD:
1.yl —O'(x w) «—— Only-O0or1
2. err = (y[l — i) «—— Only-1,0,0r1
3 w=w+err x xli

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Geometric Intuition

Decision boundary Weight vector is perpendicular

to the boundary. Why?

Remember,

. 0, wlix <0
v 1, wix >0

w'x = ||w|| - [|x]] - cos(6)

H_J

So this needs to be 0 at the boundary,
and it is zero at 90°

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Geometric Intuition: Learning

input vector for an example with label 1

This is the new weight vector
CORRECT SIDE

WRONG SIDE

For this weight vector, we make a wrong prediction;
hence, we update

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Limitations
|
* Rosenblatt’s Perceptron has many problems
* Linear classifier, no non-linear boundaries
* Binary classifier, cannot solve XOR problems
* Does not converge if classes are not linearly separable

* Many “optimal” solutions in terms of 0/1 loss on the training data
* Most will not be optimal in terms of generalization performance

Ben Lengerich © University of Wisconsin-Madison 2025

Beyond Rosenblatt’s Perceptron

Perceptrons generalize MP Neurons Classic Rosenblatt

/vthresholdfunction — Perceptron

Continuous

Activation

/ function \
sigmoid —— DL “Perceptron” /
»CD o sigmoid unit

o = G(net) =)

-net
+ée

* Many activation functions:
* Threshold function (perceptron, 1950+)
* Sigmoid function (before 2000)
* RelU function (popular since CNNs)
* Many variants of RelLU, e.g. leaky RelLU, GelLU

Ben Lengerich © University of Wisconsin-Madison 2025

A Selection of Common Activation Functions

[
Identity (Logistic) Sigmoid
B’ 1.07
6
0.8
4
2- 064
0
-2 0.4
—4
0.2 1
—6
-8+ 0.0
8 -6 -4 -2 0 2 4 6 8 -8 6 -4 -2 0 2 4 & 8
Tanh ("tanH") Hard Tanh
1.00 1 1.00 1
0.75 0.75 A
0.50 - 0.50 1
0.25 0.254
0.00 0.00
—0.25 - -0.25 4
1 ifz>1
~0.50 1 | exp(z) — exp(—=z) ~0.50 1 .
ors] ~ oxp(2) + exp(—2) o5] HardTanh(z) =|¢ -1 ifz< Tl
~1.00 ~1.00 z otherwise
8 6 -4 -2 0 2 4 6 8 5 6 -4 -2 0 2 4 6 8

Ben Lengerich © University of Wisconsin-Madison 2025

A Selection of Common Activation Functions

I
(Logistic) Sigmoid
Advantages of Tanh 06
* Mean centering 04]
e Positive and negative values 0]
e Larger gradients b0l
Tanh ("tanH")
Also simple o o
derivative: . Important to normalize inputs to mean zero and
0.00- use random weight initialization with avg. weight
d o centered at zero
—Tanh(z) = 1 — Tanh(2)*** | exp(z) — exp(—2)
dz 075 exp(z) + exp(—=z)

Ben Lengerich © University of Wisconsin-Madison 2025

A Selection of Common Activation Functions (cont.)

]
ReLU (Rectified Linear Unit) Leaky ReLU
81 g)
7])z 220 | LeakyReLU(z) = { =’ =20
61 ReLU(z) = {0, otherwise : ’) {a X 2, othe
5 s | LeakyReLU(z) = max(0, z) + & x min(0, z)
21 ReLU(z) = max(0, z) s
3 34
24 2
11 14
0] - . . : ' . . . , 01 a = 0.025
8 -6 -4 -2 0 2 4 6 8 8 6 -4 -2 0 2 4 & 8

ELU (Exponential Linear Unit) PReLU (Parameterized Rectified Linear Unit)

here, alpha is a trainable parameter

zZ, if2>0

PReLU(z) =
eLU(2) {az, otherwise

PReLU(z) = max(0, 2) + a x min(0, z)

-8 -6 -4 -2 0 2 4 6 8

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: A Bridge from

Perceptron to Probabilistic Model

Logistic Regression Neuron

* For binary classes y € {0, 1}
1

- 1l+e*

B0 \

Ty ———%z2=Y wzi+b— a=o0(z) —> "output"

"logistic sigmoid" o (z)

(1%

Wm
L'm

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression

* Given the output:

h(x) = o(w'x + b)

* We compute the probability as

) h(x) ify=1
Pylx) = {1 _h(x) ify=0
|

P(ylx) = a¥(1 —)~

Recall Bernoulli distribution...

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Estimation

e Given the probability:
P(ylx) = a¥(1 — a)1~¥)

* Under MLE estimation, we would like to maximize the multi-sample
likelihood:

(2) (7)

7] (g(z(i)))y (1 . g(z@)))ly

Likelihood

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Estimation

(2)

: n 1—
P(y[?’]? cony y[ﬂ'} |X[1]? ?X[ﬂ']) — H (J(z(i)))y (1 — J(z(i))) ’

=1

Y
Likelihood

* We are going to optimize via gradient descent, so let’s apply the
logarithm to separate components:

[((w) = log L(w)

n

|

Log-Likelihood

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Gradient Descent Learning Rule

oL 0Lda 0z
Ow; Oa dz Ow,

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Learning Rule

Stochastic gradient descent:
1. Initialize w:=0€ R™,b:=0
2. For every training epoch:
A. Forevery (xUl yliy e D
@ 9% :=ocx"Tw+b)
B) Vil = — (4 — glil)xl

Vol = —(y* —g1¥) Note
© w:=w+nx(—VuL) a—y e —(yl — g
b:=b+nx(=VpL)
—_——
learning rate T

negative gradient

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Perceptron

* Computation Graph with Multiple Fully-Connected Layers

T Y1 Y2 Y3
01 l
To 02 > L(Y? O)

use softmax if this is a multi-class
problem with mutually exclusive classes

Ben Lengerich © University of Wisconsin-Madison 2025

Multinomial (“Softmax”) Logistic Regression

|
activations are
class-membership probabilities
(mutually exclusive classes)

l

predicted class label

S
0
F

— az A
T
v) Y
A
X

argmax

Ben Lengerich © University of Wisconsin-Madison 2025

“Softmax”

i i e’
Ply=1| zi]) — UsoftmaX(Zi]) =]

te{j.h} N\
h is the number of class
labels

A “soft” (differentiable) version of "max”

Ben Lengerich © University of Wisconsin-Madison 2025

Requires one-hot encoding

class labels class_0 class_1 class_ 2 class_3
0 1 0 0 0
1 >
0 1 0 0
0 0 0 1
0 0 1 0

Ben Lengerich © University of Wisconsin-Madison 2025

Loss Function (assuming one-hot encoding)

(Multi-category) Cross Entropy
for h different class labels

r— LL Mlog(])

1=1 7=1

Ben Lengerich © University of Wisconsin-Madison 2025

Loss Function (assuming one-hot encoding)

[vbina.ry — = Z (y[z] log(a‘[Z]) T (1 o y[l]) log(l o a’[Z]))
1=1

This assumes one-hot encoded labels!
n h
_ e [2]
£=>>" 1o d
i=1 j=1

for h different class labels
(Multi-category) Cross Entropy

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Perceptrons Can Solve XOR

m ClassO0
A Class 1

m ClassO0
A Class1

Decision boundaries of two different multilayer perceptrons on simulated data
NN-SVG ~ solving the XOR problem

Style:

https://alexlenail.me/NN-SVG/index.html

Ben Lengerich © University of Wisconsin-Madison 2025

A new problem: Training

* How can we train a multilayer model?
* No targets / ground truth for the hidden nodes

* Solution: Backpropagation

Ben Lengerich © University of Wisconsin-Madison 2025

An algorithm to train models with hidden

variables

Backpropagation

* Neural networks are function compositions that can be represented as
computation graphs:

X @@f(x) %:

Input
variables Outputs

Intermediate
computations

* By applying the chain rule, and working in reverse order, we get:

dfn L afn aftl . afn afi.i 8fi1
Z 5‘f;.;1 Ox N Z Z C}fig Ox N

i1 Em(N) i1 E'rr(n) igETm(iq)

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

— Suppose we have the following activation function:

ax, w, b) =relu(w -x + b)

z ifz>0
81 relu(z) —{ 0 otherwise

6_

for example,
activationa 4 -

-100 -75 -50 -25 00 25 50 75
for example, net input z

RelLU = Rectified Linear Unit

(prob. the most commonly used activation function in DL)

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

a(x, w, b) =relu(w -x + b)
—

WU)
Y
4
b
X a= relu(v)]
U = WxX
W

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

{a = reIu(v)J

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

{a = reIu(v)J

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: ReLU

P[a = relu(v)]

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Single-path

ﬁ(y, 01 (w1 . 32‘1))

Y
ol l
0 ‘C(yao):l
.7 w1 — aq » 0 — |
0&1 0o
ow, Oay

ol ol 0do OJday

8—m:80.8a1.8—m

(univariate chain rule)

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Fully-Connected Layer

aagl)
awﬂ
80351)

awf}

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Weight-Sharing

E(y,ffs [Ul(wl - 21), 02(w1 '55'1)])

01(2’1) = a
8051
ow,. a1 do

Y
- da ﬂl
w]_ \ 0o £(y,o)=l

1 ~ 03(a'1;a'2) =0
8&2

8_’11)1 02(21) = a2

Upper path

oL _ 0t 9o Oa Ol 0o Oay . .
ow, 0o Oa; Ow, ' 8o Oay Ow, (multivariable chain rule)

Lower path

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch: Automated Differentiation

PyTorch Usage: Step 1 (Definition)

Backward will be inferred

class MultilayerPerceptron(torch.nn.Module): « . .
Y P () automatically if we use the nn.Module

def _ init__ (self, num features, num classes): class!
super (MultilayerPerceptron, self). init ()

lst hidden layer _

self.linear 1 = torch.nn.Linear(num_ feat, num hl) Define model parameters

2nd hidden layer that will be instantiated
self.linear_2 = torch.nn.Linear(num_hl, num_h2) when created an object of
this class

Output layer
self.linear out = torch.nn.Linear(num_h2, num classes)

def forward(self, x):
out = self.linear_1(x) Define how and it what

out = F.relu(out) order the model parameters

out = self.linear 2(out) :
out = F.relu(out) should be used in the

logits = self.linear out(out) forward Pass
probas = F.log softmax(logits, dim=1)
return logits, probas L

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 2 (Creation)

torch.manual_ seed(random seed)
model = MultilayerPerceptron(num_features=num_features,I Instantiate model

num_classes=num_classes) (creates the model parameters)

model = model.to(device)

optimizer = torch.optim.SGD(model.parameters(),
lr=learning rate)

I Define an optimization method

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

Run for a specified number of
epochs
: lterate over minibatches
for epoch in range(num epochs): .
model.train() / In epOCh
for batch idx, (features, targets) in enumerate(train loader):
If your model is on the
GPU, data should also

features = features.view(-1, 28*28).to(device)

targets = targets.to(device) <
be
FORWARD AND BACK PROP on -the G P U
logits, probas = model(features)
cost = F.cross entropy(probas, targets)
optimizer.zero grad()
cost.backward() y = model(x) calls .__call__ and then .forward(), where some
extra stuff is done in _call_;
UPDATE MODEL PARAMETERS don't run y = model.forward(x) directly
optimizer.step()
model.eval()
with torch.no_grad(): Gradients at each leaf node are accumulated under the .grad attribute, not just stored. This is why we

compute accurac
P Y have to zero them before each backward pass

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28*28).to(device)
targets = targets.to(device)

FORWARD AND BACK PROP
logits, probas = model(features) <«——— This willrun the forward() method

loss = F.cross_entropy(logits, targets)<«——— Define a loss function to optimize
optimizer.zero grad() «—— Set the gradient to zero

(could be non-zero from a previous forward pass)
loss.backward()

Compute the gradients, the backward is
UPDATE MODEL PARAMETERS : n "
o automatically constructed by "autograd" based on
optimizer.step()

the forward() method and the loss function
model.eval() \ Use the gradients to update the weights according to
with torch.no grad(): the optimization method (defined on the previous

compute accuracy slide)
E.g., for SGD, w := w + learning_rate x gradient

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()

for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28+*28).to(device)
targets = targets.to(device)

FORWARD AND
logits, probas = mgdel(features)

loss = F.cross_entropy(logits, targets)
optimizer.zero grad()

loss.backward()

UPDATE MODEL PARAMETER
optimizer.step()
For evaluation, set the model to eval mode (will be
model.eval() < relevant later when we use DropOut or BatchNorm)
with torch.no grad():

compute accurac;““sm‘ahhﬁ‘\ﬁ

This prevents the computation graph for
backpropagation from automatically being build in
the background to save memory

Ben Lengerich © University of Wisconsin-Madison 2025

Improvements to optimization

Note that our Loss is Not Convex Anymore
* Linear regression, Adaline, Logistic Regression, and Softmax Regression
have convex loss functions

e But our deep loss is no longer convex (most of the time)

* |n practice, we usually end up at different local minima if we repeat the training
(e.g. by changing the random seed for weight initialization or shuffling the dataset
while leaving all settings the same

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018. Visualizing the loss landscape of neural nets.
In Advances in Neural Information Processing Systems (pp. 6391-6401).

Ben Lengerich © University of Wisconsin-Madison 2025

Minibatch Training Recap

* Minibatch learning is a form of
T stochastic gradient descent
Lost Miwimun o Egch minibatch can be considered a
%) sample drawn from the training set

(where the training set is in turn a
sample drawn from the population)

* Hence, the gradient is noisier

— D A noisy gradient can be:
e good: chance to escape local minima
* bad: can lead to extensive oscillation

Ben Lengerich © University of Wisconsin-Madison 2025

Learning Rate Decay

» Batch effects -- minibatches are samples of the training
set, hence minibatch loss and gradients are approximations

* Hence, we usually get oscillations

* To dampen oscillations towards the end of the training, we can

decay the learning rate ovanally weight kel aurgs
. . g/;;(W hole - r‘ru.nt--{ S{L Aogs
* Danger of learning rate is to decrease the A /
learning rate too early '
e Practical tip: try to train the model without
learning rate decay first, then add itlater /¢
* You can also use the validation performance
(e.g., accuracy) to judge whether Ir decay is
useful (as opposed to using the training loss)

Ben Lengerich © University of Wisconsin-Madison 2025

Learning Rate Decay

Most common variants for Ir decay:
1. Exponential Decay:

— -kt
Nt = No€
where k is the decay rate
0.5 1 —— decay rate 0.05
——— decay rate 0.01
0.4 —— decay rate 0.1
[
T 0.3
% 0.2
0.1
0.0 1

0 20 40 60 80 100
Iteration (usually: epoch)

Ben Lengerich © University of Wisconsin-Madison 2025

Learning Rate Decay

Most common variants for Ir decay:

1. Exponential Decay:
Ne = 1Moe ™"
where k is the decay rate

2. Halving the learning rate:
Ne = Ne—1/2
where t is a multiple of T, (e.g. T, = 100)

3. Inverse decay:
Mo

T =TTkt

Ben Lengerich © University of Wisconsin-Madison 2025

Training with “Momentum”

 Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

https://www.asherworldturns.com/zorbing-new-zealand/

Ben Lengerich © University of Wisconsin-Madison 2025

https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/

Training with “Momentum”

* Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

<

Without momentum With momentum

Key take-away: Not only move in the (opposite) direction of the
gradient, but also move in the “weighted averaged" direction of the
last few updates

Ben Lengerich © University of Wisconsin-Madison 2025

Training with “Momentum”

Often referred to as "velocity" V

"velocity" from the
previous iteration

oL
w; j(t—1)+n- ™ (1)
i,

A’wi’j (t) .

:G(A

Usually, we choose a \

momentum rate between

0.9 and 0.999; you can Regular partial derivative/

think of it as a "friction” or gradient multiplied by
Qian, N. (1999). On the momentum term in gradient descent n . n .
learning algorithms. Neural Networks : The Official Journal of the dampenlng parameter |eal'nlng I'ate at Current
International Neural Network Society, 12(1), 145-151. .

time step t

http://doi.org/10.1016/50893-6080(98)00116-6

Ben Lengerich © University of Wisconsin-Madison 2025

Nesterov: A Better Momentum

I
We already know where the momentum part will push us in this step. Let’s
calculate the new gradient with that update in mind:
Before:
Aw; == a-Aw;_1 + 1 Ve L(Wy)
Wil = Wy — Awy
Nesterov:
Aw; :=a-Awi_1+ 1 - Vo l(Wy —a- Aw;_q)
Wil = Wy — Awy
Nesterov, Y. (1983). A method for unconstrained convex minimization Sutskever, |., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated importance of initialization and momentum in deep learning. ICML (3),
as Soviet.Math.Docl.), vol. 269, pp. 543—547. 28(1139-1147), 5.

Ben Lengerich © University of Wisconsin-Madison 2025

Nesterov: A Better Momentum

momentum term wnv,

-
-

-

-="
- -
.....
-
-
-

g8, + pv,) < correction term (gradient of the
K point where you would have
--------- Ot ended up via the standard
momentum method)

Figure 1. (Top) Classical Momentum (Bottom) Nes-
terov Accelerated Gradient

Sutskever, |., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147), 5.

Ben Lengerich © University of Wisconsin-Madison 2025

Adaptive Learning Rates

Many different flavors of adapting the learning rate

Rule of thumb:
1. decrease learning if the gradient changes its direction

2. increase learning if the gradient stays consistent

Ben Lengerich © University of Wisconsin-Madison 2025

RMSProp

e Unpublished (but very popular) algorithm by Geoff Hinton
* Based on Rprop [1]
* Very similar to another concept called AdaDelta

* Main idea: divide learning rate by an exponentially decreasing
moving average of the squared gradients
 RMS = “Root Mean Squared”
e Takes into account that gradients can vary widely in magnitude
 Damps oscillations like momentum (in practice, works better)

[1] Igel, Christian, and Michael Husken. "Improving the Rprop learning algorithm." Proceedings of the Second
International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.

Ben Lengerich © University of Wisconsin-Madison 2025

ADAM (Adaptive Moment Estimation)

* Probably the most widely used optimization algorithm in DL

* Combination of momentum + RMSProp

Momentum-like term: m
. oL

/ﬁm@>:=a-ﬂrm€?ﬂ+n-aw”(t)

4z
t
&U% - ()
RMSProp term: ar 2
r:= - MeanSquare(w; j,t —1) + (1 — 5)()
Ow;,;(t)
ADAM update:

i
1 L? \/F—|—€

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

my:=a-my_1+ (1 —a)-

Ben Lengerich © University of Wisconsin-Madison 2025

Where we are...

 Good news: We can solve non-linear problems!
* Bad news: Our multilayer neural networks have lots of
parameters and it’s easy to overfit the data...

Next time:

A (i) |

O x /O 1=

: c‘)yO “ (0.0 x \O O

% 3 X . 3(" X)(’)(._
o =3 — T
Zaw‘,& WJM@MIEOI["\D"P P“"Il} Louw f'd“(“’".i‘d‘"n (rood (owpromfe
> lﬂuj(/l l/iag =% lmdh Vanau

Ben Lengerich © University of Wisconsin-Madison 2025

Regularization

Parameters vs Hyperparameters

weights (weight parameters)
biases (bias units)

Ben Lengerich © University of Wisconsin-Madison 2025

minibatch size

data normalization schemes

number of epochs

number of hidden layers

number of hidden units

learning rates

(random seed, why?)

loss function

various weights (weighting terms)
activation function types

regularization schemes (more later)
weight initialization schemes (more later)
optimization algorithm type (more later)

Overfitting and Underfitting

We usually use the test set error
as estimator of the generalization error

Error

Overfitting

Model Capacity

Ben Lengerich © University of Wisconsin-Madison 2025

Bias-Variance Decomposition

General Definition: Intuition:
Biasg é — F é —0 -~ lctore for simplcty)
ﬁ[] A£] - % \\ Mo
Varo[f] = E |62] — (E[0)) N G
Voauce (;‘)34
Bl'&%

Ben Lengerich © University of Wisconsin-Madison 2025

Bias-Variance & Overfitting-Underfitting

— - —_—
R Underfitting « Overfitting
AR increases increases

B

Model Capacity

Ben Lengerich © University of Wisconsin-Madison 2025

Deep Learning works best with large datasets

Generalization
Error

s
‘b
-

.-

™ -

-

h-

-
--_
L.

Deep Learning

Training Dataset Size

Ben Lengerich © University of Wisconsin-Madison 2025

Collecting more data

Data augmentation

Many ways to improve generalization

Label smoothing

Dataset Semi-supervised

Leveraging unlabeled data _~~
o~ Self-supervised

Meta-learning
Leveraging related data
'< Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchMNorm and variants
Normalization

Weight standardization

Gradient centralization

Adaptive learning rates

Training loop Auxiliary losses
Gradient clipping

L2 (/L1) regularization

Regularization Early stopping

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

General Strategies to Avoid Overfitting

* Collecting more data, especially high-quality data, is best & always
recommended

e Alternatively: semi-supervised learning, transfer learning, and self-supervised
learning

e Data augmentation is helpful
e Usually requires prior knowledge about data or tasks

* Reducing model capacity can help

Ben Lengerich © University of Wisconsin-Madison 2025

Data Augmentation

* Key Idea: If we know the label shouldn’t depend on a transformation
h(x), then we can generate new training data h(x‘),y‘

* But we must already know something that our outcome doesn’t
depend on

* Example: image classification
* rotation, zooming, sepia filter, etc.

Ben Lengerich © University of Wisconsin-Madison 2025

Reduce Network’s Capacity

* Key Idea: The simplest model that matches the outputs should
generalize the best

* Choose a smaller architecture: fewer hidden layers & units, add
dropout, use ReLU + L1 penalty to prune dead activations,e tc.

* Enforce smaller weights: Early stopping, L2 norm penalty
e Add noise: Dropout

* Note: With recent LLMs and foundation models, it’s possible to use a
large pretrained model and perform efficient fine-tuning (updating
small number of parameters of a large model)

Ben Lengerich © University of Wisconsin-Madison 2025

Early Stopping

 Step 1: Split your dataset into 3 parts (as always)

e Use test set only once at the end
* Use validation accuracy for tuning

Dataset

Training Validation Test
dataset dataset dataset

Ben Lengerich © University of Wisconsin-Madison 2025

Early Stopping

 Step 2: Stop training early

* Reduce overfitting by observing the training/validation accuracy gap during training
and then stop at the “right” point

A

Good early stopping point

Training set

Accuracy

Validation set

v

Epoéhs

Ben Lengerich © University of Wisconsin-Madison 2025

Effect of Regularization on Decision Boundary

Assume a nonlinear model

0 /\
VAN
| xO X O X -
= © “ 0.0 x \O 0O
X XK X Xk
- > —)

[atﬂi,& rfju(am?a(nb'ﬂ W{{B LOLJ rfdu(am'gqﬁ'aq
= lﬂ(ff(/l b/as =)D lxudh Vanau o

6’000((wampm,[e

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

n L
1 T A
L2-Regularized-Cost,, , = n Z Ly, ") + n Z w1
sum/ov'er layers

where ||W(l) | |% is the Frobenius norm (squared):

w2 = ZZ 2

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

Regular gradient descent update:

oL 2)

Wi j = Wi — 1 F—wy,
J J (8Wi,j Wi,z

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Manually:

regularize loss
L2 = 0.
for name, p in model.named parameters():
if 'weight' in name:
L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward ()

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Automatically:

HHHHHHHHHHHHHHHAH A A A A A AHHAHHAHHAHHAHHHHFHHFHHHHHHH
Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),

1r=0.1,

weight decay=LAMBDA)

for epoch in range(num epochs):

Compute outputs
out = model(X train tensor)

Compute gradients

cost = F.binary cross entropy(out, y train tensor)
optimizer.zero grad()

cost.backward()

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

P
L1 (2)
aq
> ;
T2 agz)
P

Originally, drop probability 0.5

(but 0.2-0.8 also common now)

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

 How do we drop node activations practically / efficiently?

Bernoulli Sampling (during training):

* p :=drop probability

* v :=random sample from uniform distribution in range [0, 1]
* Viev:v;, =0ifv; <pelsel

*a=a@Ov (o X 100% of the activations a will be zeroeqd)

Then, after training when making predictions (during "inference")

scale activationsvia a:=a® (1 — p)

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout in PvTorch

E— class MultilayerPerceptron(torch.nn.Module):

def __init_ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

Ben Lengerich © University of Wisconsin-Madison 2025

Normalization

Normalization and gradient descent

— Surface of a convex cost function

" minimum (for simplicity)
N

w| (=== —1

(Keep in mind that we are using
the same learning rate for all weights, so large parameters
will dominate the updates)

w2

[
>

"Standardization"” of input features

w1 " i ol —
=
J

(scaled feature will have zero mean,
> unit variance)

Ben Lengerich © University of Wisconsin-Madison 2025

In deep models...

Normalizing the inputs only affects the first hidden layer...what
about the rest?

Ben Lengerich © University of Wisconsin-Madison 2025

Batch Normalization (“BatchNorm”)

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

* Normalizes hidden layer inputs

* Helps with exploding/vanishing gradient problems

* Canincrease training stability and convergence rate

e Can be understood as additional (normalization) layers (with
additional parameters)

Ben Lengerich © University of Wisconsin-Madison 2025

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization (“BatchNorm”)
(2)

— Suppose, we have net input z;
associated with an activation in the 2nd hidden layer

Ben Lengerich © University of Wisconsin-Madison 2025

Batch Normalization (“BatchNorm”)

Now, consider all examples in a minibatch such that the net input

of a given training example at layer 2 is written as Z§2) [7’]

where ¢ € {1,...,n}

In the next slides, let's omit the
layer index, as it may be
distracting...

o)

Hip)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 1: Normalize Net Inputs

1 i
Hi = E Zg[]
1 i
oj =~ > (5" —)’

Ben Lengerich © University of Wisconsin-Madison 2025

In practice:
R
Z/‘[j?,] _ 7 J

1/0'32-—|—€

For numerical stability, where
epsilon is a small number like 1E-5

BatchNorm Step 2: Pre-Activation Scaling
o A
;[z] — My
Jj

R

Controls the mean

Controls the spread or scale

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Steps 1+2 Together

1]
. 2 — s
=5 K

gj
/ /

1
ry — zg) —»z’gl)—>a’§1)—> ag) first hidden layer

a;,‘[;] — ’YJ . Z/‘[j?:] _|_ /BJ

¥} second hidden layer

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Steps 1+2 Together

o} =72 + B,

N

This parameter makes the bias units redundant

Also, note that the batchnorm parameters
are vectors with the same number of
elements as the bias vector

Ty

i)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

2
/(2) () — Hj /(2) _
. j
@ . .ﬁ.
n (2)[7] n
ol ’j
353- ; 3‘1;:(?_2)[i 00, - ; 3{1";2)]
n (2)[4] n
o _§~ O 0o’ _ O

3’}/3 P aa;.gQ)[i] a’Yj — aa‘,;Q)[i] J

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

e P @-0-0

Since the minibatch mean and
variance act as parameters, we
can/have to apply the
multivariable chain rule

(1)

o ol 3z;§_2)[i] N ol Oy, N ol 3032_
323(_2)[2'] 3z,§_2)[i] azj(_z)[i] Oy azj(-Z)[i] 3032. o J@M
— ol . 1 —|—ﬁ. l_l_ ol . 2(23('2)_H’j)
82152)[%'] o; Ou; n 3032 n

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

) or 0P o au, 8l 80
q i q T ' T 732 A~ @0
92 oy @l 9, @6 T oy 9, T 907 g,
4 R f ‘ (2)
BRI I S U S ")
| 9@ o | Opi| no 0o’ n
7 Y, — /

If you like math & engineering, you can solve the remaining terms
as an ungraded HW exercise ;)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm in PyTorch

class MultilayerPerceptron(torch.nn.Module):

def __init_ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1, bias=False)
torch.nn.BatchNormld (num_hidden_1),
torch.nn.RelLU(),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False)
torch.nn.BatchNormld (num_hidden_2),
torch.nn.ReLU(),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

https://github.com/rasbt/stat453-deep-
Ben Lengerich © University of Wisconsin-Madison 2025 learningss21/blob/main/L11/code/batchnorm.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

BatchNorm in PyTorch

I def train_model(model, num_epochs, train_loader,
valid_loader, test_loader, optimizer, device):

start_time = time.time()
minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
for epoch in range(num_epochs):

model.train()
for batch_idx, (features, targets) in enumerate(train_loader):

features = features.to(device)
targets = targets.to(device)

FORWARD AND BACK PROP

logits = model(features)

loss = torch.nn.functional.cross_entropy(logits, targets)
optimizer.zero_grad()

loss.backward()

UPDATE MODEL PARAMETERS don't forget mOdel'train()
optimizer.step() and modeleval()
LOGGING in training and test loops

minibatch_loss_list.append(loss.item())
if not batch_idx % 50:
print(f'Epoch: {epoch+1:03d}/{num_epochs:@3d} '
f'| Batch {batch_idx:04d}/{len(train_loader):04d} '
f'| Loss: {loss:.4f}')

model.eval()
with torch.no_grad(): # save memory during inference
train_acc = compute_accuracy(model, train_loader, device=device)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm at Test-Time

e Use exponentially weighted average (moving average) of mean and
variance

running_mean = momentum * running_mean + (1 - momentum) *
sample_mean

(Where momentum is typically ~0.1; and same for variance)

* Alternatively, can also use global training set mean and variance

Ben Lengerich © University of Wisconsin-Madison 2025

Related: LayerNorm

e Layer normalization (LN)

X141

* BN calculates mean/std based on
a mini batch, whereas LN

Pre-LLN Transformer

calculates mean/std based on o lem)
feature/embedding vectors ;gjij;jif; ;*Nj;ffff,p;;, -
[12’ - RZLU(I{%E’II‘[I{” R LG
* |[n the stats language, BN zero el R ATET T i
. . Final LayerNorm: 2% ; ; + LayerNorm(z}"5, ;)
mean unit variance, whereas LN Ml s
projects feature vector to unit
sphere /l
X1

* LN in Transformers

Normalize everything?

Batch Norm Layer Norm Instance Norm Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C' as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).

Initialization

Weight initialization

e Recall: Can’t initialize all weights to O (symmetry problem)

* But we want weights to be relatively small.

* Traditionally, we can initialize weights by sampling from a random uniform
distribution in range [0, 1], or better, [-0.5, 0.5]

* Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 or 0.01)

Ben Lengerich © University of Wisconsin-Madison 2025

Xavier Initialization

Method:
 Step 1: Initialize weights from Gaussian or uniform distribution

* Step 2: Scale the weights proportional to the number of inputs to
the layer

* For the first hidden layer, that is the number of features in the dataset; for the
second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.

Ben Lengerich © University of Wisconsin-Madison 2025

Xavier Initialization

|
Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of
independent variables is the sum of the variances); square root for

standard deviation

mp_1
Var (zj(-l)) — Var Z Wj(,?ag_l)
j=1
m(l_l) m(l—l)
= Z Var [Wj(,?a,g_l)] = Z Var [WJ(?] Var [a,(cl_l)]
j=1 i=1
m (=1
= Z Var [W(l)] Var [a(l_l)] = m{~1 Var [W(l)] Var [a(l_l)]
j=1

Ben Lengerich © University of Wisconsin-Madison 2025

He Initialization

* Assuming activations with mean 0, which is reasonable, Xavier

Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

* For RelU, the activations are not centered at zero
 He initialization takes this into account

 The result is that we add a scaling factor of V2

2
) .— w .
wh .—w \/m(u)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks

Why images are hard

Different lighting, contrast, viewpoints, etc.

Image Source: Image Source: https://www.123rf.com/
twitter.com%2Fcats&psig=AOvVaw30_o-PCM- photo_76714328_side-view-of-tabby-cat-face-over-
K21DIMAJQimQ4&ust=1553887775741551 white.html

Or even simple translation

2 5.' ; Do deep fully-connected nets solve this?

:) 5
25 25

Full connectivity is a problem for large inputs

input layer
hidden layer 1 hidden layer 2

* 3x200x200 images imply 120,000 weights per neuron in first hidden layer

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

* Let’s share parameters.

* |Instead of learning position-specific weights, learn weights
defined for relative positions
* Learn “filters” that are reused across the image
* Generalize across spatial translation of input

e Key idea:

e Replace matrix multiplication in neural networks with a convolution

* Later, we will see that this can work for any graph-
structured data, not just images.

Ben Lengerich © University of Wisconsin-Madison 2025

Weight sharing in kernels

|
Input
Kernel .. .
c || d Sliding filters (kernels)
w I
g h
y z
k)
Output .
v iy Reused weights (small)!
—>
ow + br + bw + ex + cw + dr +
ey + fz fvu + gz gy + hz
ew + fr + fw + gz + gw + hzr + .
i+ gz jy 4 ks ky + Iz Fig. Goodfellow et al. 2016

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

|
FROC, OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT E@28x08 " p

32x32 S2: 1. maps 05 layer Fs layer DUTF‘UT

. |
Convolutiens Subsampling Convolutions ut}samp g FuII mnnectu:-n

sconnections

Fig. 2. Architecture of LeNet-5, a Contlutional Neural Network
whose weights are constrained to be idefigal.

tre for digits recognition. EachNglane is a featyfe map, i.e. a set of units

"Automatic feature extractor" "Regular classifier"

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of
IEEE, 86(11):2278-2324, 1998.

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER 1998 7

' f. maps 16@5x5

Co:1ayer Fe:layer OUTPUT

INPUT

3039 6@28x28

—

I
Fullconrlnection ‘ Gaussian connections

Convolution sampli i dosampling Full connection

Fig. 2. Architecture of LeNet-5, a pfolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained t& be identical.

Each "bunch" of feature maps represents one hidden layer in the neural network.

Counting the FC layers, this network has 5 layers

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER 1998 Size of the resulting lavers
— Number of feature detectors P g'ay

C3:f. maps 16@10x10

14 feature maps S4: f. maps 16@5x5 I-
INPUT o P Multi-layer perceptron
32x32 S2: f. maps “laver OUTPUT
6@14x14 - lay 10

; | |
| Full connection \ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architgctlire of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)

Ben Lengerich © University of Wisconsin-Madison 2025

“Pooling”: lossy compression

Sebastian Raschka, Vahid Mirjalili. Python Machine

Pooling (P,,.)
e 7 N

2 | 1 7‘*\1_\2 S Max-pooling Mean-pooling
51013 "

11718 3.78|(2.33
(032 3 |[1.22
6|25

31610

No-te: Learning. 3rd Edition. Birmingham, UK: Packt
) ¥ stride=(3, 3) Publishing, 2019. ISBN: 978-1789955750

Ben Lengerich © University of Wisconsin-Madison 2025

Main ideas of CNNs

* Sparse-connectivity: A single element in the feature map is connected
to only a small patch of pixels. (This is very different from connecting
to the whole input image, in the case of multi-layer perceptrons.)

 Parameter-sharing: The same weights are used for different patches of
the input image.

 Many layers: Combining extracted local patterns to global patterns

CNNs give sparse connectivity

Sparse
connections
due to small
convolution

kernel

Dense
connections

(Gioodhaliow 2016

Ben Lengerich © University of Wisconsin-Madison 2025

Receptive fields grow over depth

Figure 9.4 (oot 2016

Ben Lengerich © University of Wisconsin-Madison 2025

Parameter sharing
Convolution .
shares the same

parameters
across all spatial
locations

Traditional
matrix
multiplication

does not share @
any parameters

(-

Q5 OlO50
050050
04 Ol050
ORONOXO

F|g ure g 5 (Goadislicw 2016)

Ben Lengerich © University of Wisconsin-Madison 2025

Impact of convolutions on size

Feature map size: nout width kernel width
/ padding
W K 2P
0 — R
/ S
output width stride

Ben Lengerich © University of Wisconsin-Madison 2025

Padding Siftpu

input

No padding, stride=1

padding=2, stride=1

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

No padding, stride=2

Ben Lengerich © University of Wisconsin-Madison 2025

Backpropagation in CNNs

* Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025

Backpropagation in CNNs

* Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Due to weight sharing: w; = ws

gEES =01
20 =S ___——_‘w2?_._|
6 5 W 15 2 % Optional averaging
| . s
weight update: 1/ 0, oL
w1y =W =W — N
1= W =W (8w1 8w2)

Ben Lengerich © University of Wisconsin-Madison 2025

Recall: Weight sharing in computation graphs

—
8(1,1 0'1(21) = Qi

B,

wp — Qi do Yy
8@1 ﬁ l

0o v L(y,0) =1
o — |

Wy X1 = <1

0'3(&1, 02) =0
._ 'UJ]_ 8a2

8w1 0'2(21) = a9

Upper path

ol 0l 0o Oay Ol 0o Oa , , .
Bw: ~ 9o 8as ow, " 9o Bay Ows (multivariable chain rule)

Lower path

Ben Lengerich © University of Wisconsin-Madison 2025

Questions?

Ey
QWISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

>
)

	Slide 1: STAT 453: Introduction to Deep Learning and Generative Models
	Slide 2: Course Schedule / Calendar
	Slide 3: What is Machine Learning?
	Slide 4: The Connection Between Fields
	Slide 5: What is Machine Learning?
	Slide 6: The building blocks of Deep Learning
	Slide 7: McCulloch & Pitt’s neuron model (1943)
	Slide 8: From biological neuron to artificial neuron
	Slide 9: Rosenblatt’s Perceptron
	Slide 10: Rosenblatt’s Perceptron
	Slide 11: Perceptron Learning Algorithm
	Slide 12: Perceptron Learning Algorithm (pseudocode)
	Slide 13: Perceptron Geometric Intuition
	Slide 14: Perceptron Geometric Intuition: Learning
	Slide 15: Perceptron Limitations
	Slide 16: Beyond Rosenblatt’s Perceptron
	Slide 17: A Selection of Common Activation Functions
	Slide 18: A Selection of Common Activation Functions
	Slide 19: A Selection of Common Activation Functions (cont.)
	Slide 20: Logistic Regression: A Bridge from Perceptron to Probabilistic Model
	Slide 21: Logistic Regression Neuron
	Slide 22: Logistic Regression
	Slide 23: Logistic Regression: Estimation
	Slide 24: Logistic Regression: Estimation
	Slide 25: Logistic Regression: Gradient Descent Learning Rule
	Slide 26: Logistic Regression: Learning Rule
	Slide 27: Multilayer Perceptron
	Slide 28: Multinomial (“Softmax”) Logistic Regression
	Slide 29: “Softmax”
	Slide 30: Requires one-hot encoding
	Slide 31: Loss Function (assuming one-hot encoding)
	Slide 32: Loss Function (assuming one-hot encoding)
	Slide 33: Multilayer Perceptrons Can Solve XOR
	Slide 34: A new problem: Training
	Slide 35: An algorithm to train models with hidden variables
	Slide 36: Backpropagation
	Slide 37: Computation graphs: ReLU
	Slide 38: Computation graphs: ReLU
	Slide 39: Computation graphs: ReLU
	Slide 40: Computation graphs: ReLU
	Slide 41: Computation graphs: ReLU
	Slide 42: Computation graphs: Single-path
	Slide 43: Computation graphs: Fully-Connected Layer
	Slide 44: Computation graphs: Weight-Sharing
	Slide 45: PyTorch: Automated Differentiation
	Slide 46: PyTorch Usage: Step 1 (Definition)
	Slide 47: PyTorch Usage: Step 2 (Creation)
	Slide 48: PyTorch Usage: Step 3 (Training)
	Slide 49: PyTorch Usage: Step 3 (Training)
	Slide 50: PyTorch Usage: Step 3 (Training)
	Slide 51: Improvements to optimization
	Slide 52: Note that our Loss is Not Convex Anymore
	Slide 53: Minibatch Training Recap
	Slide 54: Learning Rate Decay
	Slide 55: Learning Rate Decay
	Slide 56: Learning Rate Decay
	Slide 57: Training with “Momentum”
	Slide 58: Training with “Momentum”
	Slide 59: Training with “Momentum”
	Slide 60: Nesterov: A Better Momentum
	Slide 61: Nesterov: A Better Momentum
	Slide 62: Adaptive Learning Rates
	Slide 63: RMSProp
	Slide 64: ADAM (Adaptive Moment Estimation)
	Slide 65: Where we are…
	Slide 66: Regularization
	Slide 67: Parameters vs Hyperparameters
	Slide 68: Overfitting and Underfitting
	Slide 69: Bias-Variance Decomposition
	Slide 70: Bias-Variance & Overfitting-Underfitting
	Slide 71: Deep Learning works best with large datasets
	Slide 72: Many ways to improve generalization
	Slide 73: General Strategies to Avoid Overfitting
	Slide 74: Data Augmentation
	Slide 75: Reduce Network’s Capacity
	Slide 76: Early Stopping
	Slide 77: Early Stopping
	Slide 78: Effect of Regularization on Decision Boundary
	Slide 79: L2 regularization for Multilayer Neural Networks
	Slide 80: L2 regularization for Multilayer Neural Networks
	Slide 81: L2 regularization for Neural Networks in PyTorch
	Slide 82: L2 regularization for Neural Networks in PyTorch
	Slide 83: Dropout
	Slide 84: Dropout
	Slide 85: Dropout in PyTorch
	Slide 86: Normalization
	Slide 87: Normalization and gradient descent
	Slide 88: In deep models…
	Slide 89: Batch Normalization (“BatchNorm”)
	Slide 90: Batch Normalization (“BatchNorm”)
	Slide 91: Batch Normalization (“BatchNorm”)
	Slide 92: BatchNorm Step 1: Normalize Net Inputs
	Slide 93: BatchNorm Step 2: Pre-Activation Scaling
	Slide 94: BatchNorm Steps 1+2 Together
	Slide 95: BatchNorm Steps 1+2 Together
	Slide 96: BatchNorm and Backprop
	Slide 97: BatchNorm and Backprop
	Slide 98: BatchNorm and Backprop
	Slide 99: BatchNorm in PyTorch
	Slide 100: BatchNorm in PyTorch
	Slide 101: BatchNorm at Test-Time
	Slide 102: Related: LayerNorm
	Slide 103: Normalize everything?
	Slide 104: Initialization
	Slide 105: Weight initialization
	Slide 106: Xavier Initialization
	Slide 107: Xavier Initialization
	Slide 108: He Initialization
	Slide 109: Convolutional Neural Networks
	Slide 110: Why images are hard
	Slide 111: Full connectivity is a problem for large inputs
	Slide 112: Convolutional Neural Networks [LeCun 1989]
	Slide 113: Weight sharing in kernels
	Slide 114: Convolutional Neural Networks [LeCun 1989]
	Slide 115: Convolutional Neural Networks [LeCun 1989]
	Slide 116: Convolutional Neural Networks [LeCun 1989]
	Slide 117: “Pooling”: lossy compression
	Slide 118: Main ideas of CNNs
	Slide 119: CNNs give sparse connectivity
	Slide 120: Receptive fields grow over depth
	Slide 121: Parameter sharing
	Slide 122: Impact of convolutions on size
	Slide 123: Padding
	Slide 124: Backpropagation in CNNs
	Slide 125: Backpropagation in CNNs
	Slide 126: Recall: Weight sharing in computation graphs
	Slide 127: .

