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What is Machine Learning?

Ben Lengerich © University of Wisconsin-Madison 2025

Formally, a computer program is said to learn from experience ℇ with 
respect to some task 𝒯 and performance measure 𝒫 if its performance 
at 𝓣 as measured by 𝓟 improves with ℇ.

• Task 𝒯:  Learn a function ℎ: 𝒳 → 𝒴

• Experience ℇ:  Labeled samples xi, yi i=1
𝑛

• Performance 𝒫:  A measure of how good ℎ is

• Task 𝒯:  Discover structure in data

• Experience ℇ:  Unlabeled samples xi i=1
𝑛

• Performance 𝒫:  Measure of fit or utility

• Task 𝒯:  Learn a policy 𝜋: 𝑆 → 𝐴

• Experience ℇ:  Interaction with environment

• Performance 𝒫:  Expected reward



The building blocks of Deep Learning



McCulloch & Pitt’s neuron model (1943)
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Warren McCulloch Walter Pitts



From biological neuron to artificial neuron
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• McCulloch & Pitts 
neuron: Threshold and 
(+1, -1) weights

• Can represent “AND”, 
“OR”, “NOT”

• But not “XOR”

XOR



Rosenblatt’s Perceptron
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A learning rule for the computational/mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para. 

Cornell Aeronautical Laboratory.



Rosenblatt’s Perceptron
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Continuous 
Weighting

Activation 
function

threshold function
Classic Rosenblatt 
Perceptron

Perceptrons generalize MP Neurons



Perceptron Learning Algorithm
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• Assume binary classification task

• Perceptron finds decision boundary is classes are separable

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

[animated GIF]
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Perceptron Learning Algorithm (pseudocode)
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Let

1. Initialize 𝒘 ≔ 0𝑚  (assume weight incl. bias)

2. For every training epoch:
1. For every 𝒙 𝑖 , 𝑦 𝑖 ∈ 𝐷:

1. ො𝑦[𝑖] ≔ 𝜎 𝒙 𝑖 𝑇𝒘

2. 𝑒𝑟𝑟 ≔ 𝑦 𝑖 − ො𝑦 𝑖

3. 𝒘 ≔ 𝒘 + 𝑒𝑟𝑟 × 𝒙[𝒊]

Only -0 or 1

Only -1, 0, or 1



Perceptron Geometric Intuition
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Perceptron Geometric Intuition: Learning
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Perceptron Limitations
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• Rosenblatt’s Perceptron has many problems
• Linear classifier, no non-linear boundaries

• Binary classifier, cannot solve XOR problems

• Does not converge if classes are not linearly separable

• Many “optimal” solutions in terms of 0/1 loss on the training data

• Most will not be optimal in terms of generalization performance



Beyond Rosenblatt’s Perceptron
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Continuous 
Weighting

Activation 
function

threshold function

sigmoid DL “Perceptron” / 
sigmoid unit

Classic Rosenblatt 
Perceptron

Perceptrons generalize MP Neurons

• Many activation functions:
• Threshold function (perceptron, 1950+)

• Sigmoid function (before 2000)

• ReLU function (popular since CNNs)

• Many variants of ReLU, e.g. leaky ReLU, GeLU



A Selection of Common Activation Functions
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A Selection of Common Activation Functions
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Advantages of Tanh
• Mean centering
• Positive and negative values
• Larger gradients

Important to normalize inputs to mean zero and 
use random weight initialization with avg. weight 
centered at zero



A Selection of Common Activation Functions (cont.)
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Logistic Regression: A Bridge from 
Perceptron to Probabilistic Model



Logistic Regression Neuron

• For binary classes 𝑦 ∈ {0, 1}
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Logistic Regression

• Given the output:

• We compute the probability as

Recall Bernoulli distribution…
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Logistic Regression: Estimation

• Given the probability:

• Under MLE estimation, we would like to maximize the multi-sample 
likelihood:
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Likelihood



Logistic Regression: Estimation

• We are going to optimize via gradient descent, so let’s apply the 
logarithm to separate components:

Likelihood

Log-Likelihood
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Logistic Regression: Gradient Descent Learning Rule
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Logistic Regression: Learning Rule

Stochastic gradient descent:
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Multilayer Perceptron

• Computation Graph with Multiple Fully-Connected Layers
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Multinomial (“Softmax”) Logistic Regression
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“Softmax”
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A “soft” (differentiable) version of ”max”



Requires one-hot encoding
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Loss Function (assuming one-hot encoding)
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Loss Function (assuming one-hot encoding)
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Multilayer Perceptrons Can Solve XOR
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A new problem: Training
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• How can we train a multilayer model?
• No targets / ground truth for the hidden nodes

• Solution: Backpropagation



An algorithm to train models with hidden 
variables



Backpropagation
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• Neural networks are function compositions that can be represented as 
computation graphs:

:

1

2

3

4
5

Input

variables

x f (x )
Outputs

Intermediate 

computations

• By applying the chain rule, and working in reverse order, we get:



Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025



Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025



Computation graphs: ReLU
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Computation graphs: ReLU
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Computation graphs: ReLU
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Computation graphs: Single-path
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Computation graphs: Fully-Connected Layer
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Computation graphs: Weight-Sharing

Ben Lengerich © University of Wisconsin-Madison 2025



PyTorch: Automated Differentiation



PyTorch Usage: Step 1 (Definition)
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PyTorch Usage: Step 2 (Creation)

Ben Lengerich © University of Wisconsin-Madison 2025



PyTorch Usage: Step 3 (Training)
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PyTorch Usage: Step 3 (Training)
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PyTorch Usage: Step 3 (Training)

Ben Lengerich © University of Wisconsin-Madison 2025



Improvements to optimization



Note that our Loss is Not Convex Anymore

Ben Lengerich © University of Wisconsin-Madison 2025

• Linear regression, Adaline, Logistic Regression, and Softmax Regression 
have convex loss functions

• But our deep loss is no longer convex (most of the time)
• In practice, we usually end up at different local minima if we repeat the training 

(e.g. by changing the random seed for weight initialization or shuffling the dataset 
while leaving all settings the same

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018. Visualizing the loss landscape of neural nets. 
In Advances in Neural Information Processing Systems (pp. 6391-6401).



Minibatch Training Recap
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• Minibatch learning is a form of 
stochastic gradient descent

• Each minibatch can be considered a 
sample drawn from the training set 
(where the training set is in turn a 
sample drawn from the population)

• Hence, the gradient is noisier

A noisy gradient can be:
• good: chance to escape local minima 
• bad: can lead to extensive oscillation



Learning Rate Decay
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• Batch effects -- minibatches are samples of the training 
set, hence minibatch loss and gradients are approximations 

• Hence, we usually get oscillations

• To dampen oscillations towards the end of the training, we can 
decay the learning rate

• Danger of learning rate is to decrease the 
learning rate too early

• Practical tip: try to train the model without 
learning rate decay first, then add it later

• You can also use the validation performance 
(e.g., accuracy) to judge whether lr decay is 
useful (as opposed to using the training loss)



Learning Rate Decay
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Most common variants for lr decay:

1. Exponential Decay:
𝜂𝑡 ≔ 𝜂0e−k⋅𝑡

where 𝑘 is the decay rate



Learning Rate Decay
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Most common variants for lr decay:

1. Exponential Decay:
𝜂𝑡 ≔ 𝜂0e−k⋅𝑡

where 𝑘 is the decay rate

2. Halving the learning rate:
𝜂𝑡 ≔ 𝜂𝑡−1/2

where 𝑡 is a multiple of 𝑇0 (e.g. 𝑇0 = 100)

3. Inverse decay:

𝜂𝑡 ≔
𝜂0

1 + 𝑘 ⋅ 𝑡



Training with “Momentum”
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• Main idea: Let’s dampen oscillations by using “velocity” (the 
speed of the “movement” from previous updates)

https://www.asherworldturns.com/zorbing-new-zealand/
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Training with “Momentum”
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• Main idea: Let’s dampen oscillations by using “velocity” (the 
speed of the “movement” from previous updates)

Key take-away: Not only move in the (opposite) direction of the 
gradient, but also move in the “weighted averaged" direction of the 
last few updates 



Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

Qian, N. (1999). On the momentum term in gradient descent 
learning algorithms. Neural Networks : The Official Journal of the 
International Neural Network Society, 12(1), 145–151. 
http://doi.org/10.1016/S0893-6080(98)00116-6



Nesterov: A Better Momentum
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Nesterov, Y. (1983). A method for unconstrained convex minimization 
problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated 
as Soviet.Math.Docl.), vol. 269, pp. 543– 547.

We already know where the momentum part will push us in this step. Let’s 
calculate the new gradient with that update in mind:

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the 
importance of initialization and momentum in deep learning. ICML (3), 
28(1139-1147), 5.



Nesterov: A Better Momentum

Ben Lengerich © University of Wisconsin-Madison 2025

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the 
importance of initialization and momentum in deep learning. ICML (3), 
28(1139-1147), 5.

correction term (gradient of the 

point where you would have 

ended up via the standard 

momentum method) 



Adaptive Learning Rates
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Many different flavors of adapting the learning rate

Rule of thumb:

1. decrease learning if the gradient changes its direction

2. increase learning if the gradient stays consistent



RMSProp
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• Unpublished (but very popular) algorithm by Geoff Hinton

• Based on Rprop [1]

• Very similar to another concept called AdaDelta

• Main idea: divide learning rate by an exponentially decreasing 
moving average of the squared gradients
• RMS = “Root Mean Squared”

• Takes into account that gradients can vary widely in magnitude

• Damps oscillations like momentum (in practice, works better)

[1] Igel, Christian, and Michael Hüsken. "Improving the Rprop learning algorithm." Proceedings of the Second 
International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.



ADAM (Adaptive Moment Estimation)
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• Probably the most widely used optimization algorithm in DL

• Combination of momentum + RMSProp

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Momentum-like term:

RMSProp term:

ADAM update:



Where we are…

Ben Lengerich © University of Wisconsin-Madison 2025

• Good news: We can solve non-linear problems!
• Bad news: Our multilayer neural networks have lots of 

parameters and it’s easy to overfit the data…

Next time:



Regularization



Parameters vs Hyperparameters
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weights (weight parameters)
biases (bias units)

minibatch size
data normalization schemes
number of epochs
number of hidden layers
number of hidden units
learning rates
(random seed, why?)
loss function
various weights (weighting terms)
activation function types
regularization schemes (more later)
weight initialization schemes (more later)
optimization algorithm type (more later)
...



Overfitting and Underfitting
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Bias-Variance Decomposition
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General Definition: Intuition:



Bias-Variance & Overfitting-Underfitting
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Deep Learning works best with large datasets
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Many ways to improve generalization
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General Strategies to Avoid Overfitting
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• Collecting more data, especially high-quality data, is best & always 
recommended
• Alternatively: semi-supervised learning, transfer learning, and self-supervised 

learning

• Data augmentation is helpful
• Usually requires prior knowledge about data or tasks

• Reducing model capacity can help



Data Augmentation
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• Key Idea: If we know the label shouldn’t depend on a transformation 
h(x), then we can generate new training data ℎ 𝑥𝑖 , 𝑦𝑖

• But we must already know something that our outcome doesn’t 
depend on

• Example: image classification
• rotation, zooming, sepia filter, etc.



Reduce Network’s Capacity
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• Key Idea: The simplest model that matches the outputs should 
generalize the best

• Choose a smaller architecture: fewer hidden layers & units, add 
dropout, use ReLU + L1 penalty to prune dead activations,e tc.

• Enforce smaller weights: Early stopping, L2 norm penalty

• Add noise: Dropout

• Note: With recent LLMs and foundation models, it’s possible to use a 
large pretrained model and perform efficient fine-tuning (updating 
small number of parameters of a large model)



Early Stopping
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• Step 1: Split your dataset into 3 parts (as always)
• Use test set only once at the end

• Use validation accuracy for tuning



Early Stopping
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• Step 2: Stop training early
• Reduce overfitting by observing the training/validation accuracy gap during training 

and then stop at the “right” point



Effect of Regularization on Decision Boundary
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L2 regularization for Multilayer Neural Networks
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L2 regularization for Multilayer Neural Networks
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L2 regularization for Neural Networks in PyTorch
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L2 regularization for Neural Networks in PyTorch
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Dropout
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Dropout
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• How do we drop node activations practically / efficiently?



Dropout in PyTorch
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Normalization



Normalization and gradient descent
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In deep models…
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Normalizing the inputs only affects the first hidden layer…what 
about the rest?



Batch Normalization (“BatchNorm”)
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Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift. In International 
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

• Normalizes hidden layer inputs
• Helps with exploding/vanishing gradient problems
• Can increase training stability and convergence rate
• Can be understood as additional (normalization) layers  (with 

additional parameters)

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html


Batch Normalization (“BatchNorm”)
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Batch Normalization (“BatchNorm”)
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BatchNorm Step 1: Normalize Net Inputs
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BatchNorm Step 2: Pre-Activation Scaling
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Technically, a BatchNorm layer could learn to perform 
"standardization" with zero mean and unit variance



BatchNorm Steps 1+2 Together
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BatchNorm Steps 1+2 Together
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BatchNorm and Backprop
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BatchNorm and Backprop
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BatchNorm and Backprop
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BatchNorm in PyTorch
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https://github.com/rasbt/stat453-deep-
learningss21/blob/main/L11/code/batchnorm.ipynb
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BatchNorm in PyTorch
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BatchNorm at Test-Time
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• Use exponentially weighted average (moving average) of mean and 
variance

running_mean = momentum * running_mean + (1 - momentum) * 
sample_mean

(where momentum is typically ~0.1; and same for variance)

• Alternatively, can also use global training set mean and variance



Related: LayerNorm

• Layer normalization (LN)

• BN calculates mean/std based on 
a mini batch, whereas LN 
calculates mean/std based on 
feature/embedding vectors

• In the stats language, BN zero 
mean unit variance, whereas LN 
projects feature vector to unit 
sphere

• LN in Transformers



Normalize everything?



Initialization



Weight initialization
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• Recall: Can’t initialize all weights to 0 (symmetry problem)

• But we want weights to be relatively small.
• Traditionally, we can initialize weights by sampling from a random uniform 

distribution in range [0, 1], or better, [-0.5, 0.5]

• Or, we could sample from a Gaussian distribution with mean 0 and small variance 
(e.g., 0.1 or 0.01)



Xavier Initialization
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Method: 

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to 
the layer 
• For the first hidden layer, that is the number of features in the dataset; for the 

second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. 
2010.



Xavier Initialization
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He Initialization
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing 
human-level performance on imagenet classification." In Proceedings of the IEEE international 
conference on computer vision, pp. 1026-1034. 2015.

• Assuming activations with mean 0, which is reasonable, Xavier 
Initialization assumes a derivative of 1 for the activation function (which 
is reasonable for tanH)

• For ReLU, the activations are not centered at zero
• He initialization takes this into account

• The result is that we add a scaling factor of √2



Convolutional Neural Networks



Why images are hard

Do deep fully-connected nets solve this?



Full connectivity is a problem for large inputs
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• 3x200x200 images imply 120,000 weights per neuron in first hidden layer



Convolutional Neural Networks [LeCun 1989]
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• Let’s share parameters.

• Instead of learning position-specific weights, learn weights 
defined for relative positions
• Learn “filters” that are reused across the image

• Generalize across spatial translation of input

• Key idea:
• Replace matrix multiplication in neural networks with a convolution

• Later, we will see that this can work for any graph-
structured data, not just images.



Weight sharing in kernels
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Reused weights (small)!



Convolutional Neural Networks [LeCun 1989]
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Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of 
IEEE, 86(11):2278–2324, 1998.



Convolutional Neural Networks [LeCun 1989]
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Each "bunch" of feature maps represents one hidden layer in the neural network. 

Counting the FC layers, this network has 5 layers



Convolutional Neural Networks [LeCun 1989]
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“Pooling”: lossy compression
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Main ideas of CNNs

• Sparse-connectivity: A single element in the feature map is connected 
to only a small patch of pixels. (This is very different from connecting 
to the whole input image, in the case of multi-layer perceptrons.)

• Parameter-sharing: The same weights are used for different patches of 
the input image.

• Many layers: Combining extracted local patterns to global patterns



CNNs give sparse connectivity
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Receptive fields grow over depth
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Parameter sharing
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Impact of convolutions on size
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Padding
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Dumoulin, Vincent, and Francesco Visin. "A guide to 
convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).



Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an 
additional weight-sharing constraint
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Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an 
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025



Recall: Weight sharing in computation graphs
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.

Questions?
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