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Why GMs?
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What’s the point of GMs in the AI era?
• A language for communication
• A language for computation
• A language for development

Universe of 
complexity

Finite human 
understanding

Structure!



The Fundamental Questions
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• Representation
• How to encode our domain knowledge/assumptions/constraints?
• How to capture/model uncertainties in possible worlds?

• Inference
• How do I answer questions/queries according to my model and/or based on 

observed data?

e.g. 𝑃 𝑋! 𝐷)
• Learning

• What model is "right” for my data?

e.g. 𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥"∈ℋ𝐹(𝐷;𝑀)



A Simplified View of our Roadmap
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1. Representing GMs



PGMs allow us to understand and structure data

Ben Lengerich © University of Wisconsin-Madison 2025

• GM = Multivariate Objective Function + Structure
• PGM = Multivariate Statistics + Structure

• Formally: A PGM is a family of distributions on a set of 
random variables that are compatible with all the probabilistic 
independence propositions encoded by a graph that connects 
these variables.



Conditional Independence
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• Variables X and Y are independent if:
𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃 𝑌

• Notation: 𝑋 ⊥ 𝑌

• Variables X and Y are conditionally independent given Z if:
𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

• Equivalently: 𝑃 𝑋 𝑌, 𝑍 = 𝑃(𝑋, 𝑍)
• Notation: 𝑋 ⊥ 𝑌 ∣ 𝑍



Example of Conditional Independence
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• Let X = Fever, Y = Rash, Z = Measles
• Given that a patient has measles, does knowing if they have a 

fever give us any additional information about whether they 
have a rash?

𝑃 𝑋, 𝑌 𝑍 =
𝑃 𝑋, 𝑌, 𝑍
𝑃(𝑍)

=
𝑃 𝑋 𝑍 𝑃 𝑌 𝑍 𝑃 𝑍

𝑃(𝑍)
= 𝑃 𝑋 𝑍 𝑃(𝑌 ∣ 𝑍)

Subtype of 
measles?

𝑃 𝑋, 𝑌 𝑍 =.
#$

𝑃 𝑍$ 𝑍 𝑃 𝑋 𝑍$ 𝑃 𝑌 𝑍$



Local Structures compose graphs

• Common parent
• Knowing B decouples A and C
• 𝐴 ⊥ 𝐶 ∣ 𝐵
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• Cascade
• Knowing B decouples A and C
• 𝐴 ⊥ 𝐶 ∣ 𝐵

• V-structure
• Knowing B couples A and C
• A can “explain away” C

Three foundational building blocks for creating complex BNs

𝐵

𝐶𝐴

𝐵 𝐶𝐴

𝐵

𝐶𝐴



1a. Representing PGMs:
->Directed GMs / Bayesian Networks



Bayesian Network (BN)

• A BN is a directed acyclic graph whose nodes represent the 
random variables and whose edges represent direct influence of 
one variable on another
• Provides the skeleton for representing a joint distribution 

compactly in a factorized way
• Compact representation of a set of conditional independence 

assumptions
• We can view the graph as encoding a generative sampling 

process executed by nature.
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Bayesian Network (BN)

Factorization Theorem:
Given a DAG, the most general form of the probability distribution 
that is consistent with the graph factors according to:
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𝑃 𝑋 =$
!

𝑃 𝑋! 𝑋"%

where 𝑋&! is the set of parents of 𝑋!.



A simple BN: Markov Chain

• Markov Chain
• Markov property: “The future state depends only on the 

present state, and not on past states”
• Parameters:

• Transition Probability Matrix: 𝑀!" = 𝑃(𝑋# = 𝑗 ∣ 𝑋#$% = 𝑖)
• Initial State Distribution: 𝜋! = 𝑃(𝑋% = 𝑖)
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𝑋% 𝑋& … 𝑋'(% 𝑋'

P X = 𝑃 𝑋% 4
)*&

𝑃(𝑋) ∣ 𝑋)(%)



Independence assertions of BNs

• In a BN, each node is independent of its non-descendants given 
its parents.
• Let 𝑃𝑎'! denote the parents of 𝑋!in G and 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠'!

denote the variables in the graph that are not descendants of 𝑋!. 
Then G encodes the following set of local conditional 
independence assumptions 𝐼( 𝐺 :

Ben Lengerich © University of Wisconsin-Madison 2025

𝐼+ 𝐺 = {𝑋, ⊥ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠-(|𝑃𝑎-(: ∀ 𝑖}

𝑃𝑎-(
𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠-(𝑋,



Independence assertions: Graph separation

• D-separation criterion for Bayesian networks [Pearl, 1988]
• D for “directed” edges
• Definition: A set of nodes 𝑋 is d-separated (conditionally independent) 

from a set of nodes Y given a conditioning set 𝑍 iff every path between any 
nodes in 𝑋 and any node in 𝑌 is blocked by 𝑍. 
• A path between nodes 𝐴 and 𝐵 is blocked by 𝑍 if it contains at least one of 

the following structures:
• Chain: 𝐴 → 𝑍! → 𝐵 for 𝑍! ∈ 𝑍
• Fork: 𝐴 ← 𝑍! → 𝐵 for 𝑍! ∈ 𝑍
• Collider: 𝐴 → 𝐶 ← 𝐵 for 𝐶 ∉ 𝑍 AND no descendant of 𝐶 is in 𝑍
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𝑍′

𝐵𝐴
𝑍′ 𝐵𝐴

𝐶

𝐵𝐴



Non-Independence: Active Trails

• Causal: 𝐴 → 𝑍 → 𝐵
• Active iff 𝑍 is not observed.

• Common Cause: 𝐴 ← 𝑍 → 𝐵
• Active iff 𝑍 is not observed.

• Collider: 𝐴 → 𝑍 ← 𝐵
• Active iff 𝑍 OR one of 𝑍’s descendants is observed.
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𝑍

𝐵𝐴
𝑍 𝐵𝐴

𝑍

𝐵𝐴



1b. Representing PGMs:
Undirected GMs / Markov Random 
Fields



Undirected Graphical Models
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• Pairwise relationships
• No explicit way to generate samples
• Contingency constraints on node configurations



Representing Undirected Graphical Models
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• An undirected graphical model represents a distribution 𝑃 𝑋
defined by an undirected graph 𝐻 and a set of positive potential 
functions 𝜓 associated with the cliques of 𝐻 such that:

P X%, … , X6 =
1
Z
4
7

𝜓7 𝑋8

where 𝑍 represents the partition function: 𝑍 = ∑'∏)𝜓) 𝑋) .

• The potential function can be understood as a ”score” of the 
joint configuration



What is a clique?
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• For 𝐺 = 𝑉, 𝐸 , a clique (complete subgraph) is a subgraph 𝐺* =
{𝑉* ⊆ 𝑉, 𝐸* ⊆ 𝐸} such that nodes in 𝑉′ are fully connected.
• A maximal clique is a clique such that any superset 𝑉** ⊃ 𝑉 is not

a clique.

Maximal cliques: {𝑋%, 𝑋&, 𝑋9}, 𝑋%, 𝑋:
Sub-cliques: 𝑋%, 𝑋& , 𝑋&, 𝑋9 , 𝑋%, 𝑋9 , 𝑋% , 𝑋& , 𝑋9 , {𝑋:}



Interpretation of Clique Potentials
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• This model implies 𝑋+ ⊥ 𝑋,| 𝑋-, so joint must factorize as:
𝑃 𝑋+, 𝑋-, 𝑋, = 𝑃 𝑋- 𝑃 𝑋+ 𝑋- 𝑃 𝑋, 𝑋-

• We could write as 𝑃 𝑋+, 𝑋- 𝑃(𝑋, ∣ 𝑋-) or 𝑃 𝑋-, 𝑋, 𝑃(𝑋+ ∣ 𝑋-), but:
• Cannot have all potentials be marginals
• Cannot have all potential be conditionals

• Clique potentials can be thought of as general “compatibility” of 
their variables, but not as probability distributions.



Features
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• A “feature” is a function that is non-zero for a few particular 
inputs and zero otherwise.
• Key idea: Instead of modeling all possible feature values in a big 

table, model specific groupings of feature values together.
• Example:

• Let a clique correspond to three consecutive characters.
• How would we define p(c1, c2, c3)?

• All possible character combinations we need 26^3 – 1 parameters.
• But there are sequences that are unlikely: kfd
• Define a feature like “ing”: 1 if c1=i,c2=n,c3=g. 0 otherwise.



Features as Potentials
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• Each feature function can be converted to a potential by 
exponentiating it. We can multiply these together to get a clique 
potential.
• Example:

• There is still an exponential number of settings, but only K 
parameters (𝜃.)
• A nice benefit of undirected graphical models: we don’t have to 

normalize each feature.



Combining Features
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• Each feature function has a weight 𝜃. which represents the 
numerical strength of the feature and whether it increases or 
decreases the probability of a clique.
• The marginal over the clique is a generalized exponential family 

distribution (a GLM):

• The features may be overlapping across cliques



Feature-based model
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• Joint distribution:

• We can drop sum over c:

• What are the sufficient statistics for this model?
• The features

• We need to learn weighting parameters 𝜃.



1c. Implications of GM Structure



Generative and Discriminative Models
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• Generative:
• Models the joint distribution P(𝑋, 𝑌).

• Discriminative:
• Models the conditional distribution P(𝑌|𝑋).

X

Y

P(X,Y)

P(Y|X=x) P(Y|X=x)

𝑌

𝑋'𝑋% …

𝑌

𝑋'𝑋% …

𝑃 𝑋, 𝑌 = 𝑃 𝑌 @
"

𝑃(𝑋" ∣ 𝑌)

𝑃 𝑋, 𝑌 = 𝑃 𝑌 ∣ 𝑋 @
"

𝑃(𝑋")

Naïve 
Bayes

Logistic 
Regression



Andrew Ng’s Insight
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• “While discriminative learning has lower asymptotic error, a 
generative classifier may also approach its (higher) asymptotic 
error much faster.”

LR
NB

Ng & Jordan 2001



Andrew Ng’s Insight
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• “While discriminative learning has lower asymptotic error, a 
generative classifier may also approach its (higher) asymptotic 
error much faster.”
• Underlying assumption of this statement:

• Generative models of the form 𝑷 𝑿, 𝒀, 𝜽 make more simplifying 
assumptions than do discriminative models of the form 𝑷 𝒀|𝑿, 𝜽 .

• Not always true
• “So far there is no theoretically correct, general criterion for choosing 

between the discriminative and the generative approaches to classification 
of an observation x into a class y; the choice depends on the relative 
confidence we have in the correctness of the specification of either p(y|x) 
or p(x, y) for the data.” Xue & Tittering 2008

https://link.springer.com/article/10.1007/s11063-008-9088-7


Modern Deep Generative Models

January 27, 2025:

Can we build massive-scale deep generative models that no 
longer require the constraints of simplifying assumptions?



1d. I-Maps of PGMs



I-Maps

• Independence set: Let 𝑃 be a distribution over 𝑋. We define 𝐼(𝑃)
to be the set of independences (𝑋 ⊥ 𝑌 ∣ 𝑍) that hold in 𝑃.
• I-Map: Let 𝐺 be any graph object with an associated 

independence set 𝐼(𝐺). We say that 𝐺 is an I-map for an 
independence set 𝐼 if 𝐼 𝐺 ⊆ 𝐼.
• I-Map of Distribution: We say 𝐺 is an I-map for 𝑃 if 𝐺 is an I-map 

for 𝐼(𝑃), when we use 𝐼(𝐺) as the associated independence set.
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Graph G
Distribution P

I(G) I(P)⊆?

𝐺 is an I-Map for 𝑃 if 𝐼 𝐺 ⊆ 𝐼(𝑃)



I-Maps and Factorization
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Graph G
Distribution P

I(G) I(P)⊆?

𝐺 is an I-Map for 𝑃 if 𝐼 𝐺 ⊆ 𝐼(𝑃)

Factors (G) Factors (P)⊇?



I-equivalence

• Definition of I-Equivalence: Two BN graphs 𝐺+ and 𝐺- over 𝑋 are 
I-equivalent if 𝐼(𝐺+) = 𝐼(𝐺-).
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𝑍 𝑌𝑋

𝑍 𝑋𝑌

𝑋 ⊥ Y ∣ 𝑍

𝑍

𝑌𝑋



Uniqueness of Graphs

• Very different graphs can be equivalent in that they encode the 
same set of conditional independence assertions.
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𝑍 𝑌𝑋

𝑍 𝑋𝑌

𝑋 ⊥ Y ∣ 𝑍

𝑍

𝑌𝑋



2. Learning GMs



Maximum Likelihood Estimation (MLE)
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• Definition:
• Find 8𝜽 that maximizes the likelihood of observing the given data.

L𝜽 = argmax"𝐿 𝜃 where 𝐿 𝜃 = 𝑃 data 𝜃 . 
• Interpretation:

• L(θ): Probability of the observed data given θ.
• MLE chooses the parameter that makes the data most "likely."

𝐿(𝜃)

K𝜃#$%

𝜃



Maximum A Posteriori (MAP) Estimation
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• Find
Q𝜃"/0 = 𝑎𝑟𝑔𝑚𝑎𝑥1𝑃 𝜃 data) ∝ 𝑎𝑟𝑔𝑚𝑎𝑥1𝑃 data 𝜃 𝑃(𝜃)

• 𝑃 data 𝜃 : Likelihood
• 𝑃(𝜃): Prior belief about 𝜃

• MLE ignores 𝑃 𝜃
• MAP incorporates prior information.
𝐿(𝜃)

𝜃

K𝜃#$%

P(𝜃|data)

K𝜃#&'

𝜃



Regularization is MAP
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• MLE with Regularization:
• Adds a penalty to avoid overfitting

V𝜽𝒓𝒆𝒈 = argmax"[log 𝐿 𝜃 − 𝜆𝑅 𝜃 ]

• MAP as Penalized MLE:
• Let 𝑃 𝜃 ∝ 𝑒$&'()). Then

8𝜽+,- = 𝑎𝑟𝑔𝑚𝑎𝑥)[log 𝐿 𝜃 + log𝑃 𝜃 ] = H𝜃./0

𝐿(𝜃)

K𝜃#$%

𝜃



2a. Parameter Learning in Fully-
Observed BNs



MLE for general BNs
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MLE for BNs with tabular CPDs
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Decomposable likelihood of a BN
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2b. Parameter Learning in Fully-
Observed Undirected GMs



MLE for Undirected GMs
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• The likelihood decomposes to give MLE 
conditions on clique probabilities:

• But UGMs are parameterized by 𝜓) not 𝑝.



Case 1: The model is decomposable
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• If the model is decomposable and all the clique potentials 
are defined on maximal cliques, then:
• The MLE of clique potentials are equal to the empirical marginals (or 

conditionals) of the corresponding clique.

• Example: Chain 𝑋+ – 𝑋- – 𝑋,



Case 2: The model is NON-decomposable
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• If the model is non-decomposable (clique potentials are 
defined on non-maximal cliques), then we cannot equate MLE of 
clique potentials to empirical marginals (or conditionals).

• Iterative Proportional Fitting (IPF):

• Generalized Iterative Scaling (GIS):

𝜃,)S% = 𝜃,) + log
𝐸'T)T[𝑓,(𝑥)]
𝐸U(V;"))[𝑓, V ]

Empirical expectation
Expectation under 
current model 
distribution

𝜓7)S%(𝑥7) = 𝜓7)(𝑥7)
b𝑝(𝑥7)
𝑝)(𝑥7)

Empirical distribution
Current model 
distribution



2c. Parameter Learning in Partially-
Observed GMs



Partially-Observed GMs: Mixture models
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• A density model 𝑝(𝑥) may be multi-modal
• Can we model it as a mixture of uni-modal distributions?



Unobserved Variables
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• A variable can be unobserved (latent) because:
• It is difficult or impossible to measure

• e.g. Causes of a disease, evolutionary ancestors
• It is only sometimes measured

• e.g. faulty sensors
• It is an imaginary quantity meant to provide some simplified but 

useful view of the data generation process
• e.g. Mixture assignments

• Discrete latent variables can be used for as cluster assignments
• Continuous latent variables can be used for dimensionality reduction



Why is learning with latent variables harder?
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• In fully-observed IID settings, the log-likelihood 
decomposes into a sum of local terms:

• With latent variables, all parameters become coupled 
via marginalization

Sum over z is inside log



Strategy:
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1. Guess value of Z
2. Apply MLE to estimate best model parameters based on Z
3. Inference most likely Z based on MLE parameter estimates
4. Return to step 2 until Z stops changing



Expectation-Maximization algorithm
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• E-step:
• Compute the expected value of the sufficient statistics of the 

hidden variables under current estimates of parameters

• M-step:
• Using the current expected value of the hidden variables, 

compute the parameters that maximize the likelihood.



Why does EM work?

𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 ) = 𝐸1∼3 log
𝑞(𝑧 ∣ 𝑥)
𝑝(𝑧 ∣ 𝑥, 𝜃)

𝐸1∼3[log 𝑝(𝑧 ∣ 𝑥, 𝜃)] =𝐸1∼3[log 𝑞(𝑧 ∣ 𝑥)] − 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

𝑝 𝑧 𝑥, 𝜃 =
𝑝(𝑥, 𝑧 ∣ 𝜃)
𝑝(𝑥 ∣ 𝜃)

log 𝑝 𝑧 𝑥, 𝜃 = log 𝑝 𝑥, 𝑧 𝜃 − log 𝑝(𝑥 ∣ 𝜃)

E(∼*[log 𝑝 𝑧 𝑥, 𝜃 ] = 𝐸+∼*[log 𝑝 𝑥, 𝑧 𝜃 ] − log 𝑝(𝑥 ∣ 𝜃)

𝐸1∼3[log 𝑝 𝑥, 𝑧 𝜃 ] − log 𝑝(𝑥 ∣ 𝜃) = 𝐸1∼3[log 𝑞(𝑧 ∣ 𝑥)] − 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

log 𝑝(𝑥 ∣ 𝜃) = 𝐸1∼3[log 𝑝 𝑥, 𝑧 𝜃 ] −𝐸1∼3[log 𝑞(𝑧 ∣ 𝑥)] + 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

log 𝑝(𝑥 ∣ 𝜃) = 𝐸c∼e[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞) + 𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

EM: Let 𝑞) 𝑧 𝑥 = 𝑝(𝑧 ∣ 𝑥, 𝜃)). Then at convergence:
log 𝑝(𝑥 ∣ 𝜃) = 𝐸c∼e)[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞)) + 0

𝑄 𝜃′, 𝜃) = 𝐸c∼U(c∣"))[log 𝑝 𝑥, 𝑧 𝜃′ ]
𝜃)S% = argmax"$𝑄(𝜃′, 𝜃))



2d. Structure Learning



Max Likelihood doesn’t inform us about structure
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Mutual information 
between 𝑥" and its parents

Entropy of 𝑥"

• As we match 𝑥! and parents better, the mutual information 
increases.
• Problems?
• Adding edges always helps!



Different approaches to structure learning
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• Two main problems:
• Likelihood is maximized for fully-connected graph, so we 

don’t want to just maximize likelihood alone.
• Finding optimal BN structure is an NP-hard problem if allowed to 

be non-tree.

• Many heuristics but no “guarantees” of returning the perfect 
structure.
• Can get some guarantees if we make assumptions:

• For tree BNs: Chow-Liu algorithm
• For pairwise MRFs: Covariance selection, neighborhood-selection



Score-based Learning
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• Define a scoring function that evaluates how well a structure 
matches the data:

• Search for a structure that maximizes the score



Bayesian Score
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• Let’s take a Bayesian approach
• Place a distribution over our ”uncertain” elements (𝐺 and 𝜃)

• Bayesian score for G



Bayesian Score cont’d
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• Our choice of prior 𝑃(𝐺) has implications.
• Example: Let the edges have Dirichlet priors. Then as the 

number of configurations 𝑀 → ∞,

• Bayesian score for G

Tradeoff between fit to vs. data and complexity



Bayesian Information Criterion (BIC)
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• Bayesian score gives Bayesian Information Criterion:



Chow-Liu tree learning algorithm
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• Assume true structure is a tree
• Start by calculating Mutual Information between every pair of 

variables 𝑋! and 𝑋2

• Compute maximum weight spanning tree (Kruskal)
• Guarantees to maximize objective function: 



Chow-Liu tree learning algorithm: directionality
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• How to pick direction of edges?

• Can’t tell the difference between competing root nodes

• Pick any node as root, do BFS to define directions



Pairwise MRFs = Gaussian Graphical Model
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• Pairwise MRF: 
𝑃 𝑋 ∝J

!

𝜓! 𝑋! J
!,"

𝜓!," 𝑋! , 𝑋"

• Gaussian Graphical Model:
• Let 𝜓! 𝑋! = exp(𝜃!𝑋!), 𝜓!," 𝑋! , 𝑋" = exp(𝜃!"𝑋!𝑋")
• Then: 

P X 𝜃 ∝ exp ]
!

𝜃!𝑋! +]
!,2

𝜃!2 𝑋!𝑋2



Gaussian Graphical Model
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• Gaussian Graphical Model:
• Let 𝜓! 𝑋! = exp(𝜃!𝑋!), 𝜓!," 𝑋! , 𝑋" = exp(𝜃!"𝑋!𝑋")
• Then: 

P X 𝜃 ∝ exp ]
!

𝜃!𝑋! +]
!,2

𝜃!2 𝑋!𝑋2

• This is a Multivariate Gaussian density:

𝑝 𝑥 𝜇, Σ =
1

2𝜋
4
- Σ

+
-
exp[−

1
2 𝑥 − 𝜇 5Σ6+(𝑥 − 𝜇)]

• for 𝜇 = 0 and 𝜃 = Σ6+ = 𝑄.



So estimating Precision Mat. gives MRF structure
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If we can estimate a sample covariance, then we can estimate 𝑄 = !Σ(%

What if the number of dimensions > number of data points?



Graph Regression: Learn graph structure per node
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Gives graph structure.



3. Inference



3a. Exact Inference



Complexity of inference
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• Computing 𝑃(𝑋 = 𝑥 ∣ 𝑒) in a GM is NP-hard

What does this mean for us?

ØInference cannot be solved in polynomial time unless P=NP.
ØNo general procedure that works efficiently for arbitrary GMs.

ØFor families of GMs, we can have provably efficient procedures.

ØExponential worst-case performance for exact inference.
ØMotivates approximate inference.



Variable Elimination: General form
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• Write query in the form

𝑃 𝑋+, 𝑒 =]
7"

⋯]
7#

]
7$

j
!

𝑃(𝑥! ∣ 𝑝𝑎!)

• Then iteratively:
• Move all irrelevant terms outside of innermost sum.
• Perform innermost sum, getting a new term.
• Insert the new term into the product.



Understanding Variable Elimination
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• A graph elimination algorithm

• Intermediate terms correspond to the cliques resulted from 
elimination



3b. Variational Inference



Variational Inference



Variational Inference

• We choose a family of variational distributions (i.e., a 
parameterization of a distribution of the latent variables) such 
that the expectations are computable.
• Then, we maximize the ELBO to find the parameters that gives 

as tight a bound as possible on the marginal probability of x.

log 𝑝(𝑥 ∣ 𝜃) ≥ 𝐸8∼:[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞)

“ELBO”: Evidence Lower Bound

+𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )



Mean-field VI

• In mean field variational inference, we assume that the 
variational family factorizes

• Each variable is independent. (We are suppressing the 
parameters νj .)
• This is more general that it initially appears—the hidden variables 

can be grouped and the distribution of each group factorizes.
• Optimize by coordinate ascent:



3c. Monte Carlo Methods



Monte Carlo methods: define dist by samples
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• Draw random samples from desired distribution
• Yield a stochastic representation of desired distribution

• Asymptotically exact
• Challenges:
• How to draw samples from desired distribution?
• How to know we’ve sampled enough?

• 𝐸U 𝑓 𝑥 = ∑* j -*
k



Monte Carlo Methods
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• Direct sampling
• Rejection sampling
• Likelihood weighting
• Markov chain Monte Carlo (MCMC)



Rejection Sampling
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• Instead of sampling from 𝑃(𝑋), sample 𝑥∗ from 𝑄(𝑋) and accept 
sample with probability:
• 𝑃566/7# 𝑥∗ = 9(:∗)

+;(<∗)
, where 𝑀 is some constant such that 𝑃 𝑥 ≤ 𝑀𝑄 𝑥 ∀ 𝑥

• Works with un-normalized 𝑃(𝑋), too.



Unnormalized Importance Sampling
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• Instead of hard rejecting samples, we can just reweight them:

𝐸0 𝑓 𝑋 = l
7
𝑃 𝑥 𝑓(𝑥)𝑑𝑥 = l

7

𝑃 𝑥
𝑄 𝑥

𝑄 𝑥 𝑓(𝑥)𝑑𝑥 = 𝐸9
𝑃 𝑥
𝑄 𝑥

𝑓(𝑥)

• Approximate with empirical:

𝐸0 𝑓 𝑋 ≈
1
𝑛

]
!:+,…,4

𝑓 𝑥! 𝑤 𝑥!

where 𝑥! ∼ 𝑄 and 𝑤! =
0(7!)
9(7!)

What characteristic do we need for this to work?



Normalized Importance Sampling
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• Instead of needing access to the normalized probability 
distribution P, we can also perform importance sampling with an 
un-normalized p𝑃 = 𝑎𝑃 by normalizing the weights according to 
the sample:

• q𝑤! =
>!
∑!>!



Weighted resampling
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• Problem of importance sampling:
• Performance depends on how well Q matches P. 
• If P(x)f(x) is strongly varying and has a significant proportion of its mass 

concentrated in a small region, ratio will be dominated by a few samples.

• Solution: use a heavy-tailed Q and weighted resampling.



Limitations of “simple” Monte Carlo
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• Hard to get rare events in high-dimensional spaces
• We need a good proposal Q(x) that is not very different than P(x)

• What if we had an adaptive proposal Q(x)?



Markov Chain Monte Carlo
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MCMC: Metropolis-Hastings
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Summary
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• We can represent complex distributions by composing local 
structures.

• Structures have complex implications for knowledge, learning, 
and inference.

• Given a structure, we can learn optimal parameters to match 
data even if some of the nodes do not have observed data.

• We can estimate GM structure by optimizing a tradeoff 
between likelihood and a structural cost.

• Given a fitted GM (i.e. a distribution), we can query it for exact 
statistical answers or approximate the the distribution for
faster answers.



Questions?


