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Why GMs?

What's the point of GMs in the Al era?
* A language for communication
* A language for computation

A language for development Finite human

understanding

Structure!

Universe of

complexity
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The Fundamental Questions

* Representation
* How to encode our domain knowledge/assumptions/constraints?
* How to capture/model uncertainties in possible worlds?

e Inference

 How do | answer questions/queries according to my model and/or based on
observed data?

e.q. P(X;|D)

* Learning
* What modelis "right” for my data?

e.qg. M =argmaxycyF(D; M)
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A Simplified View of our Roadmap
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1. Representing GMs

©



PGMs allow us to understand and structure data

 GM = Multivariate Objective Function + Structure
 PGM = Multivariate Statistics + Structure

* Formally: A PGM is a family of distributions on a set of
random variables that are compatible with all the probabilistic
independence propositions encoded by a graph that connects
these variables.
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Conditional Independence

 Variables X and Y are independent if:
P(X,Y) = P(X)P(Y)
 Notation: X LY
 Variables X and Y are conditionally independent given Z if:
P(X,Y|Z) = P(X|Z)P(Y|2)
« Equivalently: P(X|Y,Z) = P(X,Z)
* Notation: X LY | Z
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Example of Conditional Independence

 Let X = Fever, Y = Rash, Z = Measles

* Given that a patient has measles, does knowing if they have a
fever give us any additional information about whether they
have a rash?

Subtype of
P(X YlZ) - P(X, Y, Z) measles?
' - P(2)
~ P(XIZD)P(Y|Z)P(Z)

P(Z) !/ !/ !/
= P(X|Z)P(Y |2) P(X;Y|Z)=ZP(Z | Z)P(X 1 Z")P(Y | Z")
YA
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Local Structures compose graphs

[
« Common parent G
* Knowing B decouples A and C

ONRG
e Cascade
* Knowing B decouples A and C Q G Q
e A1 C|B

e \/-structure
* Knowing B couples A and C

* A can “explain away” C Q

Three foundational building blocks for creating complex BNs
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1a. Representing PGMs:

->Directed GMs / Bayesian Networks

©



Bayesian Network (BN)

 ABN is a directed acyclic graph whose nodes represent the
random variables and whose edges represent direct influence of
one variable on another

* Provides the skeleton for representing a joint distribution
compactly in a factorized way

« Compact representation of a set of conditional independence
assumptions

* We can view the graph as encoding a generative sampling
process executed by nature.

Ben Lengerich © University of Wisconsin-Madison 2025




Bayesian Network (BN)

Factorization Theorem:

Given a DAG, the most general form of the probability distribution
that is consistent with the graph factors according to:

P(X) = HP(Xi | Xz, )

where X is the set of parents of X;.
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A simple BN: Markov Chain

* Markov Chain

* Markov property: “The future state depends only on the
present state, and not on past states”

* Parameters:
* Transition Probability Matrix:  M;; = P(X, =j | X;—1 = 10)
* |nitial State Distribution: i =P(X, =

O ®0eE

PO = PO | | PO 1 Xe)
t=2
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Independence assertions of BNs

* In a BN, each node is independent of its non-descendants given

Its parents.

* Let Pay, denote t
denote the variab

ne parents of X;in G and NonDescendantsy,
es in the graph that are not descendants of X;.

Then G encodes t

he following set of local conditional

independence assumptions I;(G):
I,(G) = {X; L NonDescendantsy |Pay;: V i}

Q a = NonDescen@

025
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Independence assertions: Graph separation

» D-separation criterion for Bayesian networks [Pearl, 1988]

« D for "directed” edges
« Definition: A set of nodes X is d-separated (conditionally independent)
from a set of nodes Y given a conditioning set Z iff every path between any
nodesin X and any node inY is blocked by Z.
» A path between nodes 4 and B is blocked by Z if it contains at least one of
the following structures:
e ChainnA—-Z - BforZ' €Z
» Forki A« Z" - BforZ' €Z
« Collider: A - C « B for C € Z AND no descendantof Cisin Z
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Non-Independence: Active Trails

e Causal:A—-7Z - B

e Active iff Z is not observed.

e CommonCause:4A«</Z - B
e Active iff Z is not observed.

e Collider:A—-7Z «< B

e Active iff Z OR one of Z's descendants is observed.
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1b. Representing PGMs:
Undirected GMs / Markov Random

Fields




Undirected Graphical Models

o
®C

 Pairwise relationships
* No explicit way to generate samples
» Contingency constraints on node configurations
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Representing Undirected Graphical Models

* An undirected graphical mode/represents a distribution P(X)
defined by an undirected graph H and a set of positive potential

functions ) associated with the c

igues of H such that:

1
P(X,, ... X)) = Er
C

:lpc(XC)

where Z represents the partition function: Z =), [[. . (X,).

* The potential function can be understood as a “score” of the

joint configuration
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Whatis a clique?

* For G = {V,E}, aclique (complete subgraph) is a subgraph ¢’ =
{fV' € V,E'" € E}such that nodes in V' are fully connected.

« A maximal clique is a clique such that any superset V"' © V is not

a clique.

X;

Maximal cliques: {X1, X,, X3}, {X1, X4}
Sub-cliques: {X1, X2}, {X2, X3}, {X1, X3} {X1} {X2} X3} { X4}
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Interpretation of Clique Potentials

* This model implies X; 1 X3| X5, so joint must factorize as:
P(X1, X3, X3) = P(X2)P(X1|X2)P(X3]X7)
* We could write as P(X{,X,)P(X5 | X,) or P(X,, X3)P(X{ | X5), but:
« Cannot have all potentials be marginals
« Cannot have all potential be conditionals

 Clique potentials can be thought of as general “compatibility” of
their variables, but not as probability distributions.
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Features
» A "feature” is a function that is non-zero for a few particular
inputs and zero otherwise.

» Key idea: Instead of modeling all possible feature values in a big
table, model specific groupings of feature values together.

* Example:
* Let aclique correspond to three consecutive characters.
* How would we define p(cl, c2, c3)?
* All possible character combinations we need 26”3 - 1 parameters.

« But there are sequences that are unlikely: kfd
* Define a feature like “ing”: 1if c1=i,c2=n,c3=qg. O otherwise.
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Features as Potentials
* Each feature function can be converted to a potential by
exponentiating it. We can multiply these together to get a clique

potential. b L

T (AN ] b T I
K
= GXP{Z gkfk (Cl,Cz,C3)}
K =1

* There is still an exponential number of settings, but only K
parameters (6;)

* Example:

A nice benefit of undirected graphical models: we don’t have to
normalize each feature.
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Combining Features

* Each feature function has a weight 6, which represents the
numerical strength of the feature and whether it increases or
decreases the probability of a clique.

* The marginal over the clique is a generalized exponential family
distribution (a GLM):
gingfi:lg (C1=C2aC3) " 8.’:df‘.’:d (C13C2=C3) e }

Ci.Cs:C1) % ex
p(C;,C;,C3) P{gquqfquq(cpczgq)*g

//////

* The features may be overlapping across cliques

V. (xc ) L; exp{z gkfk (xc, )}
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Feature-based model

e Joint distribution: _ 1 _ 1 . \>
p(X) Z (H) 1:[ Wc (xc Z (6) eXP{Z ZI fok (XC‘ )/

* We can drop sum over c: p(x)—lex

|

N
O

-

e

™M &

S

g

™

 What are the sufficient statistics for this model?
* The features

* We need to learn weighting parameters 6,
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1c. Implications of GM Structure
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Generative and Discriminative Models

« Generative:
* Models the joint distribution P(X, Y).

 Discriminative:
* Models the conditional distribution P(Y|X).

Logistic
Regression

o,y =P 10 ] [ Pero

Ben Lengerich © University of Wisconsin-Madison 2025



Andrew Ng’s Insight

* “While discriminative learning has lower asymptotic error, a
generative classifier may also approach its (higher) asymptotic

error much faster.”
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Andrew Ng’s Insight

* “While discriminative learning has lower asymptotic error, a
generative classifier may also approach its (higher) asymptotic
error much faster.”

» Underlying assumption of this statement:

« Generative models of the form P(X,Y, 8) make more simplifying
assumptions than do discriminative models of the form P(Y|X, 0).

* Not always true

« "So far there is no theoretically correct, general criterion for choosing
between the discriminative and the generative approaches to classification
of an observation x into a class y; the choice depends on the relative
confidence we have in the correctness of the specification of either p(y|x)

or p(x, y) for the data.” Xue & Tittering 2008
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https://link.springer.com/article/10.1007/s11063-008-9088-7

Modern Deep Generative Models

Can we build massive-scale deep generative models that no
longer require the constraints of simplifying assumptions?

January 27, 2025:

Nvidia sheds almost $600 billion in
market cap, biggest one-day loss in
U.S. histo




1d. I-Maps of PGMs
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I-Maps

* Independence set: Let P be a distribution over X. We define I(P)
to be the set of independences (X L Y | Z) that hold in P.

* |-Map: Let G be any graph object with an associated
independence set I(G). We say that G is an I-map for an
independence set I if I(G) S 1.

* |-Map of Distribution: We say G is an I-map for P if G is an I-map
for I(P), when we use I(G) as the associated independence set.

Distribution P

G is an I-Map for P if I(G) € I(P)
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I-Maps and Factorization

Distribution P
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I-equivalence

 Definition of I-Equivalence: Two BN graphs G, and G, over X are
[-equivalentit I(Gy) = I(G,).

X1Y|Z

o6 © &
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Uniqueness of Graphs

* Very different graphs can be equivalent in that they encode the
same set of conditional independence assertions.

X1Y|Z

o606 @ &
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2. Learning GMs

©



Maximum Likelihood Estimation (MLE)

e Definition:
e Find 8 that maximize

s the likelihood of observing the given data.

0 = argmaxyL(0) where L(6) = P(data|b).

* Interpretation:

* L(0): Probability of the observed data given 6.
* MLE chooses the parameter that makes the data most “likely."

L(6)

éMLE
v

0
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Maximum A Posteriori (MAP) Estimation

* Find
Oyap = argmaxgP(0|data) < argmaxgyP(data|0)P(6)

e P(data|@) : Likelihood
* P(0): Prior belief about 6

 MLE ignores P(0)
 MAP incorporates prior information.

L(6 P(0)
|
I P(6|data)
|
' »
I jas L
: 0
1

/ MLE

/ éMAP

0 0
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Regularization is MAP

 MLE with Regularization:

« Adds a penalty to avoid overfitting
0req = argmaxg[log L(6) — AR(0)]

L(6)

- MAP as Penalized MLE:

e Let P(0) x e RO Then
0y ap = argmaxg[log L(6) + logP(0)] = Oreg
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2a. Parameter Learning in Fully-

Observed BNs
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MLE for general BNs

* If we assume the parameters for each CPD are globally independent, and
all nodes are fully observed, then the log-likelihood function decomposes
into a sum of local terms, one per node

¢(6;D) = log p(D | 6) —1ogj(1‘[ p(x,, |x,,,7,0.)]: Z[Zlog p(x,, x,.._:,a)j

n i

g

N
T‘ ‘—
(% i ]
=~ " [ ] { i
. e
, ‘ o) .4 & X:%3
0 X,) AXe) o
- ‘\" . . - 2
L8}
0O |
0 \.“,
\

X,

* MLE-based parameter estimation of GM reduces to local est. of each
GLIM.
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MLE for BNs with tabular CPDs

* Each CPD is represented as a table (multinomial) with i

def "

0.{;&' = [)(X! — -/‘X7 :k) 1

* In case of multiple parents the CPD is a high-dimensional table
* The sufficient statistics are counts of variable configurations " ;Z e

e The log-likelihood is ~ (6:D)=log [ 6, = > n,. logb,,

i,J.K I‘J',k

* And using a Lagrange multiplier to enforce that conditionals sumup to 1
we have: oM =
ij
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Decomposable likelihood of a BN

e Consider the GM:

p(x|0)=p(x, |6)p(x,|x,0,)p(x,|x,60,) p(x,|x,,x,,0,)

* This is the same as learning four separate smaller BNs each of which
consists of a node an its parents.
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2b. Parameter Learning in Fully-

Observed Undirected GMs
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MLE for Undirected GMs

* For undirected models, the log-likelihood does not decompose, because
the normalization constant Z is a function of all parameters.

P(xla'“’ 1—[‘//( ) Z Hl/l (X )

ceC Xy ceC
 The likelihood decomposes to give MLE i m(x,)
conditions on clique probabilities: Puce (Xc) = N

* But UGMs are parameterized by Y. not p.

* In general, we need to do inference to learn parameters for undirected
models, even in the fully observed case.
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Case 1: The model is decomposable

* If the model is decomposable and all the clique potentials
are defined on maximal cliques, then:

* The MLE of clique potentials are equal to the empirical marginals (or
conditionals) of the corresponding clique.

 Example: Chain X; - X, - X5
p(X1, X2)p(X2, X3)
p(X2)

pmre(X1,X2) Zp X1, X2,X3) = p(X1|X2) Zp X3) =p(X1,X2)

pmLE(X1,X2,X3) =

PMLE(X2,X3) = p(XZ. X3)

p (X;,X;)
p(x)

FHE (%, %,) = P (%, X,) oy (Ko X3)= = p(X;|x,)
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Case 2: The model is NON-decomposable

* |f the model is non-decomposable (clique potentials are
defined on non-maximal cliques), then we cannot equate MLE of
cligue potentials to empirical marginals (or conditionals).

* Iterative Proportional Fitting (IPF):

p(x.) ———— Empirical distribution

pt(x;) “———_ Current model

distribution

e (xe) = e (xe)

« Generalized Iterative Scaling (GIS):
Eaatal il - Expectation under

Ep(x0ty [fi)] current model
distribution

Empirical expectation

6:*1 = 0! + log
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2c. Parameter Learning in Partially-

Observed GMs




Partially-Observed GMs: Mixture models

« A density model p(x) may be multi-modal
e Can we modelit as a mixture of uni-modal distributions?

0151
Z,

01f

0.05¢

0051 O G
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Unobserved Variables

e A variable can be unobserved (latent) because:

 [tis difficult or impossible to measure
« e.g.Causes of a disease, evolutionary ancestors

* |tis only sometimes measured
« e.g. faulty sensors

 |tis animaginary quantity meant to provide some simplified but

useful view of the data generation process
* e.g. Mixture assignments

* Discrete latent variables can be used for as cluster assignments
« Continuous latent variables can be used for dimensionality reduction
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Why is learning with latent variables harder?

* |n fully-observed IID settings, the log-likelihood
decomposes into a sum of local terms:

Z
@

£.(0;D)=1log p(x,z|0)=1log p(z|6,)+1og p(x|z,0,) ® 0 O
X, X3,

X

« With latent variables, all parameters become coupled
via marginalization

£.(0;D)=log ) p(x,z|0)=log) p(z]6,)p(x|z,6,)
z\ z

Sum over z is inside log
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Strategy:

1. Guess value of Z

2. Apply MLE to estimate best model parameters based on Z
3. Inference most likely Z based on MLE parameter estimates
4. Return to step 2 until Z stops changing
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Expectation-Maximization algorithm

 E-step:
 Compute the expected value of the sufficient statistics of the
hidden variables under current estimates of parameters

* M-step:
« Using the current expected value of the hidden variables,
compute the parameters that maximize the likelihood.
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p(x,z|0)

p(z|x,0) = 1 6)
Why dOeS EM WOI‘k? logp(z|x,0) =logp(x,z10) —logp(x|0)
- E,qllogp(zlx,0)] = E,q[logp(x,z 1 )] —logp(x | 6)

KL(q(z1x) lIp(z1x,0)) =E;q [logpc(lz Ixx;)

E,qllogp(z 1 x,0)] =E,q4[logq(z | x)] = KL(q(z 1 x) [l p(z 1 x,0))

E; qllogp(x,z10)] —logp(x |160) = E,q[logq(z | x)] — KL(q(z | x) 1l p(z1x,0))
logp(x | 8) = E;—qllogp(x,z 1 0)] —E,—qllogq(z | x)] + KL(q(z | x) Il p(z | x,6))
logp(x | 0) = E,qllogp(x,z16)]+H(q) + KL(q(z1x) I p(z1x,0))

EM: Letg;(z | x) = p(z | x,0;). Then at converg%nce:
logp(x | 8) = Ezq,[logp(x,2160)]+ H(q) +0

Q(6',0,) = Ez~p(z|9t) [logp(x,z|6")]
011 = argmaxg,Q(6', 0;)




2d. Structure Learning




Max Likelihood doesn’t inform us about structure

£(6.,G;D)=log p(D|6,.,G)
=M I(x,,X, )-MY H(x)
") il

Mutual information Entropy of x;
between Xx; and its parents

* As we match x; and parents better, the mutual information
INncreases.

* Problems?
» Adding edges always helps!
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Different approaches to structure learning

e Two main problems:

* Likelihood is maximized for fully-connected graph, so we
don’t want to just maximize likelihood alone.

* Finding optimal BN structure is an NP-hard problem if allowed to
be non-tree.

* Many heuristics but no “guarantees” of returning the perfect
structure.

« Can get some guarantees if we make assumptions:
e Fortree BNs: Chow-Liu algorithm
* For pairwise MRFs: Covariance selection, neighborhood-selection
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Score-based Learning

* Define a scoring function that evaluates how well a structure
matches the data:

E,B, A :
<Y,V.V>
<N,N,Y> |
<N,Y,Y> |

e Search for a structure that maximizes the score
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Bayesian Score

* Let's take a Bayesian approach
 Place a distribution over our “uncertain” elements (G and 9)

[ Marginal likelihood ] tri\or/over structures ]

p@G|p)=2 IID(G;'; (©)

Marginal probability of Data ]

P(D) does not depend on the network

» Bayesian score for G

Score, (G :D)=log P(D|G)+log P(G)
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Bayesian Score cont’d

* Bayesian score for G
Score, (G :D)=1log P(D|G)+log P(G)
* QOur choice of prior P(G) has implications.

* Example: Let the edges have Dirichlet priors. Then as the
number of configurations M — oo,

log M

log P(D|G)=1(6, : D)- Dim(G) + O(1)

Dim(G): number of independent parameters in G

Tradeoff between fit to vs. data and complexity
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Bayesian Information Criterion (BIC)

* Bayesian score gives Bayesian Information Criterion:

Score, (G:D) =I(6. : D)— "2 Dim(G)

Ben Lengerich © University of Wisconsin-Madison 2025



Chow-Liu tree learning algorithm

e Assume true structure is a tree

 Start by calculating Mutual Information between every pair of
variables X; and X;

count(x,,x )
."\’[

I(X,,X,)=Y p(x,x,)log

PX.X,)=
p(x;,x;)

p(x;)p(x;)

« Compute maximum weight spanning tree (Kruskal)

» Guarantees to maximize objective function:

£(6.,G;D)=1log p(D|6.,G)

C G ZJM ix-ax.-.’.‘) |
:MZ[A(I‘:‘:;r..-,)—"\'fz:ﬁ(.r:) e ( ) Z ( Ail(k).
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Chow-Liu tree learning algorithm: directionality

* How to pick direction of edges?

 Pick any node as root, do BFS to define directions

C(G)=I1(A,B)+I(A,C)+I(C,D)+I(C,E)

« Can't tell the difference between competing root nodes
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Pairwise MRFs = Gaussian Graphical Model

 Pairwise MRF:

PX) | | (X)) | Al/Ji,j(Xi»Xj)
[ L,j
» Gaussian Graphical Model:
. Let y;(X;) = exp(6;X), ¥ j (X1, X;) = exp(0;;X; X))

* Then:
P(X | 9) X exp (Z HiXi + z Hl] XLX]>
i L]
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Gaussian Graphical Model

» Gaussian Graphical Model:
o Lety; (X)) = exp(0:X;), ¥ j(Xi, X;) = exp(6;;X:X;)

* Then:
P(X | 9) X exp (Z HiXi + z Hl] XLX]>
i L,j

* This is a Multivariate G?ussian denslity:
p(xlp, 2) = ———exp[~5 (x — )27 (x — )]
(2m)2|X|2
e foruy=0andd = 271 =Q.

Ben Lengerich © University of Wisconsin-Madison 2025



So estimating Precision Mat. gives MRF structure

0O 0 Q0 0

O % % % % *
O % % % % *
OO0 % % %
O 0O % O % %
O x O O % *

\

If we can estimate a sample covariance, then we can estimate Q = 271

J z6 O

L5

What if the number of dimensions > number of data points?
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Graph Regression: Learn graph structure per node

Neighborhood selection Lasso:

-
(} = Alg . / {/ / (,
n..,m”lnz1 (0) + A1l € ||y
{

Gives graph structure.
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3. Inference

©



3a. ExactInference




Complexity of inference

 Computing P(X = x | e) ina GM is NP-hard

What does this mean for us?

»Inference cannot be solved in polynomial time unless P=NP.

»No general procedure that works efficiently for arbitrary GMs.
» For families of GMs, we can have provably efficient procedures.

»Exponential worst-case performance for exact inference.
» Motivates approximate inference.
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Variable Elimination: General form

* Write query in the form

P(Xy,€) = z PN [P(xi | pay)

X3 X2

* Then iteratively:
« Move all irrelevant terms outside of innermost sum.

* Perform innermost sum, getting a new term.
* Insert the new term into the product.
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Understanding Variable Elimination

A graph elimination algorithm

O @ O @ ® @ ® @ ® B o—>
G AAY >
@ @ S .

=

| AN allg

* Intermediate terms correspond to the cliques resulted from

elimination @

@@
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3b. Variational Inference

Palx)
///\\

- o KLg@v?) [ p(z]%)
" a@v) v

VI solves inference with optimization.




Variational Inference

palx) |

" KL(q(zv*) || p(z] %))

VI solves inference with optimization.




Variational Inference

logp(x |1 0) = E, 4[logp(x,z10)] + H(q) +KL@a(z1x)11p(z1x6))
\ J

Y
"ELBQO": Evidence Lower Bound

* We choose a family of variational distributions (i.e., a
parameterization of a distribution of the latent variables) such
that the expectations are computable.

* Then, we maximize the ELBO to find the parameters that gives
as tight a bound as possible on the marginal probability of x.




Mean-field VI

* In mean field variational inference, we assume that the
variational family factorizes

m

q(21, -+ 2m) = H q(2;)-

* Each variable is independent. (We are suppressing the
parametersvj.)

* This is more general that it initially appears—the hidden variables
can be grouped and the distribution of each group factorizes.

* Optimize by coordinate ascent:

q*(2x) o< exp{E_g[log p(zx, Z_k, )] }




3c. Monte Carlo Methods




Monte Carlo methods: define dist by samples

* Draw random samples from desired distribution
* Yield a stochastic representation of desired distribution

|m|

- Asymptotically exact

 Challenges:
* How to draw samples from desired distribution?
* How to know we've sampled enough?
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Monte Carlo Methods

* Direct sampling

* Rejection sampling

* Likelihood weighting

* Markov chain Monte Carlo (MCMC)
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Rejection Sampling

* Instead of sampling from P(X), sample x* from Q(X) and accept
sample with probability:

Mpé’((xl), where M is some constant such that P(x) < MQ(x) V x

» Works with un-normalized P(X), too.

* Paccept(X*) —
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Unnormalized Importance Sampling

* Instead of hard rejecting samples we can just reweight them:
Eplf(X)] = jP(x)f(X)dx - [ P )Q(x)f(X)dx = Eq (X)]

x Q(x)
* Approximate with empirical:
1
EplfCOI == > flew(x)
i=1,..n

Q (X)

where x; ~ Q and w; = gg%

What characteristic do we need for this to work?
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Normalized Importance Sampling
* Instead of needing access to the normalized probability
distribution P, we can also perform importance sampling with an
un-normalized P = aP by normalizing the weights according to

the sample:
o 7 =
' 2 Wi
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Weighted resampling

* Problem of importance sampling:
* Performance depends on how well Q matches P.

 If P(x)f(x) is strongly varying and has a significant proportion of its mass
concentrated in a small region, ratio will be dominated by a few samples.

 Solution: use a heavy-tailed Q and weighted resampling.
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Limitations of “simple” Monte Carlo

» Hard to get rare events in high-dimensional spaces
* We need a good proposal Q(x) that is not very different than P(x)

* What if we had an adaptive proposal Q(x)?
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Markov Chain Monte Carlo

MCMC algorithms feature adaptive proposals

* Instead of Q(x’) use Q(x’|x) where x’ is the new state being sampled and x is the
previous sample

* As x changes Q(x’|x) can also change

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x’|x)

Q(x)
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MCMC: Metropolis-Hastings

1. Initialize starting state x{%), set t =0

2. Burn-in: while samples have “not converged”
o Xx=x) \
o t=t+1,
e sample x* ~ Q(x*|x) // draw from proposal
e sample u~ Uniform(0,1) // draw acceptance threshold

: ; P(x*)Q0(x | x*) Function
- |f U< A(x* | X) =min ], P(x)Q(x* I x) Draw Sample (x(t))
x) = x* // transition
- else
x) = x // stay in current state )
e Take samples from P(x) = : Reset t=0, for t =1:N

e x(t+1) € Draw sample (x(t))
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Summary

« We can represent complex distributions by composing local
structures.

« Structures have complex implications for knowledge, learning,
and inference.

* Given a structure, we can learn optimal parameters to match
data even if some of the nodes do not have observed data.

« We can estimate GM structure by optimizing a tradeoff
between likelihood and a structural cost.

* Given a fitted GM (i.e. a distribution), we can query it for exact
statistical answers or approximate the the distribution for
faster answers.
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Questions?
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