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Entering Module 3: Modern Probabilistic Al

» Qutstanding graded material:
* Exam (20%, grades TBD)
Project midterm report (5%, 4/11)
Project presentation (5%, 4/31, 5/1)
* Sign up here!
Project final report (15%, 5/5)
Extra credit (3%, sign-up)

* Module 3:

* Papers > Textbooks
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Weeks Lecture Dates Topic Assignments
Module 1: Foundations of PGMs, Exact Inference
1-4 Jan 21- Feb 13 Course Introduction, Foundations of HWs 1,2
PGMs, Exact Inference
4 Feb 13 Quiz
Module 2: Learning
59 Feb 18 - Mar 18 Parame_ter Learning, Structure Learning, | HWs 3,4,5
Approximate Inference
9 Mar 20 Midterm Exam
10 Mar 21 - Mar 30 | Spring Recess
Module 3: Modern Probabilistic Al
11-14 Apr1-Apr24 Deep Lea!rning, LLMs from a GM Project Midway Report
perspective
15 Apr 29 - May 1 Project Presentations Project Final Report



https://docs.google.com/spreadsheets/d/1ZRhn7_ESWGQRcdXahAdlHdoAW1gGG5UZbM98teQQpfY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1-Mj0MwkSxidVe-HfnMZyUIk4N8cwMeuGzEYTrgDjKqk/edit?usp=sharing

A note on research papers

How we imagine How research papers
research papers: actually are:

oy o
Ty

Holes big
enough to
drive a car
through!
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A note on research papers = let’s be optimists.

papers
All'msesacis are wrong, but some are

T — A useful.
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Deep Learning from a GM

Perspective

©



History - Motivation

(1960 Deep learning:

"' \ / — Has won numerous pattern recognition
1073 - pree.  L.11980s competitions
Gerald Ford & — Does so with minimal feature
viewing computer ¥ . .
translation ]'19905 englneerlng
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A brief history of Al

]
The idea of (Hebbian learning)
“Intelligent Machine” The first updating rule for The first Al Games
was born neural networks
- Christopher Strachey
- Isaac Asimov - Donald Hebb - Arthur Samuel First Summer Of Al

[ [ A EEEEEEEEE \
Al Timierine 1942 1943 1949 1950 1952 | 1956 {
oo — e EE = ] 1
(1942 -1956) ; o
I ] ]
I ] ]
The first recognized Turing test: i the term "Al" was born E E
work as Al “Can a Machine Think?" ! L
i - John McCarthy i E
- Warren McCulioch - Alan Turing | - Marvin Minsky i !
- Walter Pitts e H - Claude Shannon o
! - Nathaniel Rochester B ]
The first Neural Network i P
Computer i TRt E l
W——— i *thinking humanly” P
= Marvin Minsi 1 | 1
- Dean Edmonds i approach-based i
i program A
i ]
1 ] ]
i - Newell E E
: -Simon g
1 ] 1
| ] ]
i The first P
| Reinforcement Learning o
| program. |
i |
1 ] |
| - Arthur Samuel P

3 i

[Toosi et al 2021]
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https://linkinghub.elsevier.com/retrieve/pii/S1556859821000535

A brief history of Al

First Summer of Al - continued .. [

i
? The first Al Games
5 - Christopher Strachey 2
| First - Arthur Somue) :
i Mark | Perceptron First high-level Al Mathematical Prover Parceptron Convergence The first :
! The first Neural Net programming Lang. program. The first Theorem The invention of ELIZAY general-purposs i
i Computer {LISP) —_— Industrial Robot *MicroWorld® The first chatbot mobile robot i
i [ ( - Nathaniel Rochester Bernie Widrow ( !
H - Frank Rose=nblott - John McCarthy - Herbert Gelernter "Unamate’ - Frank Rosenblott - Marvin Minsky - Joseph Weizenboumn shakey” ;
) ‘7 S f f | f [ f |
(1957-1966) 1957 1958 1959 1961 1962 1963 1965 1966 .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +
|
i
"DENDRAL*
! first successful Second Summer of Al
! knovdedge-intensive r —--
H system. "
i first commercial
! - Ed Feigenbaun, First Winter expert system
{ - Bruce Buchanan The Wi of Al A —— The return of Neural
- Joshug Lederberg “Neocognitron” - McDermott Networks
- Bruce Buchanan - Algin Colmerauer The first full-scale The origin of Deep
E Limitations of - Ed Feigenbaurn - Carl Hewdtt - Robert Kowalski anthropomorphic Corvolutional Neural Microelectronics and Reirnvention of
H Perceptron - Joshua Lederberg ( robot Emerging Networks Computer Technology back-propagation
— “Blanner Prolog® ( Hidden Markov Models Corporation (MCC)
i - Marvin Minsky "MYCIN * Language Languape "WABOT-T (HMMs) - K Fukushima Establishad l “connectionist models
i r r r [ f [ :
(1967 -1986) 1969 1971 1971 1972 1973 1975 1980 1982 1986 |
S L L =)

[Toosi et al 2021]
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https://linkinghub.elsevier.com/retrieve/pii/S1556859821000535

A brief history of Al

[
i - Yann teCun
i Deep Blue defeated - Judea Pear IBM's Witsan DeepMind Neuratink
| Deep Comolutional Garry Kasparov (
i The Fifth Generation of Neural Networks T Bayesian Networks Watson wins Jeopardy’ ALPHACO wins Brain-Computer
i Al in Japan and Europe Revisited 18M's "Deep Blue” inAl quiz show “Co" World Champion Interface chip tested
i [ I [ I I I
(1987 - present) — 1987 1995 1997 1998 2000 2009 2011 2012 2016 2020 2021
- Richard 5. Sutton ‘ - Fei Fei Li - Geoffrey Hinton Openafl
Revisited Introduced ImageNet AlexNet wins Cenerative Pre-trained
Reinforcement Dataset in CVPR 09 ILSVRC challenge Transformer 3 (GPT-3)
Learning developed
MNIST Dataset
Introduced

Ben Lengerich © University of Wisconsin-Madison 2025

[Toosi et al 2021]



https://linkinghub.elsevier.com/retrieve/pii/S1556859821000535

) . ( ‘ Inputs McCulloch & Pitts

(1943)

X1

Hard

Linear
Combiner Limiter _
Output

———» ¥

S - |:-> /./@4{
j(“/( /—\\\ X)

-

- Threshold

* McCulloch & Pitts neuron — Threshold only

P

4
—

Warren McCulloch Walter Pitts
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From biological neuron to artificial neuron

* McCulloch & Pitts

neuron -
Threshold only

* Canrepresent
IIAN DIII IIORII

« But not “NOT",
IIXORII
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Perceptrons generalize MP neurons

° o I
— Weighting! Activation

/ function

et =2 W X : |
net gb“l 4 o = G(net) =

X Ji

X9

-net
l+e

n

CORNELL AERONAUTICAL LABORATORY, INC.

THE PERCEPTRON
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Perceptrons generalize MP neurons

° o I
— Weighting! Activation

/ function

et =2 W X . L
e gb“z i o = G(net) =

-net
l+e

n

» Consider regression problem f: XY for scalar Y
. LetY ~ N(f(x),22)

. 2
* Then argmax,, log[[; P(y; | x;; w) = argmin,, Zi%(yi — flx;w))
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Perceptron learning algorithm

» Recall the nice property of sigmoid: —- = o(l —0)

OEp|w])
8wj

il Z(td_od)Z

8wz§ 7

1 0

5 ; Q(td — Od) &wi (td . Od)
do

Z(td o Od)( o 81;)

d
dog Onety
B zd:(td ~ 0a) Onet; Ow;

- Z(td - Od)Od(l - od):cfi
d
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do

X4 = input
ty = target output
04 = Observed output

w, = weight

Batch mode:

Do until converge:
1. compute gradient VEp[w]
2_15 =W — HVED [lﬁ]

Incremental mode:

Do until converge:

= For each training example din [

1. compute gradient VE,;[w]
240 = W — nV Ey[w]

where
VEJIIE] - _(td - Od)od(l - O(f}fd




Can a Perceptron represent XOR?

Weighting!

Activation

/ function

et =2 W X . L
e gb“z i o = G(net) =

-net
l+e

« No! ™

* If there were, then there would be constants w; and w, such that:
* When x; = x,, theno(wyxy + wyx,) <6
 When x; # x,, theno(wyxy + wyx,) =6
e Letx; =1,x, =0 ¢ Letx;=1,x,=1:
 Eq.(1): o(wy) =6 c Eq.(3):a(w;+wy) <86
e Letx; =0,x, =1

.« Eq. (2): 0(wy) =6 Eq. (1) + Eq. (2) contradicts Eq. (3)
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An XOR Logic Gate

=

o = G(net) = l_’m
l+e

Multi-layer Perceptron?

https://byjus.com/jee/basic-logic-
gates/
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Neural Network Model (MLP)

Inputs
Output
Age
0.6
Gender
“Probability
of
. beingAlive”
Independent Weight Hiddenl Dependent
erghts HiddenL  weiohts o
variables ayer S variable
Prediction
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“Combined Logistic Models”...

Inputs
Output
Age P
0.6
Gender
“Probability
of
Stage beingAlive”
: , Dependent
Independent Weights ~ Hiddenl  wWeijghts o
variables ayer .
Prediction
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“Combined Logistic Models”...

Inputs
Output
Age
0.6
Gender
“Probability
of
Stage beingAlive”
. , Dependent
Independent Weights  Hiddenl.  Weijghts rlihle
variables ayer |
Prediction
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“Combined Logistic Models”...

Inputs
Output
Age 5
S
?‘\ — 0.6
Gender iy
5‘/8/ “Probability
: of
Stage " beingalive”
. o Dependent
Independent Weights  HiddenL  weijghts ardidle
variables ayer |
Prediction
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...But no target for hidden units

Age
st | 1
Gender
“Probability
of
s beingAlive”
Independent Weisht Hiddenl Dependent
eights HiddenL Weights st
variables — variable
Prediction
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Backpropagation

* Neural networks are function compositions that can be
represented as computation graphs:

(= of,
x G A0 f(x) 5 T
variables

Outputs

Intermediate
computations

* By applying the chain rule, and working in reverse order, we get:

Z dfiy afl?l B Z Z afz': 8171 B

i1€m™(n) i1 €7r(n) io€m(i1)
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Model building blocks

e Activation functions
e Linear and ReLU

Ben Lengerich © University of Wisconsin-Madison 2025

output

Linear

Rectified linear




Model building blocks

e Activation functions Xy W;
e Linear and RelLU W\AC f(Wx + b)
X2
e Sigmoid and tanh /
@ = (o X4 W3
1 glk 1 _.g-ﬂ
% 3
0 ‘/ > 0 >
input / input
-1 -1
Sigmoid Hyperbolic tangent
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Model building blocks

e Activation functions

Linear and RelLU
Sigmoid and tanh
EIC.

e Layers

Fully connected
Convolutional & pooling
Recurrent

ResNets

Etc.
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Model building blocks

e Activation functions

e Arbitrary combinations of
e Linear and ReLU

the basic building blocks

e Multiple loss functions —
multi-target prediction,
transfer learning, and more

e Sigmoid and tanh
o Etc.

e lLayers

e Fully connected e Given enough data, deeper

architectures just keep

e Convolutional & pooling : "
Improving

e Recurrent
e ResNets
e Etc.

e Representation learning:
the networks learn
increasingly more abstract
representations of the data
that are “disentangled,”
I.e., amenable to linear
separation.

e Loss functions
e Cross-entropy loss

e Mean squared error
e FEtc.
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Using DNNs for hierarchical representations

Trainable Trainable ,
Trainable
Feature |ressssssssssnnnss IS Feature — Classifier —_—
Extractor Extractor

- In Language: hierarchy in syntax and semantics

— Words — Parts of Speech — Sentences — Text
— Objects, Actions, Attributes... — Phrases — Statements — Stories

- In Vision: part-whole hierarchy
— Pixels — Edges — Textons — Parts — Objects — Scenes
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Empirical goal:
Structure:

Objective:

Vocabulary:

Algorithm:

Evaluation:
Implementation:

Experiments:

e.g., classification, feature
learning

Graphical

Something aggregated from
local functions

Neuron, activation function, ...

A single, unchallenged,
inference algorithm —
Backpropagation (BP)

On a black-box score —
end performance

Many tricks

Massive, real data
(GT unknown)
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<
S?

e.g., latent variable inference,
transfer learning

Graphical

Something aggregated from local
functions

Variable, potential function, ...

A major focus of open research,
many algorithms, and more to
come

On almost every intermediate
quantity

More or less standardized

Modest, often simulated data
(GT known)




Graphical models vs Deep nets

Graphical models

e Representation for encoding

meaningful knowledge and the
associated uncertainty in a
graphical form

OO

Topic proportions ;
Toplc nslgnmoms 3
oooooo
Lummg and inference in the bnhg
The Wk ome Daparimert of imagrg Newoscerce Faituie of New
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Deep neural networks

e Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations
may not be meaningful)

Input layer (S1) 4 feature maps

(C1) 4 feature maps (S2) 6 feature maps  (C2) 6 feature maps




Graphical models vs Deep nets

Graphical models

Representation for encoding
meaningful knowledge and the
associated uncertainty in a
graphical form

Learning and inference are based
on a rich toolbox of well-studied
(structure-dependent) techniques
(e.g., EM, message passing, VI,
MCMC, etc.)

Graphs represent models
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Deep neural networks

Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations
may not be meaningful)

Learning is predominantly based
on the gradient descent method
(aka backpropagation);

Inference is often trivial and done
via a “forward pass”

Graphs represent computation




Graphical models vs Deep nets

Graphical models
Utility of the graph

e A vehicle for synthesizing a global loss
function from local structure

e potential function, feature function, etc.

e A vehicle for designing sound and
efficient inference algorithms
I .

= "logp(z:) + Y _ logth(zs, ;)
7 i,J

mi—)a ('xi) = Hmc—n'(xi)

ceN(i)\a

ba(Xa)mfa(Xa) l_[mi—m(xl)

ieN(a)

e Sum-product, mean-field, etc.

e A vehicle to inspire approximation and L= : -
penalization

e Structured MF, Tree-approximation, etc.

e A vehicle for monitoring theoretical and s
empirical behavior and accuracy of
inference o e

Utility of the loss function F,:© o ©

e A major measure of quality of the ¥ »
Iearning algorithm and the mOdel Q(Fy) := {0€Q| 0, =0V (s,t) eE}. QT) := {9€Q|0( =0 V( 9!)¢L(7)}

m, (x)—Zf(X) [1m.(x;

jeN(a)\i

II A(0) < ¢\

O
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Graphical models vs Deep nets

Graphical models
Utility of the graph
e A vehicle for synthesizing a global loss

function from local structure
e potential function, feature function, etc.

e A vehicle for designing sound and
efficient inference algorithms

e Sum-product, mean-field, etc.

e A vehicle to inspire approximation and
penalization

e Structured MF, Tree-approximation, etc.

e A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function

e A major measure of quality of the
learning algorithm and the model
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Deep neural networks

Utility of the network

e A vehicle to conceptually synthesize
complex decision hypothesis
e stage-wise projection and aggregation
e A vehicle for organizing computational
operations
e stage-wise update of latent states

e A vehicle for designing processing
steps/computing modules

o Layer-wise parallelization

e No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function

e Global loss? Well it is complex and
NON-Convex...




Sometimes nets are proposed as true GMs:

e Boltzmann machines (Hinton & Sejnowsky, 1983)

e Restricted Boltzmann machines (Smolensky, 1986)

e Learning and Inference in sigmoid belief networks (Neal, 1992)

e Fast learning in deep belief networks (Hinton, Osindero, Teh, 2006)
e Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)
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Restricted Boltzmann Machines

@ Assume visible units are one layer, and hidden units are another.
@ Throw out all the connections within each layer.

f # / . &
| | AN L7 / /
¥ ’ Ve
| A 7
/

; ' weight: w;;
: /  factor: exp(v; Wij hy )
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Restricted Boltzmann Machines

-a%logL X

Y YP h|v) logP*( ) — ZP(V h) (,;?U log P*(x)

vE’D h v,h
N - s )
data av. over posterior av. over joint
Contrastive
. . . * Divergence estimates
Both terms involve averaging over 5 log P*(x). i ol i

a Monte Carlo
estimate from 1-step
of a Gibbs sampler!
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Sigmoid Belief Networks

OOIOO Hidden units

Hidden units OOOO Symptoms ¢ OOQOQO Diseases
OQQO0O OOOQO Symptoms
) \ OQOO Hidden units | OOQOO Hidden units
0000 QOO0 s OOOO Hidden units| —
Symptoms Diseases OOOQO Diseases ¥ OOOQO Symptoms

OOQQ Diseases

Sigmoid belief nets are simply Bayes networks
conditionals represented in a particular form:
P(Si=,’C|Sj=Sij;éi)
~C>(P(Si=.¥|Sj=Sij<i)
I[P@i=5|Si=x Sc =8 k<] kkil)
J>i

P(S,‘ =S,‘|Sj =§; . j<i) — O'(S;ZSJ’LUU)
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RBMs are infinite belief networks (with tied weights)

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left — right)
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RBMs are infinite belief networks (with tied weights)

— to generate: and so on...
. 8
A b
oL L A K L VFDD
W \ '\\‘.f N/ \/ p// Q
visible layer DAL N ] Yo
wh X \
sampling from this is the same as sampling W
from the network on the right.
WT
w
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Deep Belief networks: layer-wise pre-training

——
and so on...

Un-tie the weights from layers 2 to infinity

If we freeze the first RBM,
and then train another RBM LX AL A P Y
atop it, we are untying the ! @ W N
weights of layers 2+ in the oo
net (which remain tied
together).

untied" g;;23§<\x

weights /| // \

W is
frozen

visible layer

Ben Lengerich © University of Wisconsin-Madison 2025



NNs and GMs: Natural Complements

Hybrid: RNN + HMM * Objective: log-likelihood
) (& ) (s,) * Model: HMM/Gaussian

emissions

* Inference: forward-

backward algorithm
* Learning: SGD with

| v | gradient by

backpropagation
\ L
(o)

L — — N\ L — — N\ L — N L — — N\

[Graves et al. 2013]
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NNs and GMs: Natural Complements

I/ VAN N g

v v
n vin|p|d n s vin p d
P o wilal1.41.21.3 p 041 v 6i/.4/.2]/.3
do1 ni.8lajlafo d 0.2 n.8lala|o
p/.2 .3/.2/.3 pl.2|.3].2].3
d .2.800 d.2|8|0]0

* Inastandard CRF, each of the factor cellsis a
parameter (e.g. transntlon or emission)

* Inthe hybrid model, these values are computed
by a neural network with its own parameters

[Collobert & Weston 2011]
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Looking ahead

Module 3: Modern Probabilistic Al

an Lecture #16 (Prof. Lengerich):
Deep Learning from a GM
Perspective
[ slides | notes |

4/3  Lecture #17 (Prof. Lengerich):
CNNs, RNNs, Autoencoders
[ slides | notes |

4/8  Lecture #18 :
Deep Generative Models: GAN,
VAEs
[ slides | notes |

4/10 Lecture #19 (Prof. Lengerich):
Attention and Transformers
[ slides | notes ]

Goodfellow et al., Deep learning book, Ch.
6.2-5, 20.3-4

Salakhutdinov and Hinton, Deep Boltzmann
Machines

Ranganath et al., Deep exponential families

Pascanu, Mikolov, Bengio, On the difficulty of
training recurrent neural networks

Goodfellow et al., Deep learning book, Ch.
20.9-10

Kingma and Welling, Variational
Autoencoders

Goodfellow et al., Generative Adversarial
Nets

Arora., Generative Adversarial Networks
(GANs), Some Open Questions

Vasvani et al., Attention is all you need
Devilin et al., BERT - Pre-training of Deep
Bidrectional Transformers for Language
Understanding.

Raschka, Build an LLM from Scratch 3
(video)

Sanderson, Visualizing transformers and
attention (video)
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4/15 Lecture #20 (Prof. Lengerich):
LLMs from a Probabilistic
Perspective 1: Implementing a GPT
from Scratch
[ slides | notes ]

4/17 Lecture #21 (Prof. Lengerich):
LLMs from a Probabilistic
Perspective 2: Training on
Unlabeled Data
[ slides | notes ]

4/22 Lecture #22 (Prof. Lengerich):
LLMs from a Probabilistic
Perspective 3: Fine-tuning on
Labeled Data
[ slides | notes ]

4/24 Lecture #23 (Prof. Lengerich):
Context-Adaptive Graphical Models
[ slides | notes ]

51

» Radford et al., Improving Language

Understanding by Generative Pre-Training
(the GPT-1 paper)

» Radford et al., Language Models are

Unsupervised Multitask Learners (the GPT-2
paper)

» Brown et al., Language Models are Few-Shot

Learners (the GPT-3 paper)

¢ Raschka, Build an LLM from Scratch 4

(video)

o Karpathy, Let's Build GPT from Scratch

(video)

 Bi. et al, DeepSeek LLM Scaling Open-

Source Language Models with Longtermism

 Liu et al., DeepSeekV2 A Strong, Economical,

and Efficient Mixture-of-Experts Language
Model

« Liu et al.,, DeepSeekV3 Technical Report

« Raffel et al., Exploring the Limits of Transfer

Learning with a Unified Text-to-Text
Transformer

» Ouyang et al., Training language models to

follow instructions with human feedback

 Li & Liang, Prefix-tuning - Optimizing

continuous prompts for generation

» Lengerich et al., Contextualized Machine

Learning

Project Presentations

Project Presentations




Questions?
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