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Outstanding graded material

* Project midterm report (5%, 4/11)

* Project presentation (5%, 4/29, 5/1)
* Sign up herel

 Project final report (15%, 5/5)
 Extra credit (3%, sign-up)
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https://docs.google.com/spreadsheets/d/1ZRhn7_ESWGQRcdXahAdlHdoAW1gGG5UZbM98teQQpfY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1-Mj0MwkSxidVe-HfnMZyUIk4N8cwMeuGzEYTrgDjKqk/edit?usp=sharing

Recap: Perceptron Decision Boundaries

OR (X4, X) AND (X1, X;) XOR(Xy, X;)
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Today

* CNNs
* RNNs
 Autoencoders
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Convolutional Neural Networks (CNNSs)
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Full connectivity is a problem for large inputs
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« 200x200x3 images imply 120,000 weights per neuron in first
hidden layer

Ben Lengerich © University of Wisconsin-Madison 2025




Convolutional Neural Networks [LeCun 1989}

e If inputs are images (and more generally, data with a
grid-like topology) then we can share parameters.

* Instead of learning position-specific weights, learn
weights defined for relative positions
« Learn "filters” that are reused across the image
» Generalize across spatial translation of input

* Key idea:

* Replace matrix multiplication in neural networks with a convolution
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Sliding filters (kernels)

Reused weights (small)!

Fig. Goodfellow et al. 2016




CNNs give sparse connectivity
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(Goodteliow 2016)
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Receptive fields grow over depth

Figure 9.4 (Goodfellow 2016)
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Parameter sharing
Convolution
shares the same
parameters
across all spatial Gb
locations
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Figure 9'5 {Goodlellow 2016)
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A Probabilistic Perspective on CNNs
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Convolution: Adding two random variables

* LetX ~ Py,Y ~ P, beindependent RVs. What's E[X] + E[Y]?
* What's P(X +Y = 2)?
P(X+Y =2) =jP(X=x,Y=z—x)dx

= fPX(X =x)Py(Y =z —x)dx

= JPX(x)PY(Z — x)dx

 This is known as a convolution of Py and Py:
(Px * Py)(2) = fPX(x)PY(Z — x)dx
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“"Convolutions” in CNNs

= e let:
* P,(i,j) be the probability that a pattern is centered at i,j in the image.

* Py(m,n) be the probability that a pattern offset by (m,n) should be
recognized.

* P,(i,j) be the probability of recognizing a pattern at i,j considering all
relevant offsets.

 We can write:
P,(i,j) = Z z P(I =(i+mj+n))P,(L=(mn))

 Alternatively, define:
e X =logP;,Y = log Py

» Then Z(i,j) = logYm X exp(X (i + m,j + n) + Y(m,n))
zZZX(i+m,j+n)Y(m,n) =Xx*Y
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Convolutions on hon-image data?
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Graph Convolutional Networks

Hidden layer
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[Kipf 2016]



https://tkipf.github.io/graph-convolutional-networks/

Spectral convolutions

« Spatial domain - graphs may be irregular

« Spectral domain - represent graph by the
eigenvectors of the graph Laplacian
« Orthogonal basis

« Convolution filter in the spectral domain is
equivalent to a localized operation in the spatial
domain

* By designing filters to operate on certain
eigenvalues, you can control which features
(smooth vs high-frequency) you are retaining.
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Recurrent Neural Networks (RNNs)
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CNNs 2 Recurrent Neural Networks (RNNs)

o Spatial Modeling vs. Sequential Modeling
o Fixed vs. variable number of computation steps.

b

The output depends ONLY The hidden layers and the output
on the current input additionally depend on previous states
of the hidden layers
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RNNs in many forms

—
One to One One to Many Many to One Many to Many Many to Many
Y9 @9 @9 & SDIDAD DIID
9.9.% (DD (DD (DD
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Image
classification Image
captioning

Sentence sentiment analysis /
Video recognition

Machine Translation Named Entity Recognition

(Sequence-to-sequence) (Sequence tagging)
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A challenge: Vanishing / exploding gradients

ht —_ tanh(Whhht_l + thxt)

W—( )= tanh W—( )= tanh W—( )= tanh W—’_:—>tanh

H Igm*:i:ck TL‘hA’—’i“ICk H—oh3 —osxack Lh

h. —t——* stack T B T

X1 X2 X3 X4

Largest singular value > 1: | Gradient clipping: Scale

Computing gradient | Exploding gradients gradient if its norm is too big
of h, involves many

grad_norm = np.sum(grad * grad)
factors of W Largest singular value < 1: if grad_norm > threshold:

(and repeated tanh) Vanishing gradients grad *= (tk«2shold / arad_rorm)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural neworks”
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Long Short Term Memory (LSTM)

e LSTMs are designed to explicitly alleviate the long-term dependency
problem [Horchreiter & Schmidhuber (1997)]
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Long Short Term Memory (LSTM)

e Linear memory cells + multiplicative gate units to store read, write, and
reset iInformation

Gating functions to select information for
Ci_148 - Vol passing and remembering

Forget gate: whether to erase cell (reset)
Input gate: whether to write to cell (write)

Output gate: how much to reveal cell (read)
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Long Short Term Memory (LSTM)

o Forget gate: decides what must be removed from h;_;

fe=0Wg-[he(q,x¢] + byf)

e Input gate: decides what new information to store in the cell

ig =0o(W;-[hi—q,x¢] + by)

it % Z‘t = tanh(WC . [ht_.l,xt] -+ bc)
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Long Short Term Memory (LSTM)

[
o Update cell state:

Co=fe*Coq+ iy *C,

®
fT | $ forgetting unneeded things
e scaling the new candidate values by how

much we decided to update each state
value.

o Output gate: decides what to output from our cell state
4 0r = 0(W, - [he—1,%,] + by)

ht - Ot * tanh(ct)

sigmoid decides what parts of the cell
T o state we're going to output
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Backprop in LSTM

Uninterrupted gradient flow!
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o No multiplication with matrix W during backprop

o Multiplied by different values of forget gate -> less prone to
vanishing/exploding gradient
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Outputs e Yt Yt Yeg1 - -

RNNs in Various Forms

— Backward Layer 4— e 0
e Bi-directional RNN g’l

Forward Layer
Hidden state is the concatenation of both
forward and backward hidden states.

Allows the hidden state to capture both past and
future information. [Speech Recognition with Deep Recurrent
Neural Networks, Alex Graves]

|npUtS oo Tp-—1 Iy Tggr - - -

o [ree-structured RNN P
Hidden states condition on both an input vector Chain LSTM —+ 1 4 Y
5 3 5

and the hidden states of arbitrarily many child iy r &
units. i
Standard LSTM = a special case of tree-LSTM 5 "

where each internal node has exactly one child. Tree LSTM

T4 Ty 6
Improved Semantic Representations From Tree-
Ben Lengerich © University of Wisconsin-Madison 2025 Structured Long Short-Term Memory Networks, Tai. et al.
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Autoencoders

©



Autoencoders

— | ENCODER

INPUT
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DECODER

@

RECONSTRUCTED
INPUT

[Michelucci 2022]



https://arxiv.org/pdf/2201.03898

Why reduce dimensionality?

* Reduce computation cost of downstream tasks.
* Improve statistical stability of downstream tasks.
* Denoise observation.

* Learn to generate samples (variational autoencoders).
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Autoencoders vs PCA for dimensionality reduction

— | ENCODER —>.—> DECODER |—
INPUT LATENT FEATURE RECOTLS;S;JCT ED

(REPRESENTATION)

* PCA: Dimensionality reduction by linear projection onto
eigenvectors of covariance
* Requires O(d"2) space for data in d dimensions (expensive!)

 Autoencoder:
* O(d) space.
* Train with batches.

* Equivalent! If:
* Autoencoderis linear + loss function is MSE and inputs are normalized.
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Denoising Autoencoders

* What if we train our autoencoder on data with intentionally-
added noise?

Noisy image Pure image Denoised image

Pure image

Denoised image

Z.

Denoised image

o

j [Michelucci 2022]

Pure image
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https://arxiv.org/pdf/2201.03898

Questions?
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