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Project
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• Midway report due this Friday
• Rubric

https://adaptinfer.github.io/dgm-fall-2025/project/#midway-report
https://adaptinfer.github.io/dgm-fall-2025/project/#midway-report


A New Resource
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https://badgercompute.wisc.edu/

Interactive computing environment

https://badgercompute.wisc.edu/


Last Time: Autoencoders



Autoencoders
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෤𝑥 = 𝑓 ℎ = 𝑓 𝑔 𝑥

[Michelucci 2022]

https://arxiv.org/pdf/2201.03898
https://arxiv.org/pdf/2201.03898


Denoising Autoencoders
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Add dropout after the 
input, or add noise to the 
input to learn to denoise 
inputs



Autoencoders and Dropout
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Add dropout layers to 
force the network to learn 
redundant features



Sparse Autoencoders
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Add L1 penalty to the loss 
to learn sparse feature 
representations



Sparse Autoencoders
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Useful for post-
hoc 
interpretability



Variational Autoencoders
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Define latent dim to follow 
Normal distribution

Enables sampling



Generative Adversarial Networks (GANs)



Generative Adversarial Nets (GANs)
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https://arxiv.org/abs/1406.2661

https://arxiv.org/abs/1406.2661


Lots of GAN Applications
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Dall-E 2 by OpenAI, April 2022



Lots of GAN Applications
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Imagen by Google, April 2022



Lots of GAN Applications
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Human Faces generated by VAEs Human Faces generated by GANs

https://becominghuman.ai/generative-adversarial-
networks-gans-human-creativity-2fc61283f3f6



Generative Adversarial Nets (GANs)
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• The original purpose is to generate new data

• Classically for generating new images, but applicable to wide range of 
domains

• Learns the training set distribution and can generate new images that 
have never been seen before

• Similar to VAE, and in contrast to e.g., autoregressive models or RNNs 
(generating one word at a time), GANs generate the whole output all 
at once



GAN Training
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Discriminator:

Generator:



GAN Training – An Adversarial Game
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Discriminator: learns to become better at 
distinguishing real from generated images

Generator: learns to generate better images 
to fool the discriminator



GAN Training – Putting it together
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Discriminator:

Generator:



GAN Training – Putting it together
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Discriminator gradient for update (gradient ascent):

want large probability on 
real images

want small probability on 
generated images



GAN Training – Putting it together
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Generator gradient for update (gradient descent):

Want discriminator to predict 
poorly on fake images
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Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 
Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural 
Information Processing Systems, pp. 2672-2680. 2014.
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GAN Training – Convergence?

• Converges when Nash-equilibrium (Game Theory concept) is 
reached in the minmax (zero-sum) game

• Nash-equilibrium in Game Theory is reached when the actions of 
one player won't change depending on the opponent's actions

• Here, this means that the GAN produces realistic images and the 
discriminator outputs random predictions (probabilities close to 
0.5)
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GAN Training – Saddle point interpretation
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GAN Training Problems

• Oscillation between generator and discriminator loss
• Mode collapse (generator produces examples of a particular kind 

only)
• Discriminator is too strong, such that the gradient for the 

generator vanishes and the generator can't keep up

Instead of gradient descent with 

Do gradient ascent with “Non-saturating” GAN
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GAN Training Problems

• Oscillation between generator and discriminator loss
• Mode collapse (generator produces examples of a particular kind 

only)
• Discriminator is too strong, such that the gradient for the 

generator vanishes and the generator can't keep up
• Discriminator is too weak, and the generator produces non-

realistic images that fool it too easily (rare problem, though)
• Sensitive to learning rate and other hyper parameters
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GAN Training Problems

• Lots of Tips & Tricks:

https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks
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Deep Convolutional GAN

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised 
representation learning with deep convolutional generative 
adversarial networks. arXiv preprint arXiv:1511.06434.



GANs and VAEs: A Unified View

Bonus



GANs
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• GAN: Implicit distribution over 𝑥 ∼ 𝑝𝜃(𝑥 ∣ 𝑦)

• 𝑥 ∼ 𝑝𝑔𝜃
𝑥 𝑥 = 𝐺𝜃 𝑧 , 𝑧 ∼ 𝑝(𝑧 ∣ 𝑦 = 0)

• 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 𝑥

Bonus



GANs: Rewrite in Variational-EM format
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• The familiar “Variational-EM” format:

• Implicit distribution over 𝑥 ∼ 𝑝𝜃 𝑥 ∣ 𝑦 :
𝑥 = 𝐺𝜃 𝑧 , 𝑧 ∼ 𝑝(𝑧 ∣ 𝑦 = 0)

• Discriminator distribution q𝜙 y 𝑥 :
𝑞𝜙

𝑟 𝑦 𝑥 = 𝑞𝜙(1 − 𝑦 ∣ 𝑥)

Bonus



Variational EM vs. GANs
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• Variational EM
• Objectives

• Single objective for both 𝜃 and 𝜙

• Extra prior regularization by 𝑝(𝑧)

• The reconstruction term:
• Maximize the conditional log-likelihood of x 

with the generative distribution 𝑝𝜃 𝑥 𝑧  
conditioning on the latent code 𝑧 inferred by 
𝑞𝜙(𝑧 ∣ 𝑥)

• 𝑝𝜃 𝑥 𝑧  is the generative model

• 𝑞𝜙(𝑧 ∣ 𝑥) is the inference model

• GAN
• Objectives

• Two objectives

• Maximize the conditional log-likelihood 
of y with the distribution 𝑞𝜙(𝑦 ∣
𝑥) conditioning on data/generation x 
from 𝑝𝜃 𝑥 𝑦

• 𝑞𝜙(𝑦 ∣ 𝑥) is the generative model

• 𝑝𝜃 𝑥 𝑦  is the inference model

Bonus



GANs vs VAEs: A Symmetry
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Hu et al. “Unifying Deep Generative Models”

Bonus

https://arxiv.org/abs/1706.00550


GANs vs VAEs: A Symmetry

Ben Lengerich © University of Wisconsin-Madison 2025

Hu et al. “Unifying Deep Generative Models”

Bonus

https://arxiv.org/abs/1706.00550


GANs and Mode Collapse
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Human Faces generated by VAEs Human Faces generated by GANs

https://becominghuman.ai/generative-adversarial-
networks-gans-human-creativity-2fc61283f3f6

Bonus



What to remember

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Questions?
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