STAT 453: Introduction to Deep
Learning and Generative Models

Ben Lengerich

Lecture 19: Recurrent Neural Networks

November 10, 2025

Reading: See course homepage




Our semester

—
Week Lecture Dates Topic
Module 1: Introduction and Foundations
Module 3: Intro to Generative Models
9/3 Course Introduction
1 o 10/27, 10/29 A Linear Intro to Generative Models,
Factor Analysis, Autoencoders, VAEs
> 9/8,9/10 A Brief History of DL, _ ] ] _
Statistics / linear algebra / calculus review 10 11/3, 11/5 Generative Adversarial Networks, Project Midway Report
Ditbesromiviosel
3 9/15, 9/17 Single-layer networks
Parameter Optimization and Gradient Descent Module 4: Large Language Models
a 9/22,9/24 Automatic differentiation with PyTorch, 11/10, 11/12 Sequence Learning with RNNs HW4
Cluster and cloud computing resources 1 Attention, Transformers
Module 2: Neural Networks 11/17,11/19 | GPT Architectures,
12 . ..
. o Unsupervised Training of LLMs
5 9/29, 10/1 Multinomial logistic regression,
Multi-layer perceptrons and backpropagation 13 11/24,11/26 | Supervised Fine-tuning of LLMs, HWS
Prompts and In-context learning
6 10/6, 10/8 Regularization
Normalization / Initialization 12/1,12/3 Foundation models, alignment, explainability
14 e
Open directions in LLM research
7 10/13, 10/15 Optimization, Learning Rates
CNNs 15 12/8, 12/10 Project Presentations Project Final Report
8 10/20,10/22 | Review, 16 12/17 Final Exam Final Exam
Midterm Exam




A quick vote...

—
Week Lecture Dates Topic
Module 1: Introduction and Foundations
Module 3: Intro to Generative Models
9/3 Course Introduction
1 o 10/27, 10/29 A Linear Intro to Generative Models,
Factor Analysis, Autoencoders, VAEs
> 9/8,9/10 A Brief History of DL, _ ] ] _
Statistics / linear algebra / calculus review 10 11/3, 11/5 Generative Adversarial Networks, Project Midway Report
Ditbesromiviosel
3 9/15, 9/17 Single-layer networks
Parameter Optimization and Gradient Descent Module 4: Large Language Models
a 9/22,9/24 Automatic differentiation with PyTorch, 11/10, 11/12 Sequence Learning with RNNs HW4
Cluster and cloud computing resources 1 Attention, Transformers
Module 2: Neural Networks 11/17,11/19 | GPT Architectures,
. o Unsupervised Training of LLMs
5 9/29, 10/1 Multinomial logistic regression,
Multi-layer perceptrons and backpropagation 13 11/26 | Supervised Fine-tuning of LLMs, HWS
Prompts and In-context learning
6 10/6, 10/8 Regularization
Normalization / Initialization 12/1; Foundation models, alignment, explainability
14 . .
Open directions in LLM research
7 10/13, 10/15 Optimization, Learning Rates
CNNs 15 12/8, 12/10 Project Presentations Project Final Report
8 10/20,10/22 | Review, 16 12/17 Final Exam Final Exam
Midterm Exam




HWA4

e Released on the website

* Due next Friday
e Auto-encoder (4 parts) + bonus GAN
* We recommend Colab

Ben Lengerich © University of Wisconsin-Madison 2025


https://adaptinfer.github.io/dgm-fall-2025/homework/

Recall “Conditioning on Text”...

Flow do we translate text to numeric values? ‘
7 I \

{_ .................................

Po(X¢— 1|xt
T T, SECH
. ‘\ (xt|xt 1) ,’

-

il —

q(x;—1|x%¢) is unknown

Ben Lengerich © University of Wisconsin-Madison 2025



Challenges with text

|
Module 4: Large Language Models
¢ Val‘lab|e |ength |npUt 11 TIToTTIT Sequence Learning with RNNs HW4
Attention, Transformers
[ -
LO ng ra nge — 11/17, 11/19 GPT Architectures,
. 12 . -
dependenC|eS Unsupervised Training of LLMs
. . Supervised Fine-tuning of LLMs, HWS5
* Want a gene rative /y Prompts and In-context learning
m Od el ,12/3 Foundation models, alignment, explainability
14 , , .
Open directions in LLM research
e Scale , , —
p 15 12/8,12/10 Project Presentations Project Final Report
o .
Emergent prOpert|eS Of 16 12/17 Final Exam Final Exam

large language models

Ben Lengerich © University of Wisconsin-Madison 2025



Where we’re going

GPT = Auto-regressive probabilistic model
* Directed PGM

* Probabilistic objective: Max log-likelihood of observed seqs
meaxz log Po( Xz | Xi<r )
t

l
[Radford et al., Improving Language Understanding by
Ben Lengerich © University of Wisconsin-Madison 2025 Generative Pre-Training]



https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Today

 Different Ways to Model Text

* Sequence Modeling with RNNs

* Different Types of Sequence Modeling Tasks
e Backpropagation Through Time

* Long-Short Term Memory (LSTM)

* Many-to-one Word RNNs

Ben Lengerich © University of Wisconsin-Madison 2025



A classic approach: Bag-of-words

I
"Raw" training dataset vocabu|a|'y { Training set as design matrix
find10 0 101 101 0 0]
x = ”The sun is shining” 'on.e" 5 X=(01 00 0 1 1 0 1
x[?l = ”The weather is sweet” 'shining,': 3, _2 3 2 1 1 1 21 1_
x[%l = ”The sun is shining, . 'sun": 4, 5 )
the weather is sweet, and - 'sweet': 5, * y = _Oa 13 0]
one and one is two” 'the': 6, : class labels training
. two': 7, i
y = [Oa ]-a O] '‘weather": 8, :
'} |
class labels ;
Raschka & Mirjalili. Python Machine Learning 3rd (e.g., logistic regression, MLP, ...)

Ed. https://github.com/rasbt/python-machine-learning-book-3rd-
edition/blob/master/ch08/ch08.ipynb

Ben Lengerich © University of Wisconsin-Madison 2025



Another classic approach: Hidden Markov Model

~~ . -
/ \ S~ _ - ” N
17 \ B N ’ N 0.
N T S~ 7 A
d _x 7~ N
’ - . 0.4 0.3/ ~ - \
-7 N Y T~
- N , -
\ /
\ ’
\ /

Wikipedia example: each day, weather P(Y = v|X = X =)= P(Y. = v|X =
follows a Markov chain, and activities &, =yl X =x,... %, =x) =P, =y|X, =X
are observables

Ben Lengerich © University of Wisconsin-Madison 2025



Another approach:

CNNs
S
Can’t handle variable u
length input, "
- need padding to max i
input length S
S
h
i
n
i
n
g

Ben Lengerich © University of Wisconsin-Madison 2025




Today

 Different Ways to Model Text

* Sequence Modeling with RNNs

* Different Types of Sequence Modeling Tasks
e Backpropagation Through Time

* Long-Short Term Memory (LSTM)

* Many-to-one Word RNNs

Ben Lengerich © University of Wisconsin-Madison 2025



Sequence data: order matters

"he movie my friend has not seen is good
"he movie my friend has seen is not good

y

<2> <3> <4>

(R

Output: y<"> vy

|nput: X<1> X<2> X<3> X<4> X<5> X<6> Time

Ben Lengerich © University of Wisconsin-Madison 2025 Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. Packt, 2019



time step t
Recurrent Neural Networks (RNNs)

Networks we used

previously: also called Recurrent Neural
feedforward neural Network (RNN)

networks

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd

Edition. Packt, 2019 Recurrent edge

Ben Lengerich © University of Wisconsin-Madison 2025



Recurrent Neural Networks (RNNs)

yf-l? Single layer RNN

@ Unfofd>

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019

Ben Lengerich © University of Wisconsin-Madison 2025



Recurrent Neural Networks (RNNs)

<t> J—Y— '-'-t-1 T
y Single layer RNN Each h|dden unlt ]
receives 2 inputs

@) ) s fEDLGD-GD
= )]

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019

Ben Lengerich © University of Wisconsin-Madison 2025



Multilayer RNNs

m Multilayer RNN

) e
@ Unfold

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019

)

Ben Lengerich © University of Wisconsin-Madison 2025



Recurrence unlocks many types of sequence tasks

F] C JC )
. JC JC ) [i

many-to-one one-to-many

. JC JC . JC JC )

many-to-many many-to-many
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Today

 Different Ways to Model Text

* Sequence Modeling with RNNs

 Different Types of Sequence Modeling Tasks
e Backpropagation Through Time

* Long-Short Term Memory (LSTM)

* Many-to-one Word RNNs

Ben Lengerich © University of Wisconsin-Madison 2025



Recurrence unlocks many types of sequence tasks

. JC JC )

many-to-one

Many-to-one: The input data is a sequence, but the output
is a fixed-size vector, not a sequence.

Example: sentiment analysis, the input is some text, and the
output is a class label.

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Recurrence unlocks many types of sequence tasks

C OC I )

one-to-many

One-to-many: Input data is in a standard format (not a
sequence), the output is a sequence.

Example: Image captioning, where the input is an image, the
output is a text description of that image

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Recurrence unlocks many types of sequence tasks

Many-to-many: Both inputs and outputs are sequences. Can
be direct or delayed.

Example: Video-captioning, i.e., describing a sequence of
images via text (direct). Translation.

| G C JC JC )

S . JC JC )

many-to-many many-to-many
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Today

 Different Ways to Model Text

* Sequence Modeling with RNNs

* Different Types of Sequence Modeling Tasks
* Backpropagation Through Time

* Long-Short Term Memory (LSTM)

* Many-to-one Word RNNs

Ben Lengerich © University of Wisconsin-Madison 2025



Under the hood: weight matrices in an RNN

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Under the hood: weight matrices in an RNN

—[w,. v m W

wh_ [whh’ .

s DD D
=

Net input: Zéﬂ = Whmx(t> -+ Whhh(t_l} + by,
Activation: h* = o (ZS})

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Under the hood: weight matrices in an RNN

w,=w,,;w, .
ot @ G @
-

Net input: z,” = Wi,x® + Wyh® D + b, Netinput: z{) = W,,h(" +b,

Activation: h<t> — Oh (Z,S:}) Output: y<t> — Oy (Zé;ﬂ)

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Backpropagation through time

The overall loss can be computed as
the sum over all time steps

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




T
L3 0
t=1

OL®) AL §y® t.oh® oh)
OWr,  Oy®  oh) 2 |

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Backpropagation through time

Computed as a multiplication of
adjacent time steps:

T
L=) LY / oh® L Hh®
t=1 —

i=k+1

OL®) AL §y® tloh®| on®)
N | 2 on® " OW

k=1\ )
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

) oh(k) H Oh(i—1)




Backpropagation through time

Straightforward, but
problematic:
vanishing / exploding
gradients!

Computed as a multiplication of
adjacent time steps:

T
L=) LY / oh(®) ﬁ oh ()
t=1 _

LM LM gy®) (i Hh(® ah(k)) oh(¥) Oh(i—1)
1

1=k+1
oh(k)| OWyy,
——/
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine

Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

8Whh - 8y(t) 8h(f




A challenge: Vanishing / exploding gradients

h, = tanh(W"h,_; + W*x))

W-—( ) tanh W—' —*mnh W-—( ) tanh W—’ )= tanh

e | | L.
ho ) == S%ik I_“ h - stack h - stz%:k L‘ h3 oy stack h
X, X2 X, )(4

Largest singular value > 1: | Gradient clipping: Scale

Computing gradient | Exploding gradients gradient if its norm is too big
of h, involves many
grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (tkc2shold / arad rorm)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural neworks”

Ben Lengerich © University of Wisconsin-Madison 2025



Solutions to Vanishing / Exploding Gradients

* Gradient Clipping: set a max value for gradients if they grow to large (solves
only exploding gradient problem)

* Truncated backpropagation through time (TBPTT): limit the number of time
steps the signal can backpropagate after each forward pass. E.g., even if
the sequence has 100 elements/steps, we may only backpropagate through 20
or so.

Ben Lengerich © University of Wisconsin-Madison 2025



Solutions to Vanishing / Exploding Gradients

Long short-term memory (LSTM): uses a memory cell for modeling long-range
dependencies and avoid vanishing gradient problems

& ® ®

) t - i
Standard RNN | L,/ E_L'
S <L FE

LSTM

Ben Lengerich © University of Wisconsin-Madison 2025



Today

 Different Ways to Model Text

* Sequence Modeling with RNNs

* Different Types of Sequence Modeling Tasks
e Backpropagation Through Time

* Long-Short Term Memory (LSTM)

* Many-to-one Word RNNs

Ben Lengerich © University of Wisconsin-Madison 2025



Long-short term memory (LSTM)

* Not an oxymoron: 2 paths of memory

C<t>

To next
time step

Figure: Sebastian RaschR%f,t’Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Ben Lengerich © University of Wisconsin-Madison 2025 Birmingham, UK: Packt Publishing, 2019




Long-short term memory (LSTM)

|
<t-1> ~\ <t>
C T )__C
g Tanh
o o} Tanh o 0
To next
Wﬁf Wﬂ? bf Wix Mh bi ng Wgh b g Wux wﬂh ba layer
[ 1
h < To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025



Inside LSTM

— 1C?Ilstate at time t-1 Cell state at time t
<t- t>
C — —_—
To next
layer
<t-1>
h m— pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025




Inside LSTM

[ ]

il —>C*
Activation Activation
from time T;;:rt at time t
t-1 \

<t-1>
h — < To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025



“Forget gate”: controls which information is
remembered and which is forgotten

Inside LSTM fi=0 (Wﬁﬂx(t} + Wyph 4 bf)

|
C<t-1> c<t
Element- ) /
W|se_ | f
multiplic
ation
o
"0 next
Ws Wa, by layer
<t-1>
h - - g pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025



“Input gate”: iy =o0 (me(t} + Wih 1 4 bi)
Inside LSTM “Input node”y/ g: = tanh (Wga:X(t) + Wghh(t_l) + bg)

[ ]
C..:t_1:,. “\ )C":t:"
Element- ||
wise l ; g
addition
o Tanh
To next
Wy W, b ng Wgh bg layer
[ 1 .
h / pre. To next
h time step
N /

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025




Forget Gate Input Node Input Gate

Inside LSTM oty — (C(tl)éft) o (\' ‘)/

FopAdipdating the cell state <t>
<t-1> A
c >
g
o o Tanh
To next
Wy Wy, by W, W, b ng Wgh bs' layer

h<Z 1 l —I—)Tn next

h<* time step

- S

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025



Inside LSTM

C-:t-1 >

h-::t-1 >

Ben Lengerich © University of Wisconsin-Madison 2025

Forget Gate

Cft) — (C<t—1> o ft)

Input Node

\ /

(2t © g¢)

O

AN
Y22

Input Gate

<t>
)_C

f i O) g
o o Tanh o
Wﬁf Wﬂ? bf th Mh i ng Wgh b g Wux oh ba

//

Output gate for
updating the values of
hidden units:

0y =0 (wmx<t> + Worh D 4 bo)

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019




Forget Gate Input Node Input Gate

Inside LSTM oty (C(tné‘ft) \' /

— D (it © g¢)
|
C:t-1: F .AilaTabciIsiaTAIEAT> WA= NS2EN C‘:t:-
(®) o> T >
Output gate for
f i o NG Tanh /' updating the values of

hidden units:

0y =0 (wmx<t> + Worh D 4 bo)

o o Tanh o
To next
Wﬁf Wﬂ? bf Wix Mh bi ng Wgh b g Wux wﬂh ba layer

e [ ]

pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025




LSTM Back Together
— h" = o, ® tanh (C“))

C<t>

To next
time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Ben Lengerich © University of Wisconsin-Madison 2025 Birmingham, UK: Packt Publishing, 2019




Today

 Different Ways to Model Text

* Sequence Modeling with RNNs

* Different Types of Sequence Modeling Tasks
* Backpropagation Through Time

* Long-Short Term Memory (LSTM)

* Many-to-one Word RNNs

Ben Lengerich © University of Wisconsin-Madison 2025



RNN Step 1: Build Vocabulary

"Raw" training dataset

x! = ”The sun is shining”
x2l = " The weather is sweet”

x3l = ”The sun is shining,
the weather is sweet, and

one and one is two”

y = [071:0]

class labels

#

Ben Lengerich © University of Wisconsin-Madison 2025

vocabulary = {
'<unk>'": 0,
‘and': 1,
'is': 2
‘one': 3,
'shining': 4,
'sun': 5,
'sweet': 6,
'the': 7,
'two': 8,
'weather': 9,
'<pad>": 10 }




RNN Step 2: Convert text to indices

"Raw" training dataset

xl = ”The sun is shining”

x12 = ”The weather is sweet”

%3l = ”The sun is shining,

the weather is sweet, and
one and one is two”

vocabulary {

‘cunk>" 0 x! = ”The sun is shining”
and': 1, [7 5 2 4 ... 10 160
is': 2 i

'one’: 3,

s 'shining': 4, » 5] e wenthor i oo
'sun": 5, XU = e weather is sweet

'sweet': 6, [7 9 2 6 ... 10 10
'the'": 7, i

two": 8, 5
'weather'": 9, :
'‘<pad>": 10

%8l = ”The sun is shining,
the weather is sweet, and

} ; one and one is two”

[7 5 2 4 3 2

Ben Lengerich © University of Wisconsin-Madison 2025

10]

10]

8]




— vocabulary {
v '<unk>" 0
= andd
! B
"Raw" training dataset . | lone"3,
= shiningz4, 1 - © 6 6 6 6 0 1 0 © 0]
1= » is shining” kil »
x!"l = ”The sun is shining — | L ,
& i sweetif, | 0 6 6 6 1 6 06 0 0 0]
= . 'the": 7,
@ | 'two"8, N @ 6 1 06 6 6 6 © 0 0]
5 ‘weather:9, | 0 06 06 1 06 6 06 06 0 0]
=3 . '<pad>" 10
= )
™

o> [0 6 6 1 06 6 0 0 0 1]

=

o O 0 06 1 0 6 606 0 0 1]

® © 06 06 1 6 06 06 6 0 1
Ben Lengerich © University of Wisconsin-Madison 2025 = [ ]




RNN Step 4: Convert one-hot to embeddings

Embedding matrix

0.1 42 2.1 1.9
1.1 1.2 1.3 1.4

2.1 22 23 24

One-hot vector x 31 26 1.5 91| _ 71 25 1.5 1.5]

5.1 3.6 15 9.1 Hidden layer output
6.1 9.1 74 9.0

71 25 15 1.5
81 6.1 15 6.2
9.1 55 1.1 9.1
11 53 48 9.1

Ben Lengerich © University of Wisconsin-Madison 2025



PyTorch: Skip steps 3 and 4. Instead...

use a lookup function (torch.nn.Embedding)

.....................

: vocabulary ={ :

' <unkst 0, !
v 'and: 1, :
x!) = " The sun is shining” _ :fn: . * x[l = 7 The sun is shining”
i 'shining: 4, :
o oams [7 5 2 4 ... 10 10 10]
i the" 7,
i 'two': 8, : _ -
:weathtir':g,i 0.1 42 2.1 1.9
y T 11 12 1.3 14
torch.nn. edding 21 2.2 23 24| 4.
3.1 26 1.5 9.1
41 2.6 2.2 88| 3.
51 3.6 1.5 91| 2.
51 3.6 1.5 9.1 71 25 1.5 15| 1.
41 26 22 88 81 6.1 1.5 6.2
Embedded sentence |21 22 23 24 91 55 1.1 91
31 26 15 9.1 1.1 53 48 9.1]

of 1 training example |*~ = = 7
1.1 53 4.8 9.1
1.1 53 4.8 9.1

Ben Lengerich © University of Wisconsin-Madison 2025 1.1 5.3 4.8 9.1]




LSTMs in PyTorch

— https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
Parameters

* input_size - The number of expected features in the input x

* hidden_size - The number of features in the hidden state h

¢ num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM
and computing the final results. Default: 1

e bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

e batch_first - If True, then the input and output tensors are provided as (batch, seq, feature).
Default: False

e dropout - If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last

Bxamples: layer, with dropout probability equal to dropout . Default: 0
e bidirectional - If True, becomes a bidirectional LSTM. Default: False
>>> rnn = nn.LSTM(10, 20, 2) e proj_size - If > 0, will use LSTM with projections of corresponding size. Default: 0

>>> input = torxch.randn(5, 3, 10)

>>> h@ = torch.randn(2, 3, 20)

>>> ¢0 = torch.randn(2, 3, 20)

>>> output, (hn, cn) = rnn(input, (hO, c0))

Ben Lengerich © University of Wisconsin-Madison 2025


https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

Good reading

 The Unreasonable Effectiveness of Recurrent Neural Networks by
Andrej Karpathy

* On the difficulty of training recurrent neural networks by Razvan
Pascanu, Tomas Mikolov, Yoshua Bengio



http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://proceedings.mlr.press/v28/pascanu13.pdf
https://proceedings.mlr.press/v28/pascanu13.pdf

Questions?

Ey
QWISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

>
)




	Slide 1: STAT 453: Introduction to Deep Learning and Generative Models
	Slide 2: Our semester
	Slide 3: A quick vote…
	Slide 4: HW4
	Slide 5: Recall “Conditioning on Text”…
	Slide 6: Challenges with text
	Slide 7: GPT = Auto-regressive probabilistic model
	Slide 8: Today
	Slide 9: A classic approach: Bag-of-words
	Slide 10: Another classic approach: Hidden Markov Model
	Slide 11: Another approach: CNNs
	Slide 12: Today
	Slide 13: Sequence data: order matters
	Slide 14: Recurrent Neural Networks (RNNs)
	Slide 15: Recurrent Neural Networks (RNNs)
	Slide 16: Recurrent Neural Networks (RNNs)
	Slide 17: Multilayer RNNs
	Slide 18: Recurrence unlocks many types of sequence tasks
	Slide 19: Today
	Slide 20: Recurrence unlocks many types of sequence tasks
	Slide 21: Recurrence unlocks many types of sequence tasks
	Slide 22: Recurrence unlocks many types of sequence tasks
	Slide 23: Today
	Slide 24: Under the hood: weight matrices in an RNN
	Slide 25: Under the hood: weight matrices in an RNN
	Slide 26: Under the hood: weight matrices in an RNN
	Slide 27: Backpropagation through time
	Slide 28: Backpropagation through time
	Slide 29: Backpropagation through time
	Slide 30: Backpropagation through time
	Slide 31: A challenge: Vanishing / exploding gradients
	Slide 32: Solutions to Vanishing / Exploding Gradients
	Slide 33: Solutions to Vanishing / Exploding Gradients
	Slide 34: Today
	Slide 35: Long-short term memory (LSTM)
	Slide 36: Long-short term memory (LSTM)
	Slide 37: Inside LSTM
	Slide 38: Inside LSTM
	Slide 39: Inside LSTM
	Slide 40: Inside LSTM
	Slide 41: Inside LSTM
	Slide 42: Inside LSTM
	Slide 43: Inside LSTM
	Slide 44: LSTM Back Together
	Slide 46: Today
	Slide 47: RNN Step 1: Build Vocabulary
	Slide 48: RNN Step 2: Convert text to indices
	Slide 49: RNN Step 3: Convert indices to one-hot representation
	Slide 50: RNN Step 4: Convert one-hot to embeddings
	Slide 51: PyTorch: Skip steps 3 and 4. Instead…
	Slide 52: LSTMs in PyTorch
	Slide 53: Good reading
	Slide 54

