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Last time: Recurrent Neural Networks (RNNs)

yf-l? Single layer RNN

@ Unfofd>

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019
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From RNN...

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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From RNN...to GPT

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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From RNN...to GPT...by Transformers
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Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, 1., 2017. Attention Is All You Need.
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From RNN...to GPT...by Transformers
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Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, 1., 2017. Attention Is All You Need.
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The Attention Mechansism




Why Attention?

* Consider machine translation:
* Do we really need the whole sequence to translate each word?
* Where is the library? 2
* Donde es’;ra t)iblioteca?
* Where is the huge public library? -
* Donde es’;ra MOteca publica?

* Problem: RNNs compress all information into a fixed-length vector.
Long-range dependencies are tricky.

Single layer RNN

Unfold > e
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“Attention”

|
e Originally developed for language translation:
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and
translate. https://arxiv.org/abs/1409.0473
e "... allowing a model to automatically (soft-)search for parts of a
source sentence that are relevant to predicting a target word ..."
30
o Figure 2: The BLEU scores
g of the generated translations
D"“ : on the test set with respect
- [ . to the lengths of the sen-
"traditional" B 10f — FNNasreh B0 f-..ooooooenion ot M o] tences. The results are on
encoder+decoder | _ Iif"-l['-.:a:u.ruh—.’i-ﬂ : -",_ . ) T the full test set Wl’l.:iﬂh in-
e w - = RNNene-50 : A 1 cludes sentences having un-
] - |=;:-1lm-m-.3n ; ; BREEE known words to the models.

i 10 20 30 40 ai i
Sentence length
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https://arxiv.org/abs/1409.0473

“Attention”

[ ]
Main idea:

Assign attention weight to each word, to know how much "attention" the
model should pay to each word
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“Attention”

[ ]
Main idea:

Assign attention weight to each word, to know how much "attention" the
model should pay to each word

Hidden state in a regular RNN

/ 1st translated word
(RNN #2)

Y

" Bidirectional RNN

— <{i| (RNN #1)
i XT i
/;igure 1: The graphical illus-
) tration of the proposed model
1st |nput word trying to generate the ¢-th tar-
get word y; given a source Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
sentence (z1, T2, ...,2TT). machine translation by jointly learning to align and

translate. https://arxiv.org/abs/1409.0473
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https://arxiv.org/abs/1409.0473

Hard attention?

e Make a zero-one decision about where to attend.

* Problem: Hard to train. Requires methods such as reinforcement
learning

Benefit: Interpretable?

Review

the beer was n’t what i expected, and i‘m not sure it’s “true
to style, but i thought it was delicious. a very pleasant
ruby red-amber color with a relatively brilliant finish, but a
limited amount of carbonation, from the look of it. aroma is
what i think an amber ale should be - a nice blend of
caramel and happiness bound together.

Ratings
B Look: 5 stars Smell: 4 stars

Lei et al 2016
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Soft attention

5; . where the context
vector ¢, is defined
T as T
SO > Sl _— ann mun
A (1= Z a; hy
Added attention —1
(looks like a standard €
RNN but with context a
vectors as in-/output) a1 a 1,7-1
1,2
hy hy hr_y
/7N /N N
Bidirectional RNN X0—> hry b, hpp Mgy .. ezt hspy «—— X7
N/ NS NS
X1 X AT-1
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Soft attention

| A . . .
Y1 Computing attention weights
1 S0
Il Neural ,
ht' —7 B et’t
exp(e, )
o
Zf’:l exp(et,f)
— X
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Soft attention

— = c U ) ) .
£ 3 E - b A Computing attention weights
v 2 v 286 83w c 535
EZ5sa8 %832 .V
L' t—l \L e ,
accord ht, — 1t
sur
la
; zone CXp( e, t’)
economigue a , = >
européenne 1t T
a Etle exp(et,t’)

été
signé
en
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1992

<end=

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
machine translation by jointly learning to align and
translate. https://arxiv.org/abs/1409.0473
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https://arxiv.org/abs/1409.0473

Example: Soft Attention for Image Captioning

Distribution
over vocab RNN Only looks at whole
image once...but different
d1 d2 parts of the image are
important for different
T T parts of the caption.
CNN I—b- hO == | hi == h2 | @ @ @
Image: Features: Hidden T T
HxWx3 D state: H v v2
First Second
word word
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Example: Soft Attention for Image Captioning

\\
CNN —>

—

/Featu res:

Image: LxD
HxWx3

Xu et al, “Show, Attend and Tell:
Neural Image Caption Generation
with Visual Attention”, ICML 2015
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Example: Soft Attention for Image Captioning

\

CNN — | ho
///Features:

Image: Lx D
HxWx3

Xu et al, “Show, Attend and Tell:

Neural Image Caption Generation
with Visual Attention”, ICML 2015
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Example: Soft Attention for Image Captioning

Distribution over L
locations

al

— ]

CNN — | ho

/Featu res:

Image: LxD
HxWx3

Xu et al, “Show, Attend and Tell:
Neural Image Caption Generation
with Visual Attention”, ICML 2015
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Example: Soft Attention for Image Captioning

Distribution over L

locations
/ al
CNN —P | o
//Feat res
Image: L x
HxWx3 Weighted
features: D | &

Weighted
combination of
features
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Example: Soft Attention for Image Captioning

Distribution over
L locations

hn

Hx W x Weighted
3 features: D | 2| |V
Weighted
combination of First
features word
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Example: Soft Attention for Image Captioning

Distribution over L Distribution
locations over vocab

hn

HxWx3 Weighted
features:D | 2| |
Weighted
combination First
of features word
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Example: Soft Attention for Image Captioning

Distaibution
L locations

€r Distribution
over vocab

dl

z1 yl z2

HxWx3 Weighted

features: D

Weighted
combination
of features
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Example: Soft Attention for Image Captioning

rL Distribution

locations over vocab

d1 a3 || d2
hl " 00
HxWx3 Weighted
features:D | 2| |V 2 | | v2
Weighted
combination
of features
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Aside: CNNs were an example of hard attention

\
al|b
CNN
c | d
Grid of features
Image: (Each D-dimensional)
HxWx3
pa pb
From
RNN: | P. | Py
Xu et al, “Show, Attend and Tell: Distribution over
Neural Image Caption Generation gl’ld locations

with Visual Attention”, ICML 2015 _
pa+ pb+ pc+ pc_ 1
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Aside: CNNs were an example of hard attention

—
Hard attention:
Sample ONE location

P~ according to p, z = that vector
— gtop
a|b : .
‘ CNN With argmax, dz/dp is zero
v c | d almost everywhere ...
Can’t use gradient descent;
Grid of features need reinforcement learning
Image: (Each D-dimensional)
Hx W x 3 Cont.ext vgctor z
(D-dimensional)
P, | Pp Soft attention:
From . :
RNN: — Summarize ALL locations
' Pe | Pd z=p,a+tp,b+pc+pyd
Xu et al, “Show, Attend and Tell: Distribution over
Neural Image Caption Generation grid locations Derivative dz/dp is nice!

with Visual Attention”, ICML 2015 s . . )
PatPptPtP.=1 Train with gradient descent
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Self-Attention




”Original” (RNN) Attention Mechanism

]
A

Y1 Where the context vector ¢, is defined as

T T
(1= Z ay, by
=1

And the attention weights are

c exp(et,t,)
! Ay = 71
al,l al,T—l thzl exp(el‘,t')
12
hl h2 hT_l St—l ~— |
eura ,
AN /N / 3 — e
Xo— hgy hg, hgy hgy ... Per gy «— XT
NS
Ar—1
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Can we get rid of the sequential parts?

]
A

Y1 * |f attention already ties inputs
T across the sequence, do we really
— need the recurrence?
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Self-attention (very basic form)

Main procedure:

1) Derive attention weights: similarity between current input and all
other inputs (next slide)

2) Normalize weights via softmax (next slide)

3) Compute attention value from normalized weights and
corresponding inputs (below)

Self-attention as weighted sum: .

A;= Z X
/ j=1 \
output corresponding to the i-th input weight based on similarity between
current input x; and all other inputs
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Self-attention (very basic form)

Self-attention as weighted sum: T
A; = E aijX;
/ j=0 '\
output corresponding to the i-th input weight based on similarity between
current input x; and all other inputs

How to compute the here as simple dot product:

attention weights? —-

repeat this for all inputs j € {1...T'}, then normalize

oo ()

a; = = softmax ([eij] )
ET exp (eij) j=1...T

J=
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Self-attention (very basic form)

No learnable parameters?
I .
current input Step 1: Compute Step. 2: Normalize Step 3: Compute
\ dot products using softmax output

% |

a;,j =

T
. A = z a;X;
| softmax ([:c%Tscj]je[LT]) i
Input sequence: b j=1
nY
moseo [ T N | N
X1 || ™ X; Xq 4; o
‘1. l‘u \’\\s__.__ T a.
*2 || AN X; X, i,1 Az_
VN LT a.
= [ —L " ey L% o) N
. \ . *
. ‘\ . . context-aware embedding vector
SN LT )
X7 || X, Xr ar

original embedding

Image source: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition
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Learnable Self-attention

* Previous basic version did not involve any learnable parameters, so not very
useful for learning a language model

 We are now adding 3 trainable weight matrices that are multiplied with the
input sequence embeddings

query = Wix,
key = kal
Value — val
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Learnable Self-attention

trainable weight matrices As in the simplified version, this is a

\ a / form of similarity or compatibility
w4 q, 2,1 measure
k . o
X, % k, [ | ] ("multiplicative attention")
wY V1

For each query, model learns
ﬂ:urrent input ("query") \ which key-value |nput it should
w4 v /) 42 attend to
. %:kz (. k)
wY Vs
\ j exp T
A(g K, V) = v
exp
LI Wq v qT az,T
T
X % kT [ q, . kT ] softmax
wY 12 }
! weighted sum: values weighted by

attention weight (softmax score)
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Learnable Self-attention

"self"-attention because
input to query and key-value pair
are the same
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wa ;( q(l}
x % kO
W (o)

p y

current input

Wi _, Tg®
k
e % k@
W (@)
@)

- " E Wq k q
xD % kT
W (D)




Learnable Self-attention

— d, = embedding size (original transformer = 512)

where d, = d;

d,x d, 1 xd, .
In original transformer,
d Xd d, = d,as well
d,xd, ek 1 xd,
W A a1
x) %c k, @ . k

[ /
€ /" current input (*query”) N 1 X dv - exp(q . kT)
2 M
q iy A K V)= X | xv]
Wi v [ = &'y exp(gy- k)
X, W, k, [ 8. kb j j
> | | I

A,

N J ; softmax
| | 1x1
Tt we qr %1
*T W k; [ 9 . kr Tj |
Wy, | 1 x dv
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At the end of the day...

[ |
w
i)
5 5
= §E o o ® @ = A
= = £ ] c 5 o 3§ 5 W AAAAAA
= o O 0 o (O W 7] c 38 oo T T T T T O
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need.
In Advances in neural information processing systems (pp. 5998-6008).
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The "Transformer”

Attention Is All You Need

Ashish Vaswani® Noam Shazeer” Niki Parmar” Jakob Uszkoreit®
Google Brain Google Brain Google Research Google Research
avaswanifigoogle.com noam@google.com nikipBgoogle.com usz@google.com

Llion Jones* Aidan N. Gomez* Fukasz Kaiser*
Google Research Umniversity of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google. com

Ilia Polosukhin* *
illia.polosukhin@gmail . com

Attention is all you need
A Vaswani, N Shazeer, M Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

... to attend to all positions in the decoder up to and including that position. We need to prevent https://arxiv_orq/absl'] 706.03762

... We implement this inside of scaled dot-product attention by masking out (setting to —=) ...
17 Save UY C.itel Cited by 174852 IReIated articles All 73 versions %
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https://arxiv.org/abs/1706.03762

The Transformer




Oulput
Probabilities

The "Transformer” 1

| Softmax |
[ ] 1
| Linear |

E

L] r- .\
Attention Is All You Need (AddE Norm )
Feed
Forward
s 1 ~ [ Add & Norm Je—
~=| Add & Norm ] Multi—lH:—:aa .
Ashish Vaswani® Noam Shazeer" Niki Parmar®  Jakob Uszkoreit* reed Attention \
Google Brain Google Brain Google Research Google Research } "
avaswanifigoogle.com noamBgoogle.com nikip@google.com  usz@google.com — ( —
Add & Norm
N x I
Add & Norm
Llion Jones* Aidan N. Gomez* | Lukasz Kaiser® —LAdd & lom ) e
Google Research University of Toronto Google Brain Multi-Head Multi-Head
1lion@google.com aidan@cs.toronto. eda Iukaszkaiserf@google.com Attention Attention
3 L
: : — . —
Illia Polosukhin®* *
illia.polosukhin@gmail . com Fositional ®_C) Positional
Encoding ] E, Encoding
. . Input Output
Attention is all you need Embedding Embedding
A Vaswani, N Shazeer, M Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc T T
... to attend to all positions in the decoder up to and including that position. We need fo prevent
... We implement this inside of scaled dot-product attention by masking out (sefting to —=) ... Inputs Outputs
¢ Save DY Cite | Cited by 174852 | Related articles All 73 versions 9 (shifted right)

Ben Lengerich © University of Wisconsin-Madison 2025

Figure 1: The Transformer - model architecture.




Start with word embeddings...
* Lookup table that translates
words (or more formally
“tokens”) into continuous-
valued “embeddings”

* Simplest form: random
embeddings

* Slightly better: TF-IDF
embeddings

* Many ways to improve pre-
trained embeddings

Ben Lengerich © University of Wisconsin-Madison 2025

word

- B

W

\

word
>

embedding

docu>\ent embedding

w, , = tf,  xlog (d—fx)

tf,  =frequency of xiny
df = number of documents containing x
Term x within documenty N = total number of documents

1uswinoop




Start with word embeddings...

word
>

embedding

3BluelBrown “Attention in Transformers”
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https://www.youtube.com/watch?v=eMlx5fFNoYc

Update embeddings by context

The King: doth wake tonight and takes his rouse ...

word
>

embedding \ " Kespeareay, |

Aguage

3BluelBrown “Attention in Transformers”
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https://www.youtube.com/watch?v=eMlx5fFNoYc

Multi-headed Attention

* Apply self-attention multiple
times in parallel (similar to
multiple kernels for channels in
CNNs)

* For each head (self-attention
layer), use different , then
concatenate the results,

* 8 attention heads in the original Q K Vv
transformer voor e

* Allows attending to different
p a rtS in the se q uence dlffe re nt}ft'\gure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several

atfention layers running in parallel.

Scaled Dot-Product Attention Multi-Head Attention

Mathul

Scaled Dot-Product J& h
Attention ~

L 1l L
[ Linear PH Linear Linear]}
¥ 'l ¥y

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.
and Polosukhin, 1., 2017. Attention Is All You Need.
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[
»

Multi-headed Attention
— Multi-Head Attention
Linfear ! f \

A

A

One attention head:

Concat

3

Scaled Dot-Product
Attention N

tl 1k 1l
r-= [ /==
Linear Linear Linear

N

V K Q

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,

OK'
A(Q,K,V) = softmax \/d_ Vv
\_ 7

Concatenated:

d, - h

v

v

J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, 1., 2017. Attention Is All You Need.

A

Input sequence dim.
in original transformer: T

TXde=TX512 4

and
d,=512/h =64
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The "Transformer”: Encoder

Encoder Self-Attention ef

Oulput

Probabhilities

t

Softmax |

t

Linear |

E

4 2
| Add & Norm Je=

Feed
Forward

—

| Add & Norm Je=

Multi-Head
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} 2 )

s 1 B
o ~>| Add &_ Norm |
e S Feed
Forward
[ matmuIV ] [ matmuIV] ;
T 1 | —

| Add & Norm Je=

Masked
Multi-Head
Attention

[ softmax | l \ : | Nx | —[Add & Norm )
- /( ’ [dot-prod] dot-prod] L] Multi-.HErEld
s = < Attention
_ - - e1 e2 e3 e4 t—:
Ke il -
Y\ Query ,’/ P TL' ’
p— P ositiona ®—G'
/ '\ - 2k Encoding .J
[matmuIK] [ matmulq ] Pl Q K

Input

e
I I -7 Embedding
& & -~ ’ V dl‘ T

Inputs

Vasvani “Self-Attention for Generative Models”
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Figure 1: The Transformer - model architecture.



https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf

Oulput

The ”Transformer”: Decoder oo
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[ ] T
| Linear |

E

4 A
' . | Add & Norm J==
Decoder Self-Attention d, e
t Forward
- 1 ~ | Add & Norm e~
Value 1 Add & Norm J Multi-Head
\ Feed Attention
Forward U F 7 M
. \_.
N | Add & Norm Je—,
—| Add &_Norm | T asked
Multi-Head Multi-Head
Attention Attention
_ 1 7 1 7
Key --" 7  — \. —
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- Encoding ] 3 Encoding
s Input Output
7
[matmuic] (' matmulq | - Embedding Embedding
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1 1
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Vasvani “Self-Attention for Generative Models”
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Figure 1: The Transformer - model architecture.



https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf

Transformer Tricks (4?)

* Self Attention: Each layer combines words with
others

 Multi-headed Attention: 8 attention heads learned
independently

* Normalized Dot-product Attention: Remove bias
In dot product when using large networks

* Positional Encodings: Make sure that even if we
don’t have RNN, can still distinguish positions
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Output

Probabilities
Transformer Tricks — Positional Encodings
I Linear
e Scaled dot-product and fully-connected layer are 4 —s1o (e Nom )
0 0 . - F d
permutation invariant ’ o Forward
* Sinusoidal positional encoding is a vector of small - ) |l
. > Add & Norm ) Mult-Head
values (constants) added to the embeddings == Attention
, : : Forward 7 J J Nx
* As aresult, same word will have slightly different S— =
embeddings depending on where they occur in the W f’% =
ulti-Hea ulti-Hea
Attention Attention
sentence Cooon onton
— J —)
. pos Positional Positiona
PEpo.s',Zi = Sln( 100002"’“’model ) / Encoding D ¢ EHCIOIdirlg
Input Output
Embedding Embedding
pos
PE,, 5is1 = cos( CEER—— ) d =512 / 1 I
10000 € Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, 1.,
2017. Attention Is All You Need.
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Transformer Tricks (3?)
= Transformer Language Models without Positional Encodings
Still Learn Positional Information

Adi Haviv' Ori Ram™ Ofir Press Peter Izsak’ Omer Levy™

"Tel Aviv University  “University of Washington ‘Intel Labs FMeta Al
{adi.haviv, ori.ram, levyomer}@cs.tau.ac.il, ofirp@cs.washington.edu, peter.izsak@intel.com
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Many variants of transformer architectures
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Next Time: GPT

Generative Pre-Trained Transformer
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