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Last time: Recurrent Neural Networks (RNNs)
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd 
Edition. Packt, 2019



From RNN…
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From RNN…to GPT
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From RNN…to GPT…by Transformers
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and 
Polosukhin, I., 2017. Attention Is All You Need.
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The Attention Mechansism



Why Attention?

Ben Lengerich © University of Wisconsin-Madison 2025

• Consider machine translation:
• Do we really need the whole sequence to translate each word?

• Where is the library? → 

• Donde esta la biblioteca?

• Where is the huge public library? →

• Donde esta la enorme biblioteca publica?

• Problem: RNNs compress all information into a fixed-length vector. 
Long-range dependencies are tricky.



“Attention”
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• Originally developed for language translation: 
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and 
translate. https://arxiv.org/abs/1409.0473

• "... allowing a model to automatically (soft-)search for parts of a 
source sentence that are relevant to predicting a target word ..."

"traditional" 
encoder+decoder 
RNN

https://arxiv.org/abs/1409.0473


“Attention”
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Main idea: 

Assign attention weight to each word, to know how much "attention" the 
model should pay to each word
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Main idea: 

Assign attention weight to each word, to know how much "attention" the 
model should pay to each word

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural 
machine translation by jointly learning to align and 
translate. https://arxiv.org/abs/1409.0473
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Hard attention?
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• Make a zero-one decision about where to attend.

• Problem: Hard to train. Requires methods such as reinforcement 
learning

Lei et al 2016

Benefit: Interpretable?



Soft attention
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Ben Lengerich © University of Wisconsin-Madison 2025



Soft attention
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Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural 
machine translation by jointly learning to align and 
translate. https://arxiv.org/abs/1409.0473

https://arxiv.org/abs/1409.0473


Example: Soft Attention for Image Captioning
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RNN only looks at whole 
image once…but different 
parts of the image are 
important for different 
parts of the caption.



Example: Soft Attention for Image Captioning
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Example: Soft Attention for Image Captioning
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Aside: CNNs were an example of hard attention
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Aside: CNNs were an example of hard attention
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Self-Attention



”Original” (RNN) Attention Mechanism
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Can we get rid of the sequential parts?
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• If attention already ties inputs 
across the sequence, do we really 
need the recurrence?



Self-attention (very basic form)
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Self-attention (very basic form)
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Self-attention (very basic form)
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No learnable parameters?



Learnable Self-attention
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• Previous basic version did not involve any learnable parameters, so not very 
useful for learning a language model

• We are now adding 3 trainable weight matrices that are multiplied with the 
input sequence embeddings



Learnable Self-attention

Ben Lengerich © University of Wisconsin-Madison 2025



Learnable Self-attention
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Learnable Self-attention
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At the end of the day…
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The ”Transformer”
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https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762


The Transformer



The ”Transformer”
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Start with word embeddings…
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• Lookup table that translates 
words (or more formally 
”tokens”) into continuous-
valued “embeddings”

• Simplest form: random 
embeddings

• Slightly better: TF-IDF 
embeddings

• Many ways to improve pre-
trained embeddings
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Start with word embeddings…
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3Blue1Brown “Attention in Transformers”

https://www.youtube.com/watch?v=eMlx5fFNoYc


Update embeddings by context
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https://www.youtube.com/watch?v=eMlx5fFNoYc


Multi-headed Attention
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• Apply self-attention multiple 
times in parallel  (similar to 
multiple kernels for channels in 
CNNs)

• For each head (self-attention 
layer), use different  , then 
concatenate the results, 

• 8 attention heads in the original 
transformer

• Allows attending to different 
parts in the sequence differently

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. 
and Polosukhin, I., 2017. Attention Is All You Need.



Multi-headed Attention
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The ”Transformer”: Encoder

Ben Lengerich © University of Wisconsin-Madison 2025

Vasvani “Self-Attention for Generative Models”

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf


The ”Transformer”: Decoder
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Vasvani “Self-Attention for Generative Models”

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture14-transformers.pdf


Transformer Tricks (4?)
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Transformer Tricks – Positional Encodings
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• Scaled dot-product and fully-connected layer are 
permutation invariant

• Sinusoidal positional encoding is a vector of small 
values (constants) added to the embeddings

• As a result, same word will have slightly different 
embeddings depending on where they occur in the 
sentence



Transformer Tricks (3?)
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Many variants of transformer architectures
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Next Time: GPT

Generative Pre-Trained Transformer



Questions?
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