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From RNN…to GPT…by Transformers
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Self-attention (very basic form)
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No learnable parameters?



Learnable Self-attention
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• Previous basic version did not involve any learnable parameters, so not very 
useful for learning a language model

• We are now adding 3 trainable weight matrices that are multiplied with the 
input sequence embeddings



Learnable Self-attention
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At the end of the day…
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The ”Transformer”
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Many variants of transformer architectures
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Many variants of transformer architectures
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Some early transformer architectures
• GPT-v1: Generative Pre-Trained Transformer
• BERT: Bidirectional Encoder Representations from Transformers
• GPT-v2: Language Models are Unsupervised Multitask Learners
• GPT-v3: Language Models are Few-Shot Learners
• BART: Combining Bidirectional and Auto-Regressive Transformers
• Closing Words -- The Recent Growth of Language Transformers



Today: GPT

Generative Pre-Trained Transformer
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From Transformer to GPT



Recall the ”Transformer”
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Recall the ”Transformer”
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• Original Transformer (Vaswani et al., 2017):
• Encoder-decoder architecture for sequence-to-sequence 

tasks

• Parallelizable self-attention instead of recurrence

• Positional encodings enable order sensitivity

• Encoder: Processes input sequence

• Decoder: Generates output sequence using 
masked attention + encoder output

• Inspired by machine translation (observe full 
input sequence, predict full output sequence)



From Sequence Transduction to Sequence Modeling
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• Original Transformer (Vaswani et al., 2017):

𝑃 𝑌 𝑋 = ෑ

𝑡

𝑃 𝑌𝑡 𝑌<𝑡 , 𝑋

• Conditional sequence model for tasks like translation (input → output)

• Generative Pretrained Transformer (GPT) Models:

𝑃 𝑋 = ෑ

𝑡

𝑃 𝑋𝑡 𝑋<𝑡

• Unconditional generative model over raw text

• Architectural consequence: no encoder, only a decoder with causal 
structure



GPT = Probabilistic Model + Transformer Decoder
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• Directed PGM

𝑃𝜃 𝑋 = ෑ

𝑖

ෑ

𝑡

𝑃𝜃(𝑋𝑖,𝑡 ∣ 𝑋𝑖,<𝑡)

• Probabilistic objective: Max log-likelihood of observed seqs

max
𝜃

෍

𝑖

෍

𝑡

log 𝑃𝜃 𝑋𝑖,𝑡 𝑋𝑖,<𝑡

[Radford et al., Improving Language Understanding by 
Generative Pre-Training]

𝑋1 𝑋2 … 𝑋𝑇−1 𝑋𝑇

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


GPT = Probabilistic Model + Transformer Decoder

Ben Lengerich © University of Wisconsin-Madison 2025

• Directed PGM

𝑃𝜃 𝑋 = ෑ

𝑖

ෑ

𝑡

𝑃𝜃(𝑋𝑖,𝑡 ∣ 𝑋𝑖,<𝑡)

• Model structure:
• Input: token embeddings + positional encodings

• Masked multi-head attention: Enforces “causality”

• Decoder stack: Learns 𝑃(𝑋𝑡 ∣ 𝑋<𝑡)

• Output: softmax over vocabulary
[Radford et al., Improving Language Understanding by 
Generative Pre-Training]

𝑋1 𝑋2 … 𝑋𝑇−1 𝑋𝑇

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


Let’s write a GPT



Let’s write a GPT
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• EasyGPT repo
• Adapted from Andrej Karpathy’s nanoGPT

https://github.com/LengerichLab/easy-gpt
https://github.com/LengerichLab/easy-gpt
https://github.com/karpathy/nanoGPT


From our “GPT” to GPT-4



From our “GPT-0” to GPT-1
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• Architecture:
• Tokenizer: Characters → “Byte-Pair Encoder” tokenizer

• Activation: ReLU → GELU

• Weight sharing for embedding / output

• Scale (117M params):

• Layers: 4 → 12

• Attention Heads: 4 → 12

• Block size (max context): 32 → 512

• Vocab: 65 → 40000 BPE tokens

• Embedding dim: 64 → 768

• Training:
• Dataset: TinyShakespeare (1MB) → BookCorpus (5GB)

• Initialization & normalization: Default → Carefully tuned

• Optimizer: Vanilla Adam → Adam + learning rate warmup + weight decay

• Inference:
• Sampling: Greedy → Top-k



From GPT-1 to GPT-2
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• Architecture:
• Scale: Variety of options, with biggest (1.5B params):

• Layers: 12 → 48

• Attention Heads: 12 → 25

• Embedding Dim: 768 → 1600

• Block size (max context): 512 → 1024

• Vocab: 40k → 50k tokens

• Training:
• Dataset: BookCorpus (5GB) → WebText (40GB)

You can reproduce GPT-2 yourself:
https://github.com/karpathy/nanoGPT
(takes 4 days to train on an 8xA100 machine)

GPT-2: [Radford et al., Language Models are 
Unsupervised Multitask Learners]

https://github.com/karpathy/nanoGPT
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


From GPT-2 to GPT-3
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• Architecture:
• Scale (1.5B → 175B params):

• Block size (max context): 1024 → 2048

• Layers: 48 → 96

• Embedding Dim: 1600 → 12,288

• Attention Heads: 25 → 96

• Training:
• Dataset: WebText (40GB) → Common Crawl + books, Wikipedia, code, etc. 

(~570GB)

GPT-3: [Brown et al., Language Models are 
Few-Shot Learners]

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165


From GPT-3 to GPT-4?
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• Architecture:
• Likely includes MoE

• Tokenizer: Includes image patches for multi-modal

• Scale:

• Total parameters: 175B → Likely >1T

• Block size (max context): 2048 → 128k

• Training:
• Dataset: Common Crawl + books, Wikipedia, code, etc. (~570GB) → Larger, undisclosed 

data training. Reported 13T tokens (~50TB)

• Alignment: Reinforcement learning + human feedback + system-level “safety”



Mixture of Experts
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[GROOTENDORST]

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts


Mixture of Experts inside Transformer Decoder
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[GROOTENDORST]

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts


Mixture of Experts: A probabilistic idea
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“Adaptive Mixtures of Local Experts” 
Jacobs et al 1991

• Let

𝑃(𝑌 ∣ 𝑋) = ෍

𝑚

𝑔𝑚 𝑋 ⋅ 𝑃𝑚(𝑌 ∣ 𝑋)

• Constrain σ𝑚 𝑔𝑚 𝑋 = 1 and 
𝑔𝑚 𝑋 ≥ 0 ∀ 𝑚, X.

How would you estimate these parameters?
[Hierarchical mixtures of experts and the EM algorithm, 1993]

https://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
https://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
https://www.cs.toronto.edu/~hinton/absps/hme.pdf


Mixture of Experts: Unifies Several Approaches
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Let

𝑃(𝑌 ∣ 𝑋) = ෍

𝑚

𝑔𝑚 𝑋 ⋅ 𝑃𝑚(𝑌 ∣ 𝑋)

Jacobs et al 1991

Breiman 1996

Freund  Schapire 1997

• Mixture of Experts [Jacobs et al 1991]: 𝑔𝑚 𝑋  is a learned gating 
function. 

• Bagging [Breiman 1996]: 𝑔𝑚 𝑋 =
1

𝑀
 is a constant, uniform 

weighting.

• Boosting [Freund & Schapire 1997]: 𝑔𝑚 𝑋 = 𝛼𝑚 is a constant per-
expert weight.

https://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
https://link.springer.com/article/10.1007/BF00058655
https://www.sciencedirect.com/science/article/pii/S002200009791504X


Mixture of Experts: Some analysis
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Let

𝑃(𝑌 ∣ 𝑋) = ෍

𝑚

𝑔𝑚 𝑋 ⋅ 𝑃𝑚(𝑌 ∣ 𝑋)

• Let’s examine the mean functions. Define:

ҧ𝑓 𝑥 ≔ E 𝑌 𝑋 = ෍

𝑚

𝑔𝑚 𝑋 𝐸𝑚 𝑌 𝑋 = ෍

𝑚

𝑔𝑚 𝑋 𝑓𝑚 𝑥

• Let’s compare:

• 𝜖 𝑥 ≔ 𝑌 − ҧ𝑓 𝑥
2

• ҧ𝜖 𝑥 ≔
1

𝑀
σ𝑚 𝑌 − 𝑓𝑚 𝑥

2

“Ensemble error”

“Average expert error”

Will these be minimized for the same ensemble?

Bonus
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• 𝜖 𝑥 ≔ 𝑌 − ҧ𝑓 𝑥
2

• ҧ𝜖 𝑥 ≔
1

𝑀
σ𝑚 𝑌 − 𝑓𝑚 𝑥

2

“Ensemble error”

“Average expert 
error”

Diversity in Experts 
(% Unique Training Data)

[Sollich & Krogh 1995]

Linear 𝑓𝑚

Bonus

https://proceedings.neurips.cc/paper_files/paper/1995/file/1019c8091693ef5c5f55970346633f92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/1019c8091693ef5c5f55970346633f92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/1019c8091693ef5c5f55970346633f92-Paper.pdf


Mixture of Experts: Some analysis
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• 𝜖 𝑥 ≔ 𝑌 − ҧ𝑓 𝑥
2

• ҧ𝜖 𝑥 ≔
1

𝑀
σ𝑚 𝑌 − 𝑓𝑚 𝑥

2

“Ensemble error”

“Average expert 
error”

Diversity in Experts 
(% Unique Training Data)

[Sollich & Krogh 1995]

Linear 𝑓𝑚

“Disagreement 
between 
experts”

Intuition: Expert errors are wrong 
in individualized ways and cancel 
out through consensus.

→ Slight “overfitting” of experts helps!

Bonus

https://proceedings.neurips.cc/paper_files/paper/1995/file/1019c8091693ef5c5f55970346633f92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/1019c8091693ef5c5f55970346633f92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/1019c8091693ef5c5f55970346633f92-Paper.pdf


Mixture of Experts: In LLMs
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• Implications for training?

[GROOTENDORST]

• Implications for serving?

Easy to have 
experts over-
specialize

[XIE ET AL 2022]

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts
https://arxiv.org/pdf/2207.09094
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts


Summary: From Transformer to GPT
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Component Transformer GPT

Architecture Encoder-decoder (full) Decoder-only

Attention Full self-attention Masked (causal) self-attention

Positional encoding Sinusoidal (original) Learned positional embeddings

Output Task-specific Next-token prediction

Training objective Flexible (e.g., translation) Language modeling (autoregressive)

Inference Depends on task Greedy / sampling for text gen



Summary: From GPT-1 to GPT-4
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• Architecture:
• Scale: Variety of options, with biggest (1.5B params → >1T params):

• Block size (max context): 512 → 128k

• Layers: 12 → >96

• Attention Heads: 12 → >96

• Embedding Dim: 768 → >12,288

• Vocab: 40k → >50k tokens

• Tokenizer: Includes image patches for multimodal

• Mixture-of-Experts

• Training:
• Dataset: BookCorpus (5GB) → Private 13T tokens (~50TB)

• Reinforcement learning for alignment



Questions?
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