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Today
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• Semester Review
• Open Directions in Graphical Models

• Context-Adaptive Models
• Connecting LLMs to Graphical Models



Graphical Models



Why GMs?
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What’s the point of GMs in the AI era?
• A language for communication
• A language for computation
• A language for development

Universe of 
complexity

Finite human 
understanding

Structure!



The Fundamental Questions
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• Representation
• How to encode our domain knowledge/assumptions/constraints?
• How to capture/model uncertainties in possible worlds?

• Inference
• How do I answer questions/queries according to my model and/or based on 

observed data?

e.g. 𝑃 𝑋! 𝐷)
• Learning

• What model is "right” for my data?

e.g. 𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥"∈ℋ𝐹(𝐷;𝑀)



A Simplified View of our Roadmap
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PGMs allow us to understand and structure data
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• GM = Multivariate Objective Function + Structure
• PGM = Multivariate Statistics + Structure

• Formally: A PGM is a family of distributions on a set of 
random variables that are compatible with all the probabilistic 
independence propositions encoded by a graph that connects 
these variables.



Conditional Independence
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• Variables X and Y are independent if:
𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃 𝑌

• Notation: 𝑋 ⊥ 𝑌

• Variables X and Y are conditionally independent given Z if:
𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

• Equivalently: 𝑃 𝑋 𝑌, 𝑍 = 𝑃(𝑋, 𝑍)
• Notation: 𝑋 ⊥ 𝑌 ∣ 𝑍



Structure Encodes Assumptions
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• Generative:
• Models the joint distribution P(𝑋, 𝑌).

• Discriminative:
• Models the conditional distribution P(𝑌|𝑋).

X

Y
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P(Y|X=x) P(Y|X=x)

𝑌
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!
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Logistic 
Regression



Bayesian Networks (BN)

• A BN is a directed acyclic graph whose nodes represent the 
random variables and whose edges represent direct influence of 
one variable on another
• Provides the skeleton for representing a joint distribution 

compactly in a factorized way
• Compact representation of a set of conditional independence 

assumptions
• We can view the graph as encoding a generative sampling 

process executed by nature.
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Markov Random Fields (MRFs)
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• An undirected graphical model represents a distribution 𝑃 𝑋
defined by an undirected graph 𝐻 and a set of positive potential 
functions 𝜓 associated with the cliques of 𝐻 such that:

P X$, … , X. =
1
Z
3
/

𝜓/ 𝑋0

where 𝑍 represents the partition function: 𝑍 = ∑%∏&𝜓& 𝑋& .

• The potential function can be understood as a ”score” of the 
joint configuration



Learning



Maximum Likelihood Estimation (MLE)
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• Definition:
• Find )𝜽 that maximizes the likelihood of observing the given data.

5𝜽 = argmax"𝐿 𝜃 where 𝐿 𝜃 = 𝑃 data 𝜃 . 
• Interpretation:

• L(θ): Probability of the observed data given θ.
• MLE chooses the parameter that makes the data most "likely."

𝐿(𝜃)

3𝜃"#$

𝜃



Maximum A Posteriori (MAP) Estimation
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• Find
6𝜃"'( = 𝑎𝑟𝑔𝑚𝑎𝑥)𝑃 𝜃 data) ∝ 𝑎𝑟𝑔𝑚𝑎𝑥)𝑃 data 𝜃 𝑃(𝜃)

• 𝑃 data 𝜃 : Likelihood
• 𝑃(𝜃): Prior belief about 𝜃

• MLE ignores 𝑃 𝜃
• MAP incorporates prior information.
𝐿(𝜃)

𝜃

3𝜃"#$

P(𝜃|data)

3𝜃"%&

𝜃



Regularization is MAP
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• MLE with Regularization:
• Adds a penalty to avoid overfitting

?𝜽𝒓𝒆𝒈 = argmax"[log 𝐿 𝜃 − 𝜆𝑅 𝜃 ]

• MAP as Penalized MLE:
• Let 𝑃 𝜃 ∝ 𝑒!"#(%). Then

)𝜽'() = 𝑎𝑟𝑔𝑚𝑎𝑥%[log 𝐿 𝜃 + log𝑃 𝜃 ] = <𝜃*+,

𝐿(𝜃)

3𝜃"#$

𝜃



Why is learning with latent variables harder?
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• In fully-observed IID settings, the log-likelihood 
decomposes into a sum of local terms:

• With latent variables, all parameters become coupled 
via marginalization

Sum over z is inside log



Solution 1 to LV learning: Expectation-Maximization
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• E-step:
• Compute the expected value of the sufficient statistics of the 

hidden variables under current estimates of parameters

• M-step:
• Using the current expected value of the hidden variables, 

compute the parameters that maximize the likelihood.

• “Guess a value for the LVs, then update it.”



Solution 2 to LV learning: Variational Inference

• We choose a family of variational distributions (i.e., a 
parameterization of a distribution of the latent variables) such 
that the expectations are computable.
• Then, we maximize the ELBO to find the parameters that gives 

as tight a bound as possible on the marginal probability of x.

log 𝑝(𝑥 ∣ 𝜃) ≥ 𝐸!∼#[log 𝑝 𝑥, 𝑧 𝜃 ] + 𝐻(𝑞)

“ELBO”: Evidence Lower Bound

+𝐾𝐿(𝑞 𝑧 𝑥 ∣∣ 𝑝 𝑧 𝑥, 𝜃 )

• “Maximize an easier lower-bound of the log-likelihood.”



Solution 3 to LV learning: Monte Carlo
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• Draw random samples from desired distribution
• Yield a stochastic representation of desired distribution

• Asymptotically exact
• Challenges:
• How to draw samples from desired distribution?
• How to know we’ve sampled enough?

• 𝐸A 𝑓 𝑥 = ∑( C D(
E

• “Define a distribution by drawing samples instead of a closed-form.”



Solution 4 to LV learning: Deep Learning
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• Define our probabilistic model such that 
𝑝 𝑧 𝑥; 𝜃 = 𝛿 𝑧 − 𝑓 𝑥; 𝜃 , i.e. 𝑧 = 𝑓 𝑥; 𝜃 ,

• Then
𝑝 𝑦 𝑥; 𝜃 = 𝑝 𝑦 𝑓 𝑥; 𝜃

• “Define the likelihood of latent variables as delta functions.”

• By properly defining f with convenient activation functions (like 
ReLU or sigmoid), then !𝜃FGH can be estimated by backpropagating 
error on y.



Deep Learning



Deep Learning via Backpropagation
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• Neural networks are function compositions that can be 
represented as computation graphs:

:

1
2

3

4
5

Input
variables

x f (x )
Outputs

Intermediate 
computations

• By applying the chain rule, and working in reverse order, we get:



Convolutional Neural Networks [LeCun 1989]
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Reused weights (small)!



Autoencoders
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3𝑥 = 𝑓 ℎ = 𝑓 𝑔 𝑥
[Michelucci 2022]

https://arxiv.org/pdf/2201.03898


Deep Generative Models
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• Define probabilistic distributions overs a set of variables
• “Deep” means multiple layers of hidden variables!
• Many forms:

• Variational Autoencoders
• GANs
• Diffusion Models



The ”Transformer”
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• Original Transformer (Vaswani et al., 2017):
• Encoder-decoder architecture for sequence-to-

sequence tasks
• Parallelizable self-attention instead of recurrence
• Positional encodings enable order sensitivity

• Encoder: Processes input sequence
• Decoder: Generates output sequence using 

masked attention + encoder output
• Inspired by machine translation (observe full 

input sequence, predict full output 
sequence)



GPT: From Seq. Transduction to Seq. Modeling
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• Original Transformer (Vaswani et al., 2017):

𝑃 𝑌 𝑋 =B
*

𝑃 𝑌* 𝑌+* , 𝑋

• Conditional sequence model for tasks like translation (input → output)

• Generative Pretrained Transformer (GPT) Models:

𝑃 𝑋 =B
*

𝑃 𝑋* 𝑋+*

• Unconditional generative model over raw text

• Architectural consequence: no encoder, only a decoder with 
causal structure



LLMs: The definition of Generative Models
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• Directed PGM

𝑃) 𝑋 =B
!

B
*

𝑃)(𝑋!,* ∣ 𝑋!,+*)

• Probabilistic objective: Max log-likelihood of observed seqs

max
)
F
!

F
*

log 𝑃) 𝑋!,* 𝑋!,+*

[Radford et al., Improving Language 
Understanding by Generative Pre-Training]

𝑋$ 𝑋I … 𝑋JK$ 𝑋J

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


LLM Training: Unsupervised à Supervised
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https://cameronrwolfe.substack.com/p/understanding-and-using-supervised

https://cameronrwolfe.substack.com/p/understanding-and-using-supervised


Open Directions in Graphical Models



Why GMs?

Ben Lengerich © University of Wisconsin-Madison 2025

What’s the point of GMs in the AI era?
• A language for communication
• A language for computation
• A language for development

Universe of 
complexity

Finite human 
understanding

Structure!

Adaptive structure?



Context-Adaptive GMs
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Dog
• Disease subtypes
• Multiple-hit mechanisms
• Prior exposures

• Identifying and 
eliminating biases

• Connecting 
statistics to 
foundation 
models

• Zooming in for personalization
• Zooming out for inclusion

Interpreting complex systems Latent heterogeneity Multi-modal effects



Context-Adaptive GMs
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Interpreting
complex systems

Latent 
heterogeneity

Multi-modal
effects

𝑌 = 𝑋 J𝛽L 𝐶 + �̂� 𝐶 + 𝜖



Varying-Coefficients Regression
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From
𝑌 = 𝛽J + 𝛽K𝑋K + …+ 𝛽L𝑋L + 𝜖

𝑌 = 𝛽J 𝐶 + 𝛽K 𝐶 𝑋K + …+ 𝛽L 𝐶 𝑋L + 𝜖
To

Parameter-generating functions, each 𝑅$ → 𝑅
[Hastie & Tibshirani 1993]Linear

Splines
Trees

[Lu et al 2015]
[Deshpande et al 2023]

https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1993.tb01939.x
https://www.tandfonline.com/doi/full/10.1080/03610920801931887?casa_token=jsmPIsSAMoUAAAAA%3AV5FUys9h9X49cqFr8fBtzs9ul-olNxR6f8oJxl3K7wIhyfmzPvWCMt9JYbesfvsqDa_4u0hdE7gtHA
https://arxiv.org/pdf/2003.06416.pdf


Varying-Coefficients Regression
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From
𝑌 = 𝛽J + 𝛽K𝑋K + …+ 𝛽L𝑋L + 𝜖

𝑌 = 𝛽J 𝐶 + 𝛽K 𝐶 𝑋K + …+ 𝛽L 𝐶 𝑋L + 𝜖
To

Parameter-generating functions, each 𝑅$ → 𝑅
[Hastie & Tibshirani 1993]Linear

Splines
Trees

[Lu et al 2015]
[Deshpande et al 2023]

Can these be neural networks?

https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1993.tb01939.x
https://www.tandfonline.com/doi/full/10.1080/03610920801931887?casa_token=jsmPIsSAMoUAAAAA%3AV5FUys9h9X49cqFr8fBtzs9ul-olNxR6f8oJxl3K7wIhyfmzPvWCMt9JYbesfvsqDa_4u0hdE7gtHA
https://arxiv.org/pdf/2003.06416.pdf


Contextualized learning: A Recipe
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1.    Define a differentiable objective for 
your model of interest 𝑋 ∈ ℝ! ×#

𝐶 ∈ ℝ! × $
Φ 𝑐 :ℝ$ → ℝ|&|

-𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛& 6
'()

!

ℓ 𝑋', 𝜃

9Φ = 𝑎𝑟𝑔𝑚𝑖𝑛*6
'

!

ℓ(𝑋', Φ(𝐶'))

𝐾 ≪ |𝜃|
𝐴 ∈ ℝ+ × |&|
𝜙 𝑐 :ℝ$ → ℝ+

Φ 𝑐;𝜙, 𝐴 ≔ 6
,()

+

𝜙 𝑐 , 𝐴,

C𝜙, -𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛-,/6
'

!

ℓ(𝑋', Φ 𝐶'; 𝜙, 𝐴 )

Lengerich et al 2023

2.    Replace model parameters with a 
differentiable context encoder

3.    (Optional) Re-parameterize the 
context encoder to constrain the 
solution space

4.   Optimize end-to-end

https://arxiv.org/abs/2310.11340


Toy Example: Linear Regression
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Ground Truth (Unobserved)

𝑌 = 𝑋 $𝛽 + �̂�
Population

𝑌! = 𝑋!)𝛽! +*𝜇!

Cluster Implicit

Ground Truth (Sampled) Estimated

$𝛽 = "#
"$of Φ(𝐶, 𝑋)

Contextualized
𝑌 = 𝑋 $𝛽# 𝐶 + �̂� 𝐶

Context:
Risk factors

Model:
Biomarker impacts

Outcomes:
Continuous Value

Predictor:
Biomarkers

Lengerich et al 2023

https://arxiv.org/abs/2310.11340


Toy Example: Linear Regression
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Interpreting complex 
systems

Latent 
heterogeneity

Multi-modal effects

𝑌 = 𝑋 -𝛽* 𝐶 + G𝜇 𝐶

𝐶!

𝐶#

Lengerich et al 2023

https://arxiv.org/abs/2310.11340


Contextualized GMs enable new studies of biology

Ben Lengerich © University of Wisconsin-Madison 2025

!! !"
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"#($)

!#

Learns 
Archetypal 
Networks…

… and Sample-
Specific Mixtures

Reframing Network Inference as Meta-Learning Unlocks Investigations of Gene Regulation

Ellington et al. PNAS 2025 (to appear)



Contextualized GMs enable new studies of biology
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Colored by disease type
Patient Context

Transcriptomics Networks

Personalized analysis of 7000 cancer patients

Ellington et al. PNAS 2025 (to appear)



Contextualized GMs enable new studies of biology
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Personalized analysis of 7000 cancer patients

Network 
Parameters

Ellington et al 2023

Ellington et al. PNAS 2025 (to appear)

https://www.biorxiv.org/content/10.1101/2023.12.01.569658v1


Contextualized GMs work within RL too
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Accurate Interpretable

Black-box Models Logistic 
Regression

HMMRecurrent Decision 
Tree

Want to model recurrent processes of medical 
decisions as RL policies

Contextualized Policy Recovery (CPR)

Deuschel et al. ICML 2023

https://arxiv.org/abs/2310.07918


Contextualized GMs work within RL too
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Contextualized Policy 
Recovery (CPR)

Deuschel et al. ICML 2023

https://arxiv.org/abs/2310.07918


Contextualized GMs work within RL too
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Contextualized Policy 
Recovery (CPR)

SOTA Accuracy

Contexualized Understanding

Contextualized policies

Deuschel et al. ICML 2023

https://arxiv.org/abs/2310.07918


Context connects statistical ML to persistent knowledge
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Context connects statistical ML to persistent knowledge
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A recent personal story
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Magnesium

Excess 
Risk?

Community 
Hospital 
General 
Unit

BCH 
Cardiac 
ICU



A core idea of GMs: Modularity à interpretability
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An information bottleneck limits human understanding of complicated ideas…

…but modular components can be analyzed sequentially.

Information Bottleneck

Complicated outcome Modular components

Insight



GMs + LLMs: Modularity à Automated Interpretability
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An information bottleneck limits human understanding of complicated ideas…

…but modular components can be analyzed sequentially.

Information Bottleneck

Complicated outcome Modular components

Humans

LLMs

Reasoning agents

Insight



GMs + LLMs è Tremendous potential
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Surprise-Finding: LLMs vs Human experts
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Benchmarked in a blinded study against doctors

GPT-4 not as good as doctorsBut more exhaustive

1. GPT and 4 Doctors independently evaluate effects from a GAM.
2. Doctors grade other responses. Tell them it’s doctors rating doctor explanations. 

Secretly, LLM explanations were mixed in.

Lengerich et al. JAMIA Open 2025 (to appear)



Surprise-Finding: LLMs vs Human experts
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Benchmarked in a blinded study against doctors
1. GPT and 4 Doctors independently evaluate effects from a GAM.
2. Doctors grade other responses. Tell them it’s doctors rating doctor explanations. 

Secretly, LLM explanations were mixed in.

Lengerich et al. JAMIA Open 2025 (to appear)



Many open problems and opportunities
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• Scalability of Contextualized Learning: Systems for storing, accessing, and generating 
context-specific models

• Integration with Emerging Biomedical Technologies: More views of personal context 
(wearables) and fine-grained interventions (CRISPR, Perturb-seq)

• Combining Episodic and Semantic Memory: Beyond Archetypes

• Ethical and Privacy Considerations: Which features should be used to personalize risk 
models? Which should be invariant?

• Robust Local Interpretations: Can we guarantee robustness of local interpretations via 
smoothness, (adversarial) robustness, or other properties?

• Federated learning and data sharing: How can local models be pooled into meta-models 
with only minimal access to original data?

• Communication protocols: Should all communication be routed through the meta-model?

• Resource efficiency and accessibility: When can the meta-model be ignored?
• Longitudinal studies and real-world impact: What kinds of personalized interventions 

really make a difference?



What will you do with the language of complexity?


