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Graphical Models
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Why GMs?

What's the point of GMs in the Al era?
* A language for communication
* A language for computation

A language for development Finite human

understanding

Structure!

Universe of

complexity
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The Fundamental Questions

* Representation
* How to encode our domain knowledge/assumptions/constraints?
* How to capture/model uncertainties in possible worlds?

e Inference

 How do | answer questions/queries according to my model and/or based on
observed data?

e.q. P(X;|D)

* Learning
* What modelis "right” for my data?

e.qg. M =argmaxycyF(D; M)

Ben Lengerich © University of Wisconsin-Madison 2025



A Simplified View of our Roadmap
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PGMs allow us to understand and structure data

 GM = Multivariate Objective Function + Structure
 PGM = Multivariate Statistics + Structure

* Formally: A PGM is a family of distributions on a set of
random variables that are compatible with all the probabilistic
independence propositions encoded by a graph that connects
these variables.
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Conditional Independence

 Variables X and Y are independent if:
P(X,Y) = P(X)P(Y)
 Notation: X LY
 Variables X and Y are conditionally independent given Z if:
P(X,Y|Z) = P(X|Z)P(Y|2)
« Equivalently: P(X|Y,Z) = P(X,Z)
* Notation: X LY | Z
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Structure Encodes Assumptions

« Generative:
* Models the joint distribution P(X, Y).

 Discriminative:
* Models the conditional distribution P(Y|X).

Logistic
Regression

o,y =P 10 ] [ Pero
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Bayesian Networks (BN)

 ABN is a directed acyclic graph whose nodes represent the
random variables and whose edges represent direct influence of
one variable on another

* Provides the skeleton for representing a joint distribution
compactly in a factorized way

« Compact representation of a set of conditional independence
assumptions

* We can view the graph as encoding a generative sampling
process executed by nature.
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Markov Random Fields (MRFs)

* An undirected graphical mode/represents a distribution P(X)
defined by an undirected graph H and a set of positive potential

functions ) associated with the c

igues of H such that:

1
P(X,, ... X)) = Er
C

:lpc(XC)

where Z represents the partition function: Z =), [[. . (X,).

* The potential function can be understood as a “score” of the

joint configuration
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Maximum Likelihood Estimation (MLE)

e Definition:
e Find 8 that maximize

s the likelihood of observing the given data.

0 = argmaxyL(0) where L(6) = P(data|b).

* Interpretation:

* L(0): Probability of the observed data given 6.
* MLE chooses the parameter that makes the data most “likely."

L(6)

éMLE
v

0
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Maximum A Posteriori (MAP) Estimation

* Find
Oyap = argmaxgP(0|data) < argmaxgyP(data|0)P(6)

e P(data|@) : Likelihood
* P(0): Prior belief about 6

 MLE ignores P(0)
 MAP incorporates prior information.

L(6 P(0)
|
I P(6|data)
|
' »
I jas L
: 0
1

/ MLE

/ éMAP

0 0
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Regularization is MAP

 MLE with Regularization:

« Adds a penalty to avoid overfitting
0req = argmaxg[log L(6) — AR(0)]

L(6)

- MAP as Penalized MLE:

e Let P(0) x e RO Then
0y ap = argmaxg[log L(6) + logP(0)] = Oreg
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Why is learning with latent variables harder?

* |n fully-observed IID settings, the log-likelihood
decomposes into a sum of local terms:

Z
@

£.(0;D)=1log p(x,z|0)=1log p(z|6,)+1og p(x|z,0,) ® 0 O
X, X3,

X

« With latent variables, all parameters become coupled
via marginalization

£.(0;D)=log ) p(x,z|0)=log) p(z]6,)p(x|z,6,)
z\ z

Sum over z is inside log
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Solution 1to LV learning: Expectation-Maximization

* “Guess a value for the L Vs, then update it.”

 E-step:
 Compute the expected value of the sufficient statistics of the
hidden variables under current estimates of parameters

 M-step:
* Using the current expected value of the hidden variables,
compute the parameters that maximize the likelihood.
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Solution 2 to LV learning: Variational Inference

« “Maximize an easier lower-bound of the log-likelihood.”

logp(x |1 0) = E, 4[logp(x,z10)] + H(q) +KL@a(z1x)11p(z1x6))
\ J

Y
"ELBQO": Evidence Lower Bound

* We choose a family of variational distributions (i.e., a
parameterization of a distribution of the latent variables) such
that the expectations are computable.

* Then, we maximize the ELBO to find the parameters that gives
as tight a bound as possible on the marginal probability of x.




Solution 3 to LV learning: Monte Carlo

» “Define a distribution by drawing samples instead of a closed-form.”

* Draw random samples from desired distribution
* Yield a stochastic representation of desired distribution

|m|

- Asymptotically exact

 Challenges:
* How to draw samples from desired distribution?
* How to know we've sampled enough?
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Solution 4 to LV learning: Deep Learning

 “Define the likelihood of latent variables as delta functions.”

* Define our probabilistic model such that

p(z|lx;0)= 6(2 — f(x; 9)), l.e.z = f(x;0),
* Then
p(ylx0)=p(ylf(x;0))

« By properly defining f with convenient activation functions (like
ReLU or sigmoid), then 8, can be estimated by backpropagating
errorony.
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Deep Learning
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Deep Learning via Backpropagation

* Neural networks are function compositions that can be
represented as computation graphs:

L S0 G

variables Outputs

Intermediate
computations

* By applying the chain rule, and working in reverse order, we get:

dfn o Ofn Ofi, _ dfn dfu ()fh _

O Foy 100
i1€m™(n) i1€7r(n) io€m(i1) f2 e
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Kernel

w

Y

v Output
_>
aw + bxr + bw + cz cw + dx
ey + fz fy + gz gy + hz
ew + fz + fw + gz gw + hz
iy + jz jvy + kz ky + Iz
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Sliding filters (kernels)

Reused weights (small)!

Fig. Goodfellow et al. 2016




Autoencoders

— | ENCODER

INPUT
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DECODER

@

RECONSTRUCTED
INPUT

[Michelucci 2022]



https://arxiv.org/pdf/2201.03898

Deep Generative Models

* Define probabilistic distributions overs a set of variables
« "Deep” means multiple layers of hidden variables!

* Many forms:

* Variational Autoencoders
e GANSs

e Diffusion Models %
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The "Transformer”
 Original Transformer (Vaswani et al., 2017):

* Encoder-decoder architecture for sequence-to-
sequence tasks

 Parallelizable self-attention instead of recurrence
 Positional encodings enable order sensitivity

* Encoder: Processes input sequence

* Decoder: Generates output sequence using
masked attention + encoder output

* Inspired by machine translation (observe full
input sequence, predict full output
sequence)
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Figure 1: The Transformer - model architecture.




GPT: From Seq. Transduction to Seq. Modeling

 Original Transformer (Vaswani et al., 2017):
Pvix)=| [P(r v )
t

« Conditional sequence model for tasks like translation (input — output)

« Generative Pretrained Transformer (GPT) Models:
P(X) = HP(Xt | X<t )
t

« Unconditional generative model over raw text

* Architectural consequence: no encoder, only a decoder with
causal structure
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LLMs: The definition of Generative Models

e Directed PGM

* Probabilistic objective: Max log-likelihood of observed seqgs
mglxz log Po( Xie | Xict)
t

l

[Radford et al., Improving Language
Understanding by Generative Pre-Training]
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https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

LLM Training: Unsupervised - Supervised

—
{ Pre-Training } 4" (SF;r_:_e(-)'lr'ueril:IgIl:) }
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https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
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Why GMs?

What's the point of GMs in the Al era?

* Allanguage for communication Adaptive structure?

* A language for computation

A language for development Finite human

understanding

Structure!

Universe of

complexity
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Context-Adaptive GMs

Interpreting complex systems Latent heterogeneity Multi-modal effects

=

Elephant -
- Zooming in for personalization ° Disease sul?types Icf.en‘nf;g.ng ‘:}d
« Zooming out for inclusion * Multiple-hit mechanisms climihating blases
* Prior exposures * Connecting
statistics to
foundation
models
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Context-Adaptive GMs

Y = XBep(C) + A(C) + €
Interpreting Latent Multi-modal
complex systems heterogeneity effects
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Varying-Coefficients Regression

From

Y = Bo + BiXy + ot BpX, + €
Y = Bo(C) + B1(C)Xy + oot Bp(C)X, + €

Voo /

Parameter-generating functions, each R™ — R
Linear [Hastie & Tibshirani 1993]

Splines [Lu et al 2015]
Trees [Deshpande et al 2023]
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https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1993.tb01939.x
https://www.tandfonline.com/doi/full/10.1080/03610920801931887?casa_token=jsmPIsSAMoUAAAAA%3AV5FUys9h9X49cqFr8fBtzs9ul-olNxR6f8oJxl3K7wIhyfmzPvWCMt9JYbesfvsqDa_4u0hdE7gtHA
https://arxiv.org/pdf/2003.06416.pdf

Varying-Coefficients Regression

From

Y = Bo + BiXy + ot BpX, + €
Y = Bo(C) + B1(C)Xy + oot Bp(C)X, + €

Voo /

Parameter-generating functions, each R™ — R

Can these be neural networks?
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https://www.tandfonline.com/doi/full/10.1080/03610920801931887?casa_token=jsmPIsSAMoUAAAAA%3AV5FUys9h9X49cqFr8fBtzs9ul-olNxR6f8oJxl3K7wIhyfmzPvWCMt9JYbesfvsqDa_4u0hdE7gtHA
https://arxiv.org/pdf/2003.06416.pdf

Contextualized learning: A Recipe

1. Define a differentiable objective for ‘
your model of interest

n
6 = argming z 2(X;,0)

=1
2. Replace model parameters with a ‘ n
differentiable context encoder O = argming z L(X;, P(Cy))
[
3. (Optional) Re-param the ‘ K
context encoder to constrain the (I)(C; ’A) — Z Ak
solution space £
=1
‘ n
4. Optimize end-to-end ’A — argmin 'AE g(Xi: CD(Ci;
[
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X € R*XP

C € R**¢
d(c): R¢ —» Rl

K « |6
A€ REX0
A)

[ 3 ]

EIE
Lengerich et al 2023



https://arxiv.org/abs/2310.11340

Toy Example: Linear Regression

Predictor:
Biomarkers

( Context: 1 :f Model: ] ! f Outcomes: )
___Risk factors Biomarker impacts) \_Continuous Value
i 1
[ Population Cluster Implicit Contextualized
Y=XB+p Y =XPBe + i B =otaicn) Y = XBo(C) + A(C)
® / e &
Y e W e
. J

Ground Truth (Unobserved) ® Ground Truth (Sampled) ® Estimated

[ 3 ]

EIE
Lengerich et al 2023
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https://arxiv.org/abs/2310.11340

Toy Example: Linear Regression

Y = Xpr(C) +4(0)

- .
Interpreting complex

systems

ext Y

1\ Matters /

\

Latent A

heterogeneity

/

Multi-modal effects

J
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.IE
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https://arxiv.org/abs/2310.11340
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g HR 0.05
—)
e
HRO0.4

Archetypal Networks

.g;’\ \._v Ll oo

Hierarchal mlxmg7 Random mixing?

Ellington et al. PNAS 2025 (to appear)




Contextualized GMs enable new studies of biology

I
Personalized analysis of 7000 cancer patients Colored by disease type
Patient Context e Bladder Urothelial Carcinoma
.. . . o . . . [e] Brain Lower Grade Glioma Lung Adenocarcinoma
Clinical Information Biopsy Composition Copy Number Alterations  Driver Mutations o Breast Invasive Carcinoma e Lung Squamous Cell Carcinoma
\ ' ’ ® Colon Adenocarcinoma e Ovarian Serous Cystadenocarcinoma
Esophageal Carcinoma e Pancreatic Adenocarcinoma
‘,& e Glioblastoma Multiforme e Prostate Adenocarcinoma
N e Head and Neck Squamous Cell Carcinoma ® Rectum Adenocarcinoma
7 : : e Kidney Renal Clear Cell Carcinoma e Stomach Adenocarcinoma
o ~ Kidney Renal Papillary Cell Carcinoma e Thyroid Carcinoma
4 g e Liver Hepatocellular Carcinoma e Uterine Corpus Endometrial Carcinoma
p=l
N UMAP 1
Transcriptomics Co-expression Graphs Markov Graphs Bayesian Networks
~ Y (._)
P o
@ . » N
,- - ~ o B
. W %
& - . v ‘
- s
~ . -~ ‘f"“’ ‘ » -
! Networks”,
3 [ 3 a . a
<<
£ UMAP 1 TR o UMAP 1 & UMAP 1
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Contextualized GMs enable new studies of biology

]
Personalized analysis of 7000 cancer patients

—

Whole-genome Doubling

Network Subtypes\
cic

Cluster-of-clusters ‘
H""# T 'm%
f HI
FUBP1
NOTCH1 I | 1l |

IDH1 Mutation Type
eGrrl
PTEN
ATRX
TP53
IDH1

Network
Parameters
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(A) Network Subtypes Survival Function (ours)
p-value: 3.71e-22

1.0—

08—

0.6 —

0.4 —

0.2—

— 0127
— 1(159/184)

Network Subtypes 1 + 3

Network Subtype 2

0

0(11227)
Atrisk 27
Censored 0
Events 0

1(159/184)

Events 0

| [ | | |
1000 2000 3000 4000 5000 6000

timeline
[ 0 0 0 0 0
1 1 1 1 1 1
16 16 16 16 16 16
50 19 7 4 1 1
127 149 155 156 158 158
7 16 22 24 25 25

(C) IDH mutation Subtypes Survival Function
p-value: 2.04e-08

Wild-type IDH

— 0(30/49)
— 1(140/162)

Mutated IDH

[
[

0 (30/49)

Atrisk 49
Censored

Events 0

1(140/162)
Atrisk 161
Censored 1
Events 0

I [
1000 2000 3000 4000 5000 6000

timeline

1 1 1 1 1

25 29 29 29 29 29

18 19 19 19 19 19

44 18 3 0 0

13 131 137 138 140 140
13 2

(B) Cluster-of-clusters Subtypes Survival Function (SOTA)
p-value: 7.54e-10

1.0 — 0(150/172)
— 1(20/39)
0.8 —
0.6 Cluster-of-clusters subtypes 1 + 3
04—
02— Cluster-of-clusters
subtype 2 +
[ [ [ [ f I [
0 1000 2000 3000 4000 5000 6000
0(150/172) timeline
Atrisk 171 45 18 6 3 ] o
Censored iy 121 141 147 148 150 150
Events [ 6 13 19 21 22 22
1(20/39)
Atrisk 39 5 X 1 3 5 ik 1
Censored ] 17 19 19 19 19 19
Events 0 17 19 19 19 19 19

(D) SCNA-derived Subset of Network Subtypes
p-value: 8.95e-08

1.0— -2(7114)
— -1(163/197)
0.8—
06— All other patients
0.4—
SCNA-derived subset
of Network Subtype 2
0.2+
[ ! f I I I f
o 1000 2000 3000 4000 5000 6000
214 timeline
Atrisk 14 o o o o o o
Censored 0 7 7 7 7 7 7
Events o 7 7 7 7 7 7
-1(163/197)
Atrisk 196 50 19 7 4 1 1
Censored 1 131 153 159 160 162 162
Events 0 1 2 E 3 3 38
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https://www.biorxiv.org/content/10.1101/2023.12.01.569658v1

Contextualized GMs work within RL too

Want to model recurrent processes of medical
decisions as RL policies

l Accurate Interpretable |

Black-box Models Recurrent Decision

_»._> & -»g»g—» Reggsmn

Contextuahzed Policy Recovery (CPR)

g

Deuschel et al. ICML 2023
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https://arxiv.org/abs/2310.07918

Contextualized GMs work within RL too

Contextualized Policy
Recovery (CPR)

Context-conditioned

Dynamic oy - i
T Y ) ¢ Logistic Decision Model Probability
reatmen
Context Neural -IE Link function 23
(prior treatments, Network
symptoms, Dot product .é‘?
covariates) n II‘.‘EI ’ §o
&
&S
F&Fegss
RNN updates F &K S
. *@ o
Context with new &

observations

Patient Symptoms

O O Q O @,

\ )L ) \
T

Action / Treatment

T
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Pre-visit  Clinic Clinic Clinic Clinic Clinic
history  visit 1 visit 2 visit t-1 visit t visit t+1

Neural Network-
based Dependency

Linear Model-based
Dependency

Q Patient Context

O Observed Symptoms

Doctor Actions
+ Treatments

O Decision Models



https://arxiv.org/abs/2310.07918

Contextualized GMs work within RL too

F
Contextualized Policy Contexualized Understanding
Recove ry (CPR) . - For patients already on antibiotics,
Contextualized policies . .
side effects most important:
2 04
&= Population| £ 0-(2)
5 ®
SOTA Accuracy : Model O o2
: On O 04
i Model AUROC £, antibiotics 0 ! o2 3
Not on = 2
f e ADNIMRI | MIMIC antibiotics @ 1
\ Scans | Antibiotics g 0
itic regression | 0.66 + 0.01 | 0.57 + 0.01 - € 1
INTERPOLE | 0.60 + 0.04 NR 0 [ 2 3
: Time t
POETREE | 0.62 + 0.01 | 0.65 + 0.04
CPR-RNN | 0.72 + 0.01 | 0.82 + 0.00
CPR-LSTM | 0.72 + 0.01 | 0.82 + 0.00
RNN | 0.72 + 0.01 | 0.83 + 0.00
LSTM | 0.71 + 0.01 | 0.84 £+ 0.00
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https://arxiv.org/abs/2310.07918

Context connects statistical ML to persistent knowledge

Context

6(C)

Context-adaptive analysis

i)

1 1 1
—>III Context-adaptive learning

Ui J
]
]

Ben Lengerich © University of Wisconsin-Madison 2025



Context connects statistical ML to persistent knowledge

[ ]
( Context \
«  Observed Metadata —
 Dataset/Task Metadata -
Expectation-Maximization < « Unobserved Metadatt < _-
Initialization / Priors +—— ¢ Prior Knowledge
Constrained optimization * Logic Rules s
\ / Foundation models

6(C)

1 1 1
—»'II Context-adaptive learning Context-adaptive analysis
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A recent personal story

]
Treatment Protocol _ The_oretical Risk
With/Without Treatment
% II, .
= ] ‘ \~: N,
) | . N
(U ' \. .\
(O] N \, '\
— ~ .
E / '~
Magnesium
Community Observed Population Risk
Hospital
General BCH
Unit Cardiac
ICU
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A core idea of GMs: Modularity = interpretability

An information bottleneck limits human understanding of complicated ideas...

Complicated outcome Modular components

..but modular components can be analyzed sequentially.
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GMs + LLLMs: Modularity = Automated Interpretability

An information bottleneck limits human understanding of complicated ideas...

i

Insight

nA‘

Complicated outcome |
LLMs

Modular components

..but modular components can be analyzed sequentially, ~ Reasoning agents
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GMs + LLMs = Tremendous potential
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Surprise-Finding: LLMs vs Human experts

Benchmarked in a blinded study against doctors

1.  GPT and 4 Doctors independently evaluate effects from a GAM.
2. Doctors grade other responses. Tell them it's doctors rating doctor explanations.
Secretly, LLM explanations were mixed in.

Anomaly Detector | # of Anomalies per Feature % Ratings of >2 (“Agree”)
Anomaly identification | Anomaly explanation
Self (Doctor) 0.64(0.55,0.73) 98.9(95.8,100.0) 92.2(70.2,100.0)
Other Doctor 0.64(0.55,0.73) 92.0(85.6,98.4) 82.0(71.4,92.6)
GPT-4 1.0(0.93,1.07) 66.7(54.2,79.2) 63.0(53.6,72.4)
But more exhaustive GPT-4 not as good as doctors

Lengerich et al. JAMIA Open 2025 (to appear)
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Surprise-Finding: LLMs vs Human experts

Benchmarked in a blinded study against doctors

1.  GPT and 4 Doctors independently evaluate effects from a GAM.

2. Doctors grade other responses. Tell them it's doctors rating doctor explanations.
Secretly, LLM explanations were mixed in.

IS

Anomalies Reported per Feature

w

I Reported by Doctor

o

]

;

o)

Q.

i

O

= [ Reported by GPT Anomaly | Total

g 2 Source Number of
% Anomalies
“= Detected
g 1 Doctors 29.3+- 4.1
g GPT 46

pd

o

0 5 10 15 20 25 30
Feature Index

Lengerich et al. JAMIA Open 2025 (to appear)
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Many open problems and opportunities

« Scalability of Contextualized Learning: Systems for storing, accessing, and generating
context-specific models

 Integration with Emerging Biomedical Technologies: More views of personal context
(wearables) and fine-grained interventions (CRISPR, Perturb-seq)

« Combining Episodic and Semantic Memory: Beyond Archetypes

« Ethical and Privacy Considerations: Which features should be used to personalize risk
models? Which should be invariant?

* Robust Local Interpretations: Can we guarantee robustness of local interpretations via
smoothness, (adversarial) robustness, or other properties?

« Federated learning and data sharing: How can local models be pooled into meta-models
with only minimal access to original data?

« Communication protocols: Should all communication be routed through the meta-model?
* Resource efficiency and accessibility: When can the meta-model be ignored?

« Longitudinal studies and real-world impact: What kinds of personalized interventions
really make a difference?
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What will you do with the language of complexity?
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