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Chapter 7

Linear classification

In this chapter we continue our discussion of elementary building blocks for graphical models,
treating the case of a discrete node taking on a finite number of values. As in Chapter 6, our
interest is in the conditional relationship between the node Y and a vector of explanatory variables
X. We explore a number of possible representations for the conditional probability p(y | z).

What form should our model of p(y | z) take in the case of discrete Y'? If X is also discrete, then
we might consider models in which all possible combinations of X and Y are represented in a table.
We will indeed consider such a model in this chapter; however, it is important to keep in mind that
the size of such a table is exponential in the number of components of X, and we would like to
develop models to handle the (commonplace) situation in which this number is large. Moreover, we
wish to develop tools that allow for continuous-valued X. In either case a natural first step is to try
and mimic what we did with regression, exploiting the simplicity and mathematical convenience
of linearity assumptions. It is unclear, however, how to represent the conditional expectation of
Y —a number between zero and one for Bernoulli and multinomial variables—within the framework
of a linear model. Some sort of nonlinearity seems to be needed, but which nonlinearity? Does
introducing such a nonlinearity leave us with any role for linearity?

One way to help organize our thinking on these issues is to recall that we have already seen
problems involving discrete Y in Chapter 5. In particular, in our discussion of classification models
in that chapter, we found it useful to explore the relationship between two kinds of models: dis-
criminative models—in which Y is the child of X—and generative models—in which Y is the parent
of X. While the former approach represents p(y |z) explicitly, the latter approach makes use of
Bayes rule to represent the posterior probability p(y | z) implicitly, in terms of the class-conditional
probability p(z |y) and the prior p(y). Thus we can begin to get ideas for representations of p(y | z)
by studying generative models in which Y is a parent of X, and using Bayes rule to invert the
model and thereby calculate the corresponding posterior probability p(y |z). This approach will
allow us to achieve some of the goals that we alluded to above—it will suggest a certain basic
mathematical structure in which linearity plays a role, and it will cope with both discrete-valued
and continuous-valued X. Moreover, it will suggest a natural “upgrade path” to more complex
models.

In this chapter we retain our assumption from the previous chapter that both X and Y are
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observed in our data set. We cast our presentation within the context of classification, where as
before we refer to Y and X as the “class label” and the “feature vector,” respectively. We will
fill in some of the details that were glossed over in Chapter 5 regarding the parameterization and
estimation of generative and discriminative approaches to the classification problem. We present
maximum likelihood methods for parameter estimation in both frameworks.

While we place our activity in this chapter within the framework of classification, it is worth
noting that there are aspects of classification problems that fall beyond the scope of our discussion.
In particular, our goal in this chapter is that of obtaining a model of the conditional probability
p(y|x). While p(y | z) is a desirable quantity to model in a classification setting, it is also true that
classification involves something more than evaluating a probability—in particular, classification
involves making a decision. We can threshold the probability distribution p(y|z) to obtain a
decision, but this is only one possible way to use this probability; perhaps there are others. Indeed,
perhaps there are some decisions which are in some sense more costly than others; our thresholding
scheme should be sensitive to such costs. Moreover, we can imagine classification algorithms that
do not make use of posterior probability p(y | z) at all; rather they go directly from a data set to
a decision rule. Evaluating these alternatives appropriately requires the mathematical framework
of decision theory. In particular a decision-theoretic approach to classification allows us to specify
costs associated with decisions and to evaluate alternative approaches to forming decision rules.
We will return to these issues in Chapter 27, where we present a full treatment of decision theory
in the graphical model setting. In that discussion we will in fact show that a reasonable first step
in classification problems is to obtain a model of the conditional probability p(y | z).

It is also worth noting that there is a flip side to this coin—there are problems other than
classification problems for which the methods of this chapter are useful. In particular in Chapter 10
we discuss models that are structurally identical to the models in this chapter, but for which Y is
no longer assumed to be observed; that is, for which Y is a latent variable. The results that we
obtain here will play an important role in that chapter.

7.1 Linear regression and linear classification

A discrete-valued node can be viewed as a special case of a real-valued node, and this leads one
to wonder why we need a separate treatment of discrete nodes. In particular, why not use the
regression methods that we developed in Chapter 6 to solve classification problems?

To see some of the problems that arise if we pursue this approach, consider the simple case of
a binary classification problem with a scalar-valued feature variable X. Let us represent the class
label with a real-valued variable Y, with Y = 0 and Y = 1 representing the two classes. Figure 7.1
presents an example of such a problem, with the data pairs (z,,y,) represented as points in the
plane. The linear regression fit to these data is also shown in the figure. Note that even though
the data {y,} are restricted to the values zero and one, the fitted line is not restricted to these
values. How are we to interpret this line? In Chapter 6 we showed that the linear regression fit
is a conditional mean—the expected value of Y conditioned on the observed value of X. For an
indicator random variable Y the expected value is the same as the probability that the variable
takes on the value 1. The fact that the fitted line in Figure 7.1 strays outside of the range (0,1)
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Figure 7.1: Data for a binary classification problem. The abscissa represents the one-dimensional
feature vector x, and the ordinate represents the binary class label y, with 0 and 1 representing the
two classes. Also shown is the least squares linear regression fit.

makes it difficult to sustain such an interpretation, however, in the setting of binary output data.

Even more serious problems arise when we consider in more detail how the regression fit depends
on the data. Suppose in particular that we add the point (1.5,1) to the data set (see Figure 7.2).
The earlier fit (Figure 7.1) yields a fitted value of 2.01 at = 1.5, suggesting, under any reasonable
interpretation of this value (e.g., thresholding), that the predicted class label at z = 1.5 should
be 1. This correctly predicts the class of the new data point, suggesting that the parameters can
already accommodate the new data point and need not be changed. Refitting the linear regression,
however, changes the slope parameter from 1.55 to 1.23 and the intercept parameter from —0.32
to —0.17 (see Figure 7.2). Moreover, taking the value at which the fit equals 0.5 as the boundary
between the two classes, this boundary changes significantly after the introduction of the new data
point, leading to changes in the classification of some of the points near the boundary. If we add
four additional data points at £ = 1.5 the boundary moves even further, as shown in Figure 7.2.
Given that these new data points are predicted correctly by the original fit, and are far from the
boundary, this behavior is disconcerting.

The assumptions underlying linear regression are clearly not met in the classification setting; in
particular, the assumption that the variable Y is Gaussian is clearly false. This mismatch between
the assumptions and the data is responsible for the problems that we have identified. Once we have
made probabilistic assumptions that are appropriate for the classification setting—in particular
once we have discarded the Gaussian assumption—we will obtain classification models in which the
fitted values behave in an intuitively reasonable manner.

As in Chapter 6 we focus on linear models throughout the current chapter. The notion of
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Figure 7.2: Three least squares regression fits. The solid line is the same fit as shown in Figure 7.1,
the dash-dot line is the fit to the data with one additional point at (1.5,1), and the dashed line is
the fit to the data with five additional points at (1.5,1).

“linearity” in the current chapter is, however, different from that in Chapter 6. We postpone the
mathematical details until later sections, where in fact we will find that different classification
models invoke the linearity assumption in somewhat different ways. All of the classification models
that we study, however, can be viewed as providing a partitioning of the feature space into regions
corresponding to the class labels. For linear models the boundaries between these regions are
hyperplanes (see Figure 7.3).

7.2 Generative models

Figure 7.4 presents three graphical representations of generative classification models. In all three
cases the class label node Y is the parent of the feature vector X = (X1, Xo,...,X,,). In Fig-
ure 7.4(a), the component features are treated as separate nodes; in this case, the children X; are
assumed to be conditionally independent given Y, as confirmed by the d-separation properties of the
graph. This is a simplifying assumption that provides a starting point for our presentation and will
be our focus through most of this section. In Figure 7.4(b), we have an alternative model in which
the components of the feature vector are interdependent, with specific conditional independencies
assumed to hold among specific sets of features. In this model general graphical model machinery
must be invoked both to parameterize the class-conditional densities and to learn the values of the
parameters. Accordingly we will not treat this model explicitly in this section but will return to it
in later chapters once the appropriate machinery is in place. Finally, in Figure 7.4(c), we have a
model in which no specific conditional independencies are assumed among the components of the
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Figure 7.3: A binary classification problem in a two-dimensional feature space. The feature vectors
in the training set are plotted as x’s and o’s for the two classes. Based on the training set, a
classifier partitions the feature space into decision regions, one region for each class. In the case of
a linear classifier, the boundaries between these regions are hyperplanes.
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Figure 7.4: Three examples of generative classification models: (a) the case of conditionally indepen-
dent features, (b) the case of dependent features with some conditional independence assumptions,
and (c) the case of no conditional independence assumptions.
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feature vector. In this case we represent the feature vector as a single node. This model, despite its
simple graphical appearance, is the most general model of the three. We will discuss an example
of this model in this section, where a Gaussian assumption for the class-conditional densities will
allow us to obtain a simple model despite the absence of conditional independencies.

In all of the examples that we discuss, our goal is twofold: to describe the parametric represen-
tation of the posterior probability p(y | z) for particular models, and to present maximum likelihood
methods for estimating the parameters of the model from data.

7.2.1 Gaussian class-conditional densities

We begin by discussing the model in Figure 7.4(a) in the setting in which the features are continuous
and endowed with Gaussian distributions. We initially treat the case of binary classification, in
which the class label Y can take on one of two values. The extension to multiple classes is discussed
in Section 7.2.1.

The model in Figure 7.4(a) requires a marginal probability for Y and a conditional probability
for X given Y. Let Y € {0,1} be a Bernoulli random variable with parameter m:

ply|m) =x¥(1— =)' (7.1)

Given the conditional independence assumption expressed by the graph, the probability p(z |y)
factors into a product over conditional probabilities p(z;|y). For Y = 0, let each X; have a
Gaussian distribution:

1 1
Y =0,0,)=———— ——(x; — poi)? 7.2
plz; | ,0;) (27m]2-)1/2 exp{ 2032 (@5 — 1oj) } ) (7.2)

where 119, is the jth component of the mean vector for class Y = 0. For ¥ = 1 we have:

1 1
Y =1,0)=—"—— ——(zj — i)y :
p(z; | .05) (27r0]2-)1/2 exp{ 20]2 (zj — p1y) } (7.3)

Note that we use 6; to denote all of the parameters for feature component z;, including the means
poj and gy, and the variance a] Note also that the variances 0]2 are allowed to vary across feature
components x;, but are assumed to be constant between the two classes.

Figure 7.5(a) presents an example of a contour plot of two Gaussians in a two-dimensional
feature space for the case in which 0 = 0. An example in which the variances are unequal is
shown in Figure 7.5(b).

The joint probability associated with the graph in Figure 7.4(a) is as follows:

m

plz,y10) =ply| =) [[ plzily.6)), (7.4)
7=1

where 0 = (m,601,02,...,0p).
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Figure 7.5: (a) A contour plot of Gaussian class-conditional densities for o1 =1 and o9 = 1. (b) A
contour plot for Gaussian class-conditional densities when o; = 0.5 and o = 2.0.

Posterior probability

Let us calculate the posterior probability p(Y = 1|z,8). The algebra is somewhat simplified if we
work with matrix notation. Thus let:

1 1 _
p($|y=k79)ZWGXP{—i(I—Hk)TE l(x_ﬂk)}a (7.5)
for each of the two classes k € {0,1}, where pr = (i1, tk2s - - ikm) " i the vector of means for
the kth Gaussian, and where ¥ £ diag(c?,02,...,02) is a diagonal covariance matrix. We have:

plz|Y =10)pY =1|n)
plz|Y =10)p(Y =1|7) +p(z|Y =0,0)p(Y =0]|~)
mexp{—5(z — p1)" 7 (z — 1)}
mexp{—3(z — p1) 'L (& — p1)} + (1 = 7) exp{—§ (= — po) 'Sz — po) }

p(Y =1|z,0) =

1
— ltexp{-log (%= + §(z — 1) TSz — ) — §(@ — po) TS (& — pro)}
1
- Ty—1 1 Ty—1 T (7.6)
1+ exp{—(u1 — po)"' E7'z + 5(u1 — p0) " Z7 (1 + po) — log 75}
1
_ 7.7
R - )
where the final equation defines parameters # and -:
_ 1 _ T
525 (1w — po) 7 £ =5 = p0) 37+ pro) + log T (7.8)
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Figure 7.6: A plot of the logistic function.

We see that the posterior probability that ¥ = 1 takes the form:

o) & —

STy (79)

where z = 72 + v is an affine function of z. The function ¢(z) is a smooth, sigmoid-shaped
function known as the logistic function (see Figure 7.6).

The fact that the feature vector x enters into the posterior probability via an affine function
has an important geometric interpretation; in particular, this implies that the contours of equal
posterior probability are lines in the feature space. That is, the term A7z is proportional to the
projection of x on 3, and this projection is equal for all vectors x that lie along a line orthogonal
to B. Counsider in particular the case in which the variances 032- are equal to one; thus let X = 1.
In this case 8 is equal to p1 — pp, and the contours of equal posterior probability are lines that are
orthogonal to the difference vector between the means of the two classes (see Figure 7.7(a)).

We obtain equal values of posterior probability for the two classes when z = 0 (because the
logistic function in Eq. (7.9) evaluates to 0.5 when z = 0). To interpret this result geometrically,
consider first the case in which the prior probabilities 7 and 1 — 7 are equal. In this case the term

log(n/(1 — 7)) vanishes and we can rewrite z as follows:

z=ou—uwT(w—9@§ﬁQ). (7.10)

This is equal to zero for vectors z whose projection on (u; — pp) is equal to the arithmetic average
of the two class means. Thus the posterior probabilities for the two classes are equal when z is
equidistant from the two means. This corresponds to the solid line in Figure 7.7(a).

The prior probability = enters via the log odds ratio log(n/(1 —7)). This effect of this term can
be interpreted as a shift along the abscissa in Figure 7.6. For values of 7 larger than 0.5 we obtain
a shift to the left, which, for a given point in the feature space, corresponds to a larger value of the
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Figure 7.7: (a) The dashed lines and the solid line are contours of equal posterior probability. Note
that they are orthogonal to the dotted line connecting the two mean vectors. (b) When o) # o9,
the contours of equal posterior probability are still lines, but they are no longer orthogonal to the
difference between the mean vectors.

posterior for class Y =1 (see Figure 7.8(a)). We obtain a shift to the right for 7 smaller than 0.5
(see Figure 7.8(b)).

Finally, let us consider the case of a general matrix 3. The contours of equal posterior prob-
ability are still lines in the feature space, but in general these lines are no longer orthogonal to
the difference vector between the means. If we define new features w via the equation w = X1z,
however, we obtain the orthogonal geometry of Figure 7.7(a) in the w feature space, which implies
an affine geometry in the original feature space. Figure 7.7(b) is an example of this case. Note
that the set of vectors that have equal posterior probability for the two classes—the solid line in
the figure—are no longer equidistant from the two class means.!

As in Chapter 6 it is common to suppress the difference between linear and affine functions to
simplify our notation. Thus we augment the vector z to include a first component that is equal to
1, and define the augmented parameter vector 6 = (y — log(m/(1 — 7)), 7). Using this notation,
we can summarize the results of this section as follows: for Gaussian class-conditional densities,
the posterior probability takes the form:

1

P(Y:1|$79):m

(7.11)
where the parameter vector 6 is a function of the means py, the covariance matrix 3, and the prior
probability .

In summary, we have found that the posterior probability for Gaussian class-conditional den-
sities is the logistic function of a linear function of a feature vector z. We thus have obtained a

!We can redefine the distance metric, however, basing it on the matrix ¥ ~*. In this case the points on the solid
line are equidistant from the class means. This metric is known as Mahalanobis distance; see Exercise 77 for more
details.
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Figure 7.8: The class Y = 1 is the upper rightmost of the two Gaussians. (a) When the prior
7 is greater than 0.5, the contours are shifted to the left, corresponding to a greater posterior
probability of Y =1 for a given point in the feature space. (b) When the prior 7 is less than 0.5,
the contours are shifted to the right.

linear classifier—contours of equal posterior probability are lines in the feature space. Inspecting
the derivation that yielded this result, we see that the key assumption is that the covariance matrix
is the same in the two classes; this leads to a cancellation of the quadratic /X ~'z term in the
numerator and denominator of the posterior probability. If we retract this assumption and allow
different covariance matrices for the two classes, we still obtain a logistic form for the posterior
probability, but the argument to the logistic function is now quadratic in z. The corresponding
classifier, which has quadratic contours of equal posterior probability, is referred to as a quadratic
classifier.

Maximum likelihood estimates

In this section we show how to obtain maximum likelihood parameter estimates based on a training
set D composed of N observations: D = {(z,,yn);n = 1,...,N}. This problem has a straightfor-
ward solution that makes use of our work on density estimation in Chapter 5. Reasoning intuitively,
suppose that we split the training data into two subsets, one in which y, = 0 and the other in
which y, = 1. To estimate m we calculate the proportion of the data in the subset corresponding to
yn = 1; this is the maximum likelihood estimate of 7. Moreover, we obtain separate maximum like-
lihood estimates of the Gaussian parameters for each of the two classes, pooling the estimates of the
variances to take account of the fact that o; is the same in the two classes. This intuitively-defined
solution is in fact the overall maximum likelihood solution, as we now verify.

We first form the log likelihood:

N

101D) = logS [[pwnlm) []p(@n | yn.0)) (7.12)
n=1 j=1
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N N m
= Y logp(yn ™) + D> logp(@in | yn, 0;), (7.13)
n=1

n=1 j=1

where we see that we obtain two separate terms, one for the marginal distribution of Y and the
other for the conditional distribution of X; given Y. Maximizing with respect to 7 involves only
the former term, and for m we therefore obtain:

N
Ty = arg maxz log p(yn, | ) (7.14)
n=1
N
= arg maxz {ynlogm+ (1 — y,)log(l —m)}, (7.15)
n=1

where the latter equation uses Eq. (7.1). As we have seen in Chapter 5 (cf. Eq. (5.37)), the solution
to this constrained optimization problem is the sample proportion:

N
X Don=1Y
TpL = %; (7.16)
where the numerator Zﬁ;l Yn, 18 the count of the number of times that the class Y = 1 is observed.
Maximization with respect to the parameters ¢; involves only the second term in Eq. (7.13),

which we expand further as:

N m
Z Z logp(xj,n

ynugj)
n=1j=1

N m

= > Y log {p(@jn | yn = L, tj1,05)"" p(xjn | yn = 0, 1o, 05) 70" } (7.17)
n=1j=1
m N N

= > {Zyn 10g (i | yn = 1, pij1,05) + > (1 = yn) log (i | yn = OanOan)} (7.18)
j=1 \n=1 n=1

Each term in the brackets depends on only one of the parameter vectors 8; = (ujo, ft51,0;). Thus
the problem decomposes into m separate optimization problems, one for each j.

Let us first consider the estimation of ;1. Plugging in from Eq. (7.3) for p(z;, | yn = 1, 1j1,05),
and dropping constants, we have:

N
1 2
1 = —= in — M1 . 7.19
fij1,nr = arg rﬂ?lx{ 5 ;yn(wg,n 1) } (7.19)
This is a weighted least-squares problem, where the “weights” are the binary values y,. Taking the

derivative and setting to zero, we obtain:

N .
Ln=1 YnTin. (7.20)

foj1, ML = ~
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Thus the maximum likelihood estimate is the sample average of the values z; ,, for those data points
in class Y = 1. Similarly, for fi;o we obtain:

27]2[:1(1 — Yn)Tjn
= , (7.21)
which is the average of the x;, for those data points in class ¥ = 0.

Finally, as we ask the reader to verify in Exercise 7?7, maximization with respect to the variance
032- yields:

fjo,mL =

O ML =

N ~ N ~
~2 En:1 yn(xj,n - Hjl,ML)Z + anl(l - yn)(l’j,n - HJO:ML)Z. (7 22)
N ’ ’
a pooled estimate of the variance.

Multiway classification

In this section we consider the generalization to multiway classification, in which the class label Y
can take on one of K values.
Let Y be a multinomial random variable with components Y* and parameter vector w. By

definition we have:
e =p(Y* =1|n). (7.23)

For each of the K values of Y, define a Gaussian class-conditional density:

pla] YF = 1,0) = Wexp{—éw ) —m}, (7.24)

where iy, is the mean associated with the kth class and ¥ is a covariance matrix, assumed constant
across the K classes. If 3 is diagonal, then the components of X are conditionally independent
given the class label Y and the appropriate graphical model is given by Figure 7.4(a). For general

¥, we represent our model as Figure 7.4(c).
The posterior probability of class k is obtained via Bayes rule:

plz|Y*=1,0)p(Y* =1]m)

. 2
PO = S e VT = Lop(y = 1]m) "
_mrexp{—z(@ — ) 'S (@ — )} (7.26)
2T exp{—%(«’lf — )" (@ — )}
explid £ — Sy +logme) (r.27)

Sorexp{pf St — Jul S + log m}

where the cancellation of the quadratic z/ X'z terms again leaves us with exponents that are
linear in . Defining parameter vectors Sg:

—ul'S= 1y + logw
B & | THRE K TR (7.28)
275
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Figure 7.9: Contours of the softmax function. Each line is obtained by setting ¢x(z) = ¢;(z) for
k # 1. Such a line is a contour of equal posterior probability for classes k£ and [.

and again simplifying our result by augmenting the vector x to include a first component equal to

one, we have:
B

2 efle’

The function ¢ (2) = e®* />, € is a smooth function known as the softmaz function.

The softmax function is a generalization of the logistic function and it has a similar geomet-
ric interpretation. Indeed we can transfer much of our earlier work to the multiway setting by
considering the ratios of posterior probabilities between pairs of classes. In taking the ratio of
p(Y¥ = 1|z,0) and p(Y' = 1|z,0), for k # [, the denominator in the softmax function cancels
and we obtain an exponential with exponent (8 — ;)" . This again involves a projection and
thus contours of equal pairwise probability are again lines in the feature space (see Figure 7.9).
Moreover, the prior probabilities 7 again take the form of log odds and act as additive constants
in the exponential.

When ¥ = o, we see from Eq. (7.28) that S is proportional to py, and thus the contours of
equal probability are again orthogonal to the differences between the class means. For general X
we obtain the same orthogonal geometry for the transformed coordinates w = X'z, which implies
an affine geometry for the features .

The calculation of maximum likelihood estimates for the multiway Gaussian classifier is straight-
forward and we we ask the reader to carry out the calculation in Exercise ??7. The results can be
summarized as follows: We again divide the data into subsets corresponding to the different values
of Y. Separate maximum likelihood estimates of the Gaussian parameters are obtained for each
class, and the covariance estimates are pooled. Moreover, the maximum likelihood estimates of
are the proportions of data falling into the K classes.

The classifier that we have presented in this section is again a linear classifier. The linearity

p(YF=1]z,0) = (7.29)
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again arises from the Gaussian assumption for the class-conditional densities, together with the
assumption of a constant covariance matrix.

7.2.2 The naive Bayes classifier

We now turn to the setting of discrete features, in which each feature X; can take on one of K
values. In this setting the graphical model shown in Figure 7.4(a) is often referred to as the “naive
Bayes classifier.” We discuss the naive Bayes classifier in this section, calculating the posterior
probability and maximum likelihood parameter estimates.

Much of the work in the previous section carries over to the discrete setting. In particular, the
joint probability remains the same as before:

m

p(z,y0) = y|er (z; |y, 0; (7.30)

We again let Y be a multinomial random variable with components Y*, defining the probability
vector 7, where:

e 2 p(YF =1|n). (7.31)
Finally, treating the variables X; as multinomial random variables with components X k, where
X Jk =1 for one and only one value of k, we write the class-conditional densities as follows:

. zk
p($17$27"'7xm|YZ:1777) :HHnZ’jjk;v (732)
7k

where 7;;; £ p(avé€ =1|Y* = 1,n) is the probability that the jth feature X; takes on its kth value,
for the ith value of the class label Y. Note that the product over k in Eq. (7.32) arises from the
definition of multinomial probabilities, and the product over j reflects the assumption that the
features are conditionally independent.

Posterior probability

Let us calculate the posterior probability for the naive Bayes classifier. We have:

¥
; m [1; [Tem; W
p(YZ =1 | Z, 7”) = J Y ok (733)
R Hj I1, 771]7;1C
~exp{logm + 32, 35, ¥ log ik } (7.34)
> expi{logm + Zj ok zf log i }
As in the Gaussian case, this is again a softmax function of a linear combination of the features.
We can express this result in the standardized form:

Sl

: 7.35
22 i 75

p(Yl = 1|$777) =
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with a bit of creativity in the definitions of z and 8. In particular, we redefine the vector = by
stacking the multinomial vectors z; vertically. Thus, the components of z are the values zf, where
the superscript k£ varies more rapidly than the subscript j. We also augment the resulting vector
to have a first component of one. Similarly, we define §; as a vector in which the doubly-indexed
components logn;j; are arranged, with ¢ fixed and k varying faster than j. We let the the first
component of 3; be equal to logm;. Given these definitions we obtain Eq. (7.35) as the posterior
probability for the naive Bayes model.

Although the feature space is a discrete hypercube in the naive Bayes setting, it is interesting
that the classifier is formally the same as the linear discriminant classifier, with log odds playing
the role that difference vectors played in the Gaussian case.

In the case of binary classification, we can divide numerator and denominator by the numerator
in Eq. (7.34) and obtain the logistic function of a linear function of the features:

1

Y:]_ =

(7.36)
for appropriate definitions of 6 and z.

Maximum likelihood estimates

Finally, let us calculate the maximum likelihood estimates of the parameters for the naive Bayes
classifier. We again assume that we have a training set D composed of N observations: D =

{(xnuyn);n =1,... 7N}'
From Eq. (7.30) we obtain the log likelihood:

1(0]D) = Zlogp Yn | ) +ZZlogp i | Yns 1), (7.37)

n=1 j=1

where for the purposes of this section we define z and y to be the vectors of all observations z; , and
Yn, respectively. The first term again decouples to yield separate maximum likelihood estimates of
7. Focusing on the second term, and recalling that the sum over k of the parameters n;;;, must
equal one, we introduce Lagrange multipliers );; and maximize:

i(n|D) £ ZZZanynlogm]HZZAm = nigr)- (7.38)

k

This yields:
ol % Y
=i, (7.39)
Nijk Nijk

Setting to zero and summing both sides with respect to k, we have:

Do (7.40)
k n
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= > > kol (7.41)
n k
= D v (7.42)

Finally, substituting back into Eq. (7.39), we obtain:

k i
~ n xj nYn
; ik,ML = _ y (743)
N >0 Y

in which the numerator is the number of observations in the ¢th class for which the the jth feature
takes on its kth value. The denominator normalizes this count by dividing by the number of
observations in the ¢th class.

7.2.3 The exponential family

For all of the generative classification models studied thus far, the posterior probability takes a
simple functional form—a logistic function for the binary problem and a softmax function in the
multiway problem. Moreover, for multinomial and Gaussian class-conditional densities (in the
latter case with equal, but otherwise arbitrary, class covariance matrices), the contours of equal
posterior probability are hyperplanes in the feature space. In fact, as we see in this section, these
results are not restricted to multinomial and Gaussian probabilities; but hold for a wide range of
class-conditional densities.

The exponential family of probability distributions is a large family that includes the multino-
mial and Gaussian distributions, as well as a number of other classical distributions such as the
binomial, the Poisson, the gamma and the Dirichlet. In Chapter 8 we provide a detailed discussion
of the exponential family; here we simply present the functional form of this family, and consider
using exponential family distributions as class-conditional densities for classification.

The exponential family is defined as follows:

p(z|n) = exp{n’ = — a(n)}h(), (7.44)

where 7 is a parameter vector. It is a useful exercise to verify that the distributions listed above
can all be put in this standard form, for appropriate definitions of the functions a(n) and h(z).
(We will carry out this exercise in Chapter 8).

Let us now consider a binary classification problem for a generic class-conditional density from
the exponential family. We assume that the densities for the two classes are the same, up to the
parameter vector 7. That is, we let the density for class Y = 1 be parameterized by 7; and let the
density for class Y = 0 be parameterized by 79. Let the prior probabilities be equal for simplicity.
We obtain the posterior probability from Bayes rule:

oY = 1|z = _ p(z If =LnpY = 1_|7f) _ (7.45)
pzY =1Ln)p(Y =1|m) +p(z|Y =0,7)p(Y =0]n)
exp{nl @ — a(n) 1h{z) + exp{it @ — alno) Hh(z) |




7.3. DISCRIMINATIVE MODELS 19

1
= TS exp(—(r — )Tz —alo) Fan)}’ (747)

Thus we find that the posterior probability is the logistic function of a linear function of z.
Similarly, for the multiway classification problem we have:

= _ p($|Yk = 1777k)p(Yk =1|n)
P =)z = Suplz| Y =1,m)p(Yt=1|m) (7.48)
__exp{ngz — alp) bh(z)
> exp{nlz — a(m) }h(z) (7.49)
__exp{nfz —a(n)}
— Yexp{nfz —a(m)}’ (7.50)

where again we have assumed equal class priors for simplicity. The result is the softmax function
of a linear function of z.

7.3 Discriminative models

In Section 7.2.3 we have seen that a wide range of class-conditional densities all yield the same
logistic-linear or softmax-linear form for the posterior probability. This invariance of the functional
form of the posterior probability to the specific choice of class-conditional density is good news,
because in practice it can be difficult to choose the class-conditional density. This problem is
particularly difficult in the case of a high-dimensional feature vector. Consider the Gaussian case.
The assumption of a diagonal covariance matrix—corresponding to conditional independence of
the features—is often unrealistic. We can allow arbitrary covariance matrices, but this requires
us to estimate O(m?) parameters, which may be prohibitive for large m. Often we would like
instead to consider families of covariance matrices that depend on more than m but fewer than
m? parameters. In some cases there is a natural ordering or grouping of the features (e.g., in the
case of time series data or spatial data) that yield natural definitions of such structured covariance
matrices. In many other cases, however, there is no obvious way to justify a particular form of
structured covariance matrix, and we are left with a choice between the (highly-biased) case of a
diagonal covariance matrix and the (highly-variable) case of a full covariance matrix. The fact,
however, that all of these choices yield the same linear form for the posterior probability suggests
that it may not be necessary to make such a choice. Moreover, the fact that densities other than
the Gaussian density yield the same linear classifier suggests that we may not even need to specify
the density.

In this section we discuss discriminative models. In discriminative modeling the posterior prob-
ability is modeled directly, quite apart from any considerations regarding class-conditional proba-
bilities. Instead of assuming Gaussian or multinomial class-conditional densities and deriving the
linearity of the classifier as a consequence, we instead assume linearity at the outset, by assum-
ing that z enters into the model via a linear combination #”z. To complete the model, we make
an additional assumption regarding the (nonlinear) function that maps from 67z to the posterior
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Figure 7.10: The graphical representation of a discriminative classification model.

probability. Taking a hint from the generative setting, we assume a logistic or softmax function at
the outset, but we will also explore other possibilities.

The main problem will be that of estimating the parameters of the resulting classifier. Given
that we no longer have underlying class-conditional densities, we cannot define the parameters of
the classifier in terms of underlying means, covariances, log probabilities or the like. Instead we
will have to find a way to estimate the parameters “directly.”

The graphical model that we study in this section is shown in Figure 7.10. Note that in this
figure we have treated the components of the feature vector X as separate nodes: X1, Xo,..., Xp,.
We have done this to emphasize the relationship—as well as the contrast—with the discussion of
the generative approach in the previous section. Note in particular that we are not assuming nor
implying conditional independence of the features. Indeed, in this section we make no assumptions
regarding the marginal probability p(z); our goal is only to model the conditional probability
p(y|x). This is of course the same setting as that of regression, and indeed the methods that we
discuss in this section are closely related to regression.

7.3.1 Logistic regression

We begin by considering the case of binary classification. The first model that we consider is logistic
regression, in which the conditional probability p(y |z) is modeled as a function (67 z), where ¢
is the logistic function. This functional form is of course suggested by the generative models in
Section 7.2.

The class label Y is a Bernoulli random variable, and the modeling problem is that of deter-
mining the probability that Y takes the value one for each input X. Note that this probability,
p(Y =1]|x), is the same as the conditional expectation:

E(ylz) = 1-p(Y =1]|2)+0-p(Y =0|2) (7.51)
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= p(Y =1|xz). (7.52)

Thus, as in the case of regression, the goal is that of modeling the conditional expectation of Y
given X. In the regression case, we added a Gaussian error term € to the conditional expectation.
This approach, however, is clearly inappropriate here given that Y can only take on the discrete
values zero and one. Instead, we define u(z) = p(Y = 1|z) and write the Bernoulli distribution in
the following way:
ply|z) = p(x)? (1 — p(@)' 7. (7.53)

This is the usual definition of the Bernoulli distribution; however, we still need to specify the
dependence of the Bernoulli parameter u(z) on x.

To complete the specification of the model, we assume that (1) the conditional expectation
depends on z via the inner product n(x) £ 6"z, where 6 is a parameter vector, and (2) the inner
product n(x) is converted to a probability scale via the logistic function. Thus we have:

u(z) !

A

as the probability model for the conditional expectation p(z) = p(Y =1|z,0).

Recall that in the current section we simply treat these assumptions as axiomatic—as an attempt
to model posterior probabilities in a simple parametric way independently of assumptions regarding
class-conditional densities. Figure 7.11 shows an example that helps to suggest the reasonableness
of this approach. In this figure it appears to be difficult to choose a model for the class-conditional
densities; in particular, a Gaussian assumption does not seem reasonable. It seems significantly
less problematic to choose a discriminative model in this case, and indeed the linear boundary
implied by the logistic regression model appears to be reasonable. Such examples are by no means
uncommon.

Some properties of the logistic function

In this section we collect together several results regarding the logistic function that will be of use
in the following section and in several later chapters.
Let us write the logistic function as a map from a variable ) to a variable u:

1
1+en
The logistic function is invertible; thus we can also obtain a map from p to n:

)= log (L) , (7.56)

I —p

p= (7.55)

which has the form of a log odds.
This inverse form simplifies the calculation of derivatives. In particular, we have:

dn d J
L= S .
dp dp Og(l—ﬂ> (757)

T oul—p) (759
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Figure 7.11: An example in which it is difficult to specify the class-conditional densities required
for a generative model, but where a linear discriminative boundary between the classes seems
reasonable.

from which we obtain:
dp
— = u(1 — p). 7.59
== (7.59)
This expresses the derivative of the logistic function as a function of . We can also use Eq. (7.55)
to obtain the derivative as a function of 7, but the form in Eq. (7.59) will prove to be more useful.

The likelihood

In this section we begin our discussion of maximum likelihood estimation of the parameters 8 based
on a training set D = {(zy,yn);n = 1,...,N}. As in our discussion of regression in Chapter 6, we
consider batch and on-line methods for parameter estimation.

Let 1, = 07z, and let p,, = 1/(14+e~") denote the corresponding value of the logistic function,
in accordance with our definitions in the previous section. Note that we have omitted the explicit
dependence of u, on z, to simplify our notation. Moreover, let 1 and p denote the vectors of these
values as we range across n; thus: 9 = (91,72,...,mn) and g = (g1, 42, .., 4N )-

To obtain the likelihood we take the product of N Bernoulli probabilities using Eq. (7.53):

Py, yn @1, oy, 0) = T s (1= i)' 7o, (7.60)
n
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Taking logarithms yields:

(0]D) = {ynlogpn + (1 — ya) log(l — pa)}, (7.61)

and it is this expression that we must maximize with respect to 6.2 Recall that p,, is a function of
0 whereas y, is not.
We calculate the gradient of the log likelihood:

Yn L —yn\ dun
Vol = E — — — Iy 7.62
’ n (Mn 1_Nn> dnnx ( )
Yn — Un
T (76

= Z(yn — Pn)Tn. (7.64)

n

It is interesting to note that this gradient has the same form as the gradient of the log likelihood
for linear regression (cf. Eq. (6.12)). In both cases we obtain a difference between y, and the
conditional expectation u,, multiplied by the input x,.

An on-line estimation algorithm

An on-line estimation algorithm can be obtained by dropping the summation sign and following
the stochastic gradient of the log likelihood. Let #) denote the value of the parameter vector at
the tth step of the algorithm. If (z,,v,) denotes the data point presented to the algorithm at the
tth step, we write:

(

where unt) 2 (0T g,) and where p is a step size.

Note that this on-line algorithm is identical in form to the LMS algorithm differing only in
the definition of the conditional expectation. To understand the (important) implications of the
difference, let us return to an issue that motivated our development of classification methods.
Recall in particular Figure 7?7, where we considered the effect on linear regression of adding the
point (1.5,1) to the training set. The linear fit is altered significantly by the addition of this point.
One way to see this is to note that the error, (y, — ,ug)), in the LMS algorithm is large; thus
the algorithm will make a large adjustment to the parameter vector (). For the on-line logistic

(t)

regression algorithm in Eq. (7.65), however, p,’ is near one, given that the logistic function is

(

evaluated in its rightmost tail. As suggested in Figure 7.12, the error, (y, — ,unt )), is therefore
essentially zero. Thus, as we see from Eq. (7.65), there is little change in the parameters. In
general, points that are already classified correctly do not affect the fit.

2The function in Eq. (7.61) is the cross-entropy function. See Appendix XXX for further discussion of the cross-
entropy in the context of information theory.
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Figure 7.12: (a) The fit of a logistic regression model to the data in Figure 7.1. (b) Adding the
point (1.5,1) to the data set does not change the fit (cf. Figure 7.2).

The iteratively reweighted least squares (IRLS) algorithm

To obtain a batch algorithm we could restore the summation sign in Eq. (7.64) and follow the
steepest descent direction, but as in the linear regression case this algorithm has little to recommend
it. We instead describe an algorithm, known as the iteratively reweighted least squares (IRLS)
algorithm, that is closer in spirit to the direct solution of the normal equations.

The IRLS algorithm is a Newton-Raphson algorithm.? In preparation for deriving the algorithm,
let us note that the normal equations can also be viewed, somewhat perversely, from the point of
view of the Newton-Raphson algorithm.

Consider a function J(#) which is to be minimized with respect to 6. Recall (see Appendix XXX)
that the Newton-Raphson algorithm is an iterative algorithm that takes the following general form:

o+ = ) — g1y, (7.66)

where VyJ and H are the gradient vector and Hessian matrix of J(6) respectively (and both are
evaluated at 6(%)).

In the case of linear regression, the cost function, J = %(y - X0)T(y — X0), is a quadratic
function of 6. We calculated the gradient of J in Chapter 6, finding;:

VoJ = —XT(y — X0). (7.67)
Taking another derivative we obtain the Hessian:

H=-XxTXx. (7.68)

3This statement is not entirely accurate, but it is accurate enough for current purposes. See Chapter 8 for further
details.
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Thus we can apply the Newton-Raphson algorithm to the problem of minimizing J, obtaining:

o) = 9 1 (XxT X)X (y — x0W0) (7.69)
= (XTX)'x"y, (7.70)

where we see that the right-hand-side is the solution to the normal equations. Thus Newton-
Raphson hops to the solution in a single step, not a surprise given that J is a quadratic function.

In the logistic regression problem, the function to be optimized is the log likelihood, and this
function is not quadratic. Nonetheless it is “nearly” quadratic, and we should not be surprised to
see that Newton-Raphson for logistic regression has similarities to the linear regression solution.
Indeed, as we will see, the similarity is strong.

The function that we wish to optimize is the log likelihood shown in Eq. (7.61). We have already
calculated the gradient of the log likelihood in Eq. (7.64). Writing this result in vector notation,
we have:

Vol = Z(yn - Nn)xn = XT(y - U)a (771)

n

where we have defined p = (py, po, . .., un )’ . Taking a second derivative, we have:
dpin T
H = — zn: . (7.72)
= - Z fin (1 — Nn)xnzz (7.73)
n

= —XTWwWX, (7.74)

where we have defined the diagonal weight matrix:

W £ diag{p (1 — p1), p2(1 = p2), - v (1 = ) }, (7.75)

Note that the p, values depend on the parameter vector 6, thus the weight matrix W depends
on #. We thus will use the notation W to denote the weight matrix at the ¢th iteration of the
algorithm.

Substituting into Eq. (7.66), we obtain:

o+ = 90 L (XTWwOX) 1xT(y — pu®) (7.76)
= (xXTw®x)-L [XTW(“XH(“ +xT(y - W)] (7.77)
= XTwOx) 1xTw® 0, (7.78)
where we define:
20 =+ WOy — ). (7.79)

The algorithm in Eq. (7.78) is the IRLS algorithm.
Inspecting Eq. (7.78) makes it clear why the algorithm is known as the “iteratively reweighted
least squares” algorithm. Each iteration of the algorithm involves solving a weighted least-squares
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problem (recall Eq. (??)). Moreover, given that the weight matrix W changes at each iteration,
the least-squares problem is “iteratively reweighted.”

We can obtain some more insight into the IRLS algorithm, and in particular understand the
role played by z(®), if we view the Newton-Raphson algorithm as solving a sequence of linearized
problems.

Consider the following (heuristic) argument. For a particular value 0, and a particular vector x,,
let us linearize the logistic function around the “operating point,” 1, = 67z,. This linearization
allows us to convert the value y,, which is on a nonlinear scale, “backwards” to a value z, on
the linear scale defined by 7,. In paricular, recall that the logistic function can be inverted (cf.
Eq. (7.56)) to yield a map from p, to 7n,. Expanding this inverse function in a first-order Taylor
series, we define:

Dy ) (7.80)
diin n — Hn), .
where the derivative is evaluated at 7,,, and thus depends implicitly on the parameter vector 6.

This argument suggests using z, as a surrogate for y,, in a linearized version of our logistic
regression problem. We have another issue to deal with, however, if we wish to use linear regression
methods to find parameter estimates: the Bernoulli random variables y,, do not have equal variance.
In particular, y, has variance p,(1 — uy). To deal with this issue, we use weighted least squares.
In particular, note that the elements of the weighting matrix W defined in Eq. (7.75) are exactly
the Bernoulli variances. Thus we use W as our weight matrix.

We now solve a weighted least squares problem, with data z, and weight matrix W. Writing
the normal equations for this weighted least squares problem, and making the dependence on the
iteration number ¢ explicit, we obtain the IRLS iteration in Eq. (7.78).

The Newton-Raphson algorithm is a second-order algorithm and it generally converges rapidly.
A small number of iterations of Eq. (7.78) are usually sufficient to obtain convergence of the
parameter vector.

[>

Zp = "Mn +

7.3.2 Multiway classification

In this section we discuss a generalization of logistic regression to the setting of multiway classifi-
cation. Recall that in this case the class label Y can take on one of K values.
In Section 7.2.1 we derived the softmax-linear model:

T
eﬂk T

p(Y* =1|x,0) = (7.81)

> e

as the multiway generalization of the logistic-linear model. In that section, the softmax-linear form
for the posterior probability was a consequence of our assumption of Gaussian (or more generally,
exponential family) class-conditional probabilities. In the current section, however, we adopt a
discriminative perspective in which the softmax-linear form is treated as an assumption, and we
make no attempt to specify class-conditional probabilities. In this context, we refer to the model
in Eq. (7.81) as a softmaz regression model. As in the case of logistic regression, the main problem
that we face is estimating the parameters 6, “directly,” without making use of an underlying
class-conditional model.
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We use the notation % to denote the posterior probability in Eq. (7.81). We also use nf = 01z,
to denote the linear component of the softmax-linear model.

Some properties of the softmax function

The softmax function has several properties that are analogs of those of the logistic function that
we discussed in Section 7.3.1.

The softmax function can be written as a map from a vector variable n to a vector variable .
Letting 7 represent the ith component of 7 and letting x¢ represent the ith component of i, we
write: .

el
e
This function is invertible up to an additive constant. That is, if we add the constant C to each
of the components 7?, then the factor e“ cancels in the numerator and denominator of Eq. (7.82),
yielding the same value of u’. Note in particular that if we take the logarithm of both sides of
Eq. (7.82), we obtain the inverse:

o (7.82)

n' =log u’ + D, (7.83)

where D =log ), e is a constant. Any other constant (including zero) will yield an equivalent
inverse of the softmax function.

We turn to the calculation of the softmax derivatives. A subtlety in this case is that the
derivative of y1; with respect to n; is non-zero for ¢ # j, due to the denominator in Eq. (7.82). The
calculation proceeds as follows:

% _ (Zk enk)em 5ij —eliel (7 84)
an; (>pem)? '
eni enj
- s (s (759

where d;; is equal to one if 4 = j and zero otherwise.

Maximum likelihood estimation

In the multiway classification problem the output Y is a multinomial random variable. Recalling
that in softmax regression uf denotes the posterior probability of the kth class for the nth data
point, we can write the multinomial probability distribution in the following form:

plonlea0) =TT (1) (787
k

where 6 £ (pL, p2,. .., n5)7T is the multinomial parameter vector. The likelihood is the product of
N such probabilities. Taking the logarithm, we obtain:

WO1D) =D ynlog (7.88)
n k
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as the log likelihood for the multiway classification problem. As in the binary case, this log likelihood
has the form of a cross-entropy.

To calculate the gradient of the log likelihood with respect to the parameter vector 6;, we make
use of the intermediate variable 7%, = 8'z,,. Recalling that the derivative of pk with respect to 7’
is nonzero because of the shared denominator in the softmax function, we have:

ol Ouk dnt,
Vol = ZZW o b, (7.89)

= Zzykun — 1) T (7.90)

= ZZyn (O3 — pb)n, (7.91)
n k

= D (i — 1), (7.92)

n

where we have used the fact that >, yk = 1.

The gradient that we have obtained has the same form as the gradient for logistic regression
and linear regression! (Recall Eq. (7.64) and Eq. (6.21)). We will see in Chapter 8 that this result
is not a coincidence, but reflects a general property of probability distributions in the exponential
family.

As in the case of logistic regression and linear regression, we obtain an on-line parameter
estimation algorithm by dropping the sum over n in Eq. (7.92). This algorithm is the analog of the
LMS algorithm for multiway classification.

It is straightforward to generalize the IRLS algorithm and thereby obtain a batch algorithm
for softmax regression. Rather than pursuing that generalization here, we return to the IRLS
algorithm in Chapter 8, where we develop a generic IRLS algorithm for the family of generalized
linear models, of which softmax regression and logistic regression are examples.

7.3.3 Probit regression

In this section and the remainder of the chapter, we return to binary classification and consider
some alternatives to logistic regression.

Although the logistic regression model arises naturally from a generative perspective—as the
posterior probability obtained from a wide class of class-conditional probabilities—there are other
choices of class-conditional probabilities that do not yield the logistic-linear form for the posterior
probability. Thus, even from a generative point of view there is some motivation for exploring
alternative representations for the posterior probability. In this section we engage in such an
exploration within the discriminative framework, motivating alternative models “directly,” without
reference to class-conditional distributions. For simplicity we retain the linearity assumption, and
motivate functions other than the logistic function for converting the linear combination 8z to a
probability scale.
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One natural way to obtain a discriminative classification model is to consider “noisy threshold”
models. In particular, we might suppose that a data pair (z,y) is obtained by a process in which
some external agent converts the vector = to a scalar value 7, defined as a linear combination
6Tz, and compares the resulting value to a threshold. If the value exceeds the threshold, then the
label 1 is assigned, otherwise the label 0 is assigned. A probabilistic version of this model can be
obtained by assuming that the threshold is stochastic. Thus, let Z be a scalar random variable
with a cumulative distribution function F'(z). We define:

p(Y =1lz) =p(Z <n) = F(n). (7.93)

Making the further assumption that 7 is parameterized linearly, as n = #7z, we obtain a discrimi-
native classification model:

p(Y =1|z,0) = F(0"z), (7.94)

for a given distribution function F.

The logistic regression model can be interpreted as a special case of this model, given that the
logistic function, 1/(1 + exp(—z)), is a distribution function. There is no particular reason to use
a logistic random variable as the noisy threshold model, however. Indeed, given that many natural
sources of “noise” have a Gaussian distribution, a common choice is to take Z to be a Gaussian
random variable. This choice yields the probit regression model. Thus, in the probit model we have:

p(Y =1|xz,0) = 20 z), (7.95)
where
O(w) :/_ We—%?dg (7.96)

is the cumulative distribution function of a Gaussian random variable with zero mean and unit
variance.*

Figure 7.13 shows a graphical model representation of the probit regression model. In this
representation, the threshold variable Z is represented as an explicit latent variable. The graphical
model requires a marginal distribution for Z, which in the probit model we take as N'(0,1), and a
conditional distribution for Y, given X and Z. This conditional is a degenerate distribution: Y is
equal to zero if 67z is less than Z, and one otherwise.

Figure 7.14 shows a plot of the logistic function and the Gaussian cumulative distribution
function. As this plot makes clear, there is not a large difference between the two functions, and
indeed probit regression and logistic regression generally give rather similar results.

Probit regression is an instance of the family of generalized linear models that we describe in
Chapter 8. Maximum likelihood estimates can be obtained via stochastic gradient descent or the
general version of the IRLS algorithm that we present in that chapter.

“The assumption of zero mean and unit variance is without loss of generality, because any linear transformation
of the features can be absorbed in the parameter vector 6.
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A

Figure 7.13: A graphical model representation of the probit regression model.

o(2)

Figure 7.14: Link functions for binary classification. The solid curve is the logistic function
(Eq. 7.55), the long-dashed curve is the cumulative Gaussian function (Eq. 7.96), and the small-
dashed curve is the complementary log-log function (the inverse of Eq. 7.105).
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Figure 7.15: A graphical model representation of the noisy-OR model.

7.3.4 The noisy-OR model

A wide range of models can be obtained as “noisy” versions of formulas from propositional logic,
in the setting in which the features X; are binary. In this section we describe an example of this
class of models known as the noisy-OR model. As with the other models discussed in this chapter
the noisy-OR model is a linear classifier.

Let us begin with the Boolean formula:

Y=XiVXoV- VX, (7.97)

where X; € {0,1}, for all i. To obtain a “noisy” version of the formula, let us view each variable X;
as encoding a binary “trigger” that can “cause” Y to occur. Eq. (7.97) states that the presence of
any single trigger suffices to cause Y to occur. Suppose now that each trigger can “fail” with some
probability &;, in that the trigger can be present, but can fail to cause the occurrence of Y. Suppose
moreover that the failure probabilities associated with the different triggers are independent. Thus,
introducing independent binary random variables Z; to represent the failure events, we have:

o { 1 (X1 A=Z1) V(KXo A=Za) -V (X A= Zpy) (7.98)

0 otherwise.

The graphical model representing this noisy version of the logical OR formula is shown in Fig-
ure 7.15.

If we let & 2 p(z; = 1) denote the Bernoulli parameters associated with the Z;, we obtain from
Eq. (7.98):

p(Y =0]x,¢) = [[{plzi = D} =[] & (7.99)
=1 =1
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This formula can be interpreted as stating that the probability of Y not occurring is the product
of the (independent) failure probabilities associated with those features z; that are present in the
input. That is, if all triggers fail, then Y doesn’t occur.

To express the noisy-OR model in a linear form, let us rewrite Eq. (7.99):

p(Y =0|z,&) =exp {in log gi} . (7.100)
=1

Letting §; & —log&;, we obtain our final result:

T

p(Y =1|z,0)=1-e0" (7.101)

for the posterior probability for the noisy-OR model.

7.3.5 Other exponential models

A number of useful classification models are based on the Poisson distribution. Recall that Z is a
Poisson random variable with parameter X if:

Nee A

z!

p(z|A) = : (7.102)

where 2z ranges over the nonnegative integers. Poisson variables arise in many contexts, in particular
as models of counts of rarely occurring, independent events. For example, in a well-stirred solution
that contains a small amount of a virus, the amount of virus in any sample might be a Poisson
variable with parameter proportional to the volume of the sample. In such situations, it is often of
interest to distinguish between the case in which Z takes on the value zero and the case in which
Z takes on a non-zero value. (For example, a model of transmission of viral disease would want
to distinguish the case that a sample of the solution contained no viral cells). Defining a binary
variable Y that is equal to one in the latter case, we have:

pY =1)=1-p(Z=0)=1—-e¢", (7.103)

from Eq. (7.102). If we treat the parameter A as a linear function of a set of input variables z, we
obtain a classification model:

p(Y =1]z,0) =1—¢"2 (7.104)
This model is identical in form to the noisy-OR model, although the vector z is no longer restricted
to be a binary vector.

An awkward aspect of the model in Eq. (7.104) is that the linear combination #7'z must be
restricted to lie between zero and infinity if we are to obtain a posterior probability that lies
between zero and one. To remove this restriction, it is convenient to reparameterize the model so
that the argument A is the exponential function of some underlying variable . We obtain a linear
classification model if we assume that the underlying variable 7 is linear in x:

T

p(Y =1]z,0)=1—¢"* (7.105)
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An appealing feature of this model is that there are no longer any restrictions on #. In fact, in
situations involving Poisson variables it is often natural to measure the effect of the variables z on a
logarithmic scale. In particular, in the example of the viral solution,  might measure the fraction
of some diluting agent in the solution.

The model in Eq. (7.105) is referred to as the complementary log-log model. (The terminology
refers to the inverse of the nonlinear function in Eq. (7.105)). Figure 7.14 includes a plot of the
nonlinearity in this model. Note again the similarity to the logistic function.

7.4 Summary

We have presented a number of simple probabilistic models for discrete variables within the frame-
work of binary and multiway classification problems. We discussed generative models, in which
the discrete variable is a parent of the feature variables. We also discussed discriminative models,
in which the discrete variable is a child of the feature variables. We also focused on some of the
relationships between generative and discriminative models.

Maximum likelihood estimates are readily obtained in both cases. In the case of a generative
model, maximum likelihood estimation essentially reduces to density estimation. That is, we find
estimates of the class-conditional densities separately for each of the classes. In the discriminative
setting, we model the class label as a Bernoulli or multinomial variable, which yields a cross entropy
for the log likelihood. The IRLS algorithm can be used to maximize this log likelihood in the batch
setting. We also presented a stochastic gradient algorithm for the on-line setting, noting the close
relationship to the LMS algorithm.

All of the models that we have presented in this chapter are linear classifiers. That is, in all
cases the input variable 2 enters into the model via a linear combination n = §7z. In the generative
setting this linear form was a consequence of the particular kinds of class-conditional densities that
we assumed. In the discriminative setting we assumed the linear form at the outset.

Generative and discriminative models have complementary strengths and weaknesses. The
generative approach allows knowledge about class-conditional densities to be exploited. If this
knowledge is indeed reflective of the true data-generation process, then the generative approach
can be more efficient than a corresponding discriminative model, in the sense that it will tend to
require fewer data points. On the other hand, discriminative approaches tend to be more robust
than generative approaches, making use of weaker assumptions regarding class-conditional densities.
Note also that the discriminative framework presents a straightforward “upgrade path” toward the
development of nonlinear classifiers—we can retain the logistic and softmax functions, but replace
the linear combination 7 = #7z with a nonlinear function (see Chapter 25).

7.5 Historical remarks and bibliography



