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Chapter 7Linear 
lassi�
ationIn this 
hapter we 
ontinue our dis
ussion of elementary building blo
ks for graphi
al models,treating the 
ase of a dis
rete node taking on a �nite number of values. As in Chapter 6, ourinterest is in the 
onditional relationship between the node Y and a ve
tor of explanatory variablesX. We explore a number of possible representations for the 
onditional probability p(y jx).What form should our model of p(y jx) take in the 
ase of dis
rete Y ? If X is also dis
rete, thenwe might 
onsider models in whi
h all possible 
ombinations of X and Y are represented in a table.We will indeed 
onsider su
h a model in this 
hapter; however, it is important to keep in mind thatthe size of su
h a table is exponential in the number of 
omponents of X, and we would like todevelop models to handle the (
ommonpla
e) situation in whi
h this number is large. Moreover, wewish to develop tools that allow for 
ontinuous-valued X. In either 
ase a natural �rst step is to tryand mimi
 what we did with regression, exploiting the simpli
ity and mathemati
al 
onvenien
eof linearity assumptions. It is un
lear, however, how to represent the 
onditional expe
tation ofY|a number between zero and one for Bernoulli and multinomial variables|within the frameworkof a linear model. Some sort of nonlinearity seems to be needed, but whi
h nonlinearity? Doesintrodu
ing su
h a nonlinearity leave us with any role for linearity?One way to help organize our thinking on these issues is to re
all that we have already seenproblems involving dis
rete Y in Chapter 5. In parti
ular, in our dis
ussion of 
lassi�
ation modelsin that 
hapter, we found it useful to explore the relationship between two kinds of models: dis-
riminative models|in whi
h Y is the 
hild of X|and generative models|in whi
h Y is the parentof X. While the former approa
h represents p(y jx) expli
itly, the latter approa
h makes use ofBayes rule to represent the posterior probability p(y jx) impli
itly, in terms of the 
lass-
onditionalprobability p(x j y) and the prior p(y). Thus we 
an begin to get ideas for representations of p(y jx)by studying generative models in whi
h Y is a parent of X, and using Bayes rule to invert themodel and thereby 
al
ulate the 
orresponding posterior probability p(y jx). This approa
h willallow us to a
hieve some of the goals that we alluded to above|it will suggest a 
ertain basi
mathemati
al stru
ture in whi
h linearity plays a role, and it will 
ope with both dis
rete-valuedand 
ontinuous-valued X. Moreover, it will suggest a natural \upgrade path" to more 
omplexmodels.In this 
hapter we retain our assumption from the previous 
hapter that both X and Y are3



4 CHAPTER 7. LINEAR CLASSIFICATIONobserved in our data set. We 
ast our presentation within the 
ontext of 
lassi�
ation, where asbefore we refer to Y and X as the \
lass label" and the \feature ve
tor," respe
tively. We will�ll in some of the details that were glossed over in Chapter 5 regarding the parameterization andestimation of generative and dis
riminative approa
hes to the 
lassi�
ation problem. We presentmaximum likelihood methods for parameter estimation in both frameworks.While we pla
e our a
tivity in this 
hapter within the framework of 
lassi�
ation, it is worthnoting that there are aspe
ts of 
lassi�
ation problems that fall beyond the s
ope of our dis
ussion.In parti
ular, our goal in this 
hapter is that of obtaining a model of the 
onditional probabilityp(y jx). While p(y jx) is a desirable quantity to model in a 
lassi�
ation setting, it is also true that
lassi�
ation involves something more than evaluating a probability|in parti
ular, 
lassi�
ationinvolves making a de
ision. We 
an threshold the probability distribution p(y jx) to obtain ade
ision, but this is only one possible way to use this probability; perhaps there are others. Indeed,perhaps there are some de
isions whi
h are in some sense more 
ostly than others; our thresholdings
heme should be sensitive to su
h 
osts. Moreover, we 
an imagine 
lassi�
ation algorithms thatdo not make use of posterior probability p(y jx) at all; rather they go dire
tly from a data set toa de
ision rule. Evaluating these alternatives appropriately requires the mathemati
al frameworkof de
ision theory. In parti
ular a de
ision-theoreti
 approa
h to 
lassi�
ation allows us to spe
ify
osts asso
iated with de
isions and to evaluate alternative approa
hes to forming de
ision rules.We will return to these issues in Chapter 27, where we present a full treatment of de
ision theoryin the graphi
al model setting. In that dis
ussion we will in fa
t show that a reasonable �rst stepin 
lassi�
ation problems is to obtain a model of the 
onditional probability p(y jx).It is also worth noting that there is a 
ip side to this 
oin|there are problems other than
lassi�
ation problems for whi
h the methods of this 
hapter are useful. In parti
ular in Chapter 10we dis
uss models that are stru
turally identi
al to the models in this 
hapter, but for whi
h Y isno longer assumed to be observed; that is, for whi
h Y is a latent variable. The results that weobtain here will play an important role in that 
hapter.7.1 Linear regression and linear 
lassi�
ationA dis
rete-valued node 
an be viewed as a spe
ial 
ase of a real-valued node, and this leads oneto wonder why we need a separate treatment of dis
rete nodes. In parti
ular, why not use theregression methods that we developed in Chapter 6 to solve 
lassi�
ation problems?To see some of the problems that arise if we pursue this approa
h, 
onsider the simple 
ase ofa binary 
lassi�
ation problem with a s
alar-valued feature variable X. Let us represent the 
lasslabel with a real-valued variable Y , with Y = 0 and Y = 1 representing the two 
lasses. Figure 7.1presents an example of su
h a problem, with the data pairs (xn; yn) represented as points in theplane. The linear regression �t to these data is also shown in the �gure. Note that even thoughthe data fyng are restri
ted to the values zero and one, the �tted line is not restri
ted to thesevalues. How are we to interpret this line? In Chapter 6 we showed that the linear regression �tis a 
onditional mean|the expe
ted value of Y 
onditioned on the observed value of X. For anindi
ator random variable Y the expe
ted value is the same as the probability that the variabletakes on the value 1. The fa
t that the �tted line in Figure 7.1 strays outside of the range (0; 1)
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lassi�
ation problem. The abs
issa represents the one-dimensionalfeature ve
tor x, and the ordinate represents the binary 
lass label y, with 0 and 1 representing thetwo 
lasses. Also shown is the least squares linear regression �t.makes it diÆ
ult to sustain su
h an interpretation, however, in the setting of binary output data.Even more serious problems arise when we 
onsider in more detail how the regression �t dependson the data. Suppose in parti
ular that we add the point (1:5; 1) to the data set (see Figure 7.2).The earlier �t (Figure 7.1) yields a �tted value of 2:01 at x = 1:5, suggesting, under any reasonableinterpretation of this value (e.g., thresholding), that the predi
ted 
lass label at x = 1:5 shouldbe 1. This 
orre
tly predi
ts the 
lass of the new data point, suggesting that the parameters 
analready a

ommodate the new data point and need not be 
hanged. Re�tting the linear regression,however, 
hanges the slope parameter from 1:55 to 1:23 and the inter
ept parameter from �0:32to �0:17 (see Figure 7.2). Moreover, taking the value at whi
h the �t equals 0.5 as the boundarybetween the two 
lasses, this boundary 
hanges signi�
antly after the introdu
tion of the new datapoint, leading to 
hanges in the 
lassi�
ation of some of the points near the boundary. If we addfour additional data points at x = 1:5 the boundary moves even further, as shown in Figure 7.2.Given that these new data points are predi
ted 
orre
tly by the original �t, and are far from theboundary, this behavior is dis
on
erting.The assumptions underlying linear regression are 
learly not met in the 
lassi�
ation setting; inparti
ular, the assumption that the variable Y is Gaussian is 
learly false. This mismat
h betweenthe assumptions and the data is responsible for the problems that we have identi�ed. On
e we havemade probabilisti
 assumptions that are appropriate for the 
lassi�
ation setting|in parti
ularon
e we have dis
arded the Gaussian assumption|we will obtain 
lassi�
ation models in whi
h the�tted values behave in an intuitively reasonable manner.As in Chapter 6 we fo
us on linear models throughout the 
urrent 
hapter. The notion of



6 CHAPTER 7. LINEAR CLASSIFICATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

xFigure 7.2: Three least squares regression �ts. The solid line is the same �t as shown in Figure 7.1,the dash-dot line is the �t to the data with one additional point at (1.5,1), and the dashed line isthe �t to the data with �ve additional points at (1.5,1).\linearity" in the 
urrent 
hapter is, however, di�erent from that in Chapter 6. We postpone themathemati
al details until later se
tions, where in fa
t we will �nd that di�erent 
lassi�
ationmodels invoke the linearity assumption in somewhat di�erent ways. All of the 
lassi�
ation modelsthat we study, however, 
an be viewed as providing a partitioning of the feature spa
e into regions
orresponding to the 
lass labels. For linear models the boundaries between these regions arehyperplanes (see Figure 7.3).7.2 Generative modelsFigure 7.4 presents three graphi
al representations of generative 
lassi�
ation models. In all three
ases the 
lass label node Y is the parent of the feature ve
tor X = (X1;X2; : : : ;Xm). In Fig-ure 7.4(a), the 
omponent features are treated as separate nodes; in this 
ase, the 
hildren Xj areassumed to be 
onditionally independent given Y , as 
on�rmed by the d-separation properties of thegraph. This is a simplifying assumption that provides a starting point for our presentation and willbe our fo
us through most of this se
tion. In Figure 7.4(b), we have an alternative model in whi
hthe 
omponents of the feature ve
tor are interdependent, with spe
i�
 
onditional independen
iesassumed to hold among spe
i�
 sets of features. In this model general graphi
al model ma
hinerymust be invoked both to parameterize the 
lass-
onditional densities and to learn the values of theparameters. A

ordingly we will not treat this model expli
itly in this se
tion but will return to itin later 
hapters on
e the appropriate ma
hinery is in pla
e. Finally, in Figure 7.4(
), we have amodel in whi
h no spe
i�
 
onditional independen
ies are assumed among the 
omponents of the
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Figure 7.3: A binary 
lassi�
ation problem in a two-dimensional feature spa
e. The feature ve
torsin the training set are plotted as x's and o's for the two 
lasses. Based on the training set, a
lassi�er partitions the feature spa
e into de
ision regions, one region for ea
h 
lass. In the 
ase ofa linear 
lassi�er, the boundaries between these regions are hyperplanes.
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(c)Figure 7.4: Three examples of generative 
lassi�
ation models: (a) the 
ase of 
onditionally indepen-dent features, (b) the 
ase of dependent features with some 
onditional independen
e assumptions,and (
) the 
ase of no 
onditional independen
e assumptions.
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tor. In this 
ase we represent the feature ve
tor as a single node. This model, despite itssimple graphi
al appearan
e, is the most general model of the three. We will dis
uss an exampleof this model in this se
tion, where a Gaussian assumption for the 
lass-
onditional densities willallow us to obtain a simple model despite the absen
e of 
onditional independen
ies.In all of the examples that we dis
uss, our goal is twofold: to des
ribe the parametri
 represen-tation of the posterior probability p(y jx) for parti
ular models, and to present maximum likelihoodmethods for estimating the parameters of the model from data.7.2.1 Gaussian 
lass-
onditional densitiesWe begin by dis
ussing the model in Figure 7.4(a) in the setting in whi
h the features are 
ontinuousand endowed with Gaussian distributions. We initially treat the 
ase of binary 
lassi�
ation, inwhi
h the 
lass label Y 
an take on one of two values. The extension to multiple 
lasses is dis
ussedin Se
tion 7.2.1.The model in Figure 7.4(a) requires a marginal probability for Y and a 
onditional probabilityfor X given Y . Let Y 2 f0; 1g be a Bernoulli random variable with parameter �:p(y j�) = �y(1� �)1�y: (7.1)Given the 
onditional independen
e assumption expressed by the graph, the probability p(x j y)fa
tors into a produ
t over 
onditional probabilities p(xj j y). For Y = 0, let ea
h Xj have aGaussian distribution:p(xj jY = 0; �j) = 1(2��2j )1=2 exp(� 12�2j (xj � �0j)2) ; (7.2)where �0j is the jth 
omponent of the mean ve
tor for 
lass Y = 0. For Y = 1 we have:p(xj jY = 1; �j) = 1(2��2j )1=2 exp(� 12�2j (xj � �1j)2) : (7.3)Note that we use �j to denote all of the parameters for feature 
omponent xj, in
luding the means�0j and �1j , and the varian
e �2j . Note also that the varian
es �2j are allowed to vary a
ross feature
omponents xj, but are assumed to be 
onstant between the two 
lasses.Figure 7.5(a) presents an example of a 
ontour plot of two Gaussians in a two-dimensionalfeature spa
e for the 
ase in whi
h �20 = �21 . An example in whi
h the varian
es are unequal isshown in Figure 7.5(b).The joint probability asso
iated with the graph in Figure 7.4(a) is as follows:p(x; y j �) = p(y j�) mYj=1 p(xj j y; �j); (7.4)where � = (�; �1; �2; : : : ; �m).
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Figure 7.5: (a) A 
ontour plot of Gaussian 
lass-
onditional densities for �1 = 1 and �2 = 1. (b) A
ontour plot for Gaussian 
lass-
onditional densities when �1 = 0:5 and �2 = 2:0.Posterior probabilityLet us 
al
ulate the posterior probability p(Y = 1 jx; �). The algebra is somewhat simpli�ed if wework with matrix notation. Thus let:p(x j y = k; �) = 1(2�)1=2j�j1=2 exp��12(x� �k)T��1(x� �k)� ; (7.5)for ea
h of the two 
lasses k 2 f0; 1g, where �k , (�k1; �k2; : : : ; �km)T is the ve
tor of means forthe kth Gaussian, and where � , diag(�21 ; �22 ; : : : ; �2m) is a diagonal 
ovarian
e matrix. We have:p(Y = 1 jx; �) = p(x jY = 1; �)p(Y = 1 j�)p(x jY = 1; �)p(Y = 1 j�) + p(x jY = 0; �)p(Y = 0 j�)= � expf�12(x� �1)T��1(x� �1)g� expf�12(x� �1)T��1(x� �1)g+ (1� �) expf�12 (x� �0)T��1(x� �0)g= 11 + expf� log �1�� + 12 (x� �1)T��1(x� �1)� 12(x� �0)T��1(x� �0)g= 11 + expf�(�1 � �0)T��1x+ 12(�1 � �0)T��1(�1 + �0)� log �1��g (7.6)= 11 + expf��Tx� 
g (7.7)where the �nal equation de�nes parameters � and 
:� , ��1(�1 � �0) 
 , �12(�1 � �0)T��1(�1 + �0) + log �1� � : (7.8)
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Figure 7.6: A plot of the logisti
 fun
tion.We see that the posterior probability that Y = 1 takes the form:�(z) , 11 + e�z ; (7.9)where z = �Tx + 
 is an aÆne fun
tion of x. The fun
tion �(z) is a smooth, sigmoid-shapedfun
tion known as the logisti
 fun
tion (see Figure 7.6).The fa
t that the feature ve
tor x enters into the posterior probability via an aÆne fun
tionhas an important geometri
 interpretation; in parti
ular, this implies that the 
ontours of equalposterior probability are lines in the feature spa
e. That is, the term �Tx is proportional to theproje
tion of x on �, and this proje
tion is equal for all ve
tors x that lie along a line orthogonalto �. Consider in parti
ular the 
ase in whi
h the varian
es �2j are equal to one; thus let � = I.In this 
ase � is equal to �1��0, and the 
ontours of equal posterior probability are lines that areorthogonal to the di�eren
e ve
tor between the means of the two 
lasses (see Figure 7.7(a)).We obtain equal values of posterior probability for the two 
lasses when z = 0 (be
ause thelogisti
 fun
tion in Eq. (7.9) evaluates to 0.5 when z = 0). To interpret this result geometri
ally,
onsider �rst the 
ase in whi
h the prior probabilities � and 1� � are equal. In this 
ase the termlog(�=(1 � �)) vanishes and we 
an rewrite z as follows:z = (�1 � �0)T �x� (�1 + �0)2 � : (7.10)This is equal to zero for ve
tors x whose proje
tion on (�1 ��0) is equal to the arithmeti
 averageof the two 
lass means. Thus the posterior probabilities for the two 
lasses are equal when x isequidistant from the two means. This 
orresponds to the solid line in Figure 7.7(a).The prior probability � enters via the log odds ratio log(�=(1��)). This e�e
t of this term 
anbe interpreted as a shift along the abs
issa in Figure 7.6. For values of � larger than 0:5 we obtaina shift to the left, whi
h, for a given point in the feature spa
e, 
orresponds to a larger value of the
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(b)Figure 7.7: (a) The dashed lines and the solid line are 
ontours of equal posterior probability. Notethat they are orthogonal to the dotted line 
onne
ting the two mean ve
tors. (b) When �1 6= �2,the 
ontours of equal posterior probability are still lines, but they are no longer orthogonal to thedi�eren
e between the mean ve
tors.posterior for 
lass Y = 1 (see Figure 7.8(a)). We obtain a shift to the right for � smaller than 0:5(see Figure 7.8(b)).Finally, let us 
onsider the 
ase of a general matrix �. The 
ontours of equal posterior prob-ability are still lines in the feature spa
e, but in general these lines are no longer orthogonal tothe di�eren
e ve
tor between the means. If we de�ne new features w via the equation w , ��1x,however, we obtain the orthogonal geometry of Figure 7.7(a) in the w feature spa
e, whi
h impliesan aÆne geometry in the original feature spa
e. Figure 7.7(b) is an example of this 
ase. Notethat the set of ve
tors that have equal posterior probability for the two 
lasses|the solid line inthe �gure|are no longer equidistant from the two 
lass means.1As in Chapter 6 it is 
ommon to suppress the di�eren
e between linear and aÆne fun
tions tosimplify our notation. Thus we augment the ve
tor x to in
lude a �rst 
omponent that is equal to1, and de�ne the augmented parameter ve
tor � , (
 � log(�=(1 � �)); �T )T . Using this notation,we 
an summarize the results of this se
tion as follows: for Gaussian 
lass-
onditional densities,the posterior probability takes the form:p(Y = 1 jx; �) = 11 + e��T x (7.11)where the parameter ve
tor � is a fun
tion of the means �k, the 
ovarian
e matrix �, and the priorprobability �.In summary, we have found that the posterior probability for Gaussian 
lass-
onditional den-sities is the logisti
 fun
tion of a linear fun
tion of a feature ve
tor x. We thus have obtained a1We 
an rede�ne the distan
e metri
, however, basing it on the matrix ��1. In this 
ase the points on the solidline are equidistant from the 
lass means. This metri
 is known as Mahalanobis distan
e; see Exer
ise ?? for moredetails.
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(a)Figure 7.8: The 
lass Y = 1 is the upper rightmost of the two Gaussians. (a) When the prior� is greater than 0.5, the 
ontours are shifted to the left, 
orresponding to a greater posteriorprobability of Y = 1 for a given point in the feature spa
e. (b) When the prior � is less than 0.5,the 
ontours are shifted to the right.linear 
lassi�er|
ontours of equal posterior probability are lines in the feature spa
e. Inspe
tingthe derivation that yielded this result, we see that the key assumption is that the 
ovarian
e matrixis the same in the two 
lasses; this leads to a 
an
ellation of the quadrati
 xT��1x term in thenumerator and denominator of the posterior probability. If we retra
t this assumption and allowdi�erent 
ovarian
e matri
es for the two 
lasses, we still obtain a logisti
 form for the posteriorprobability, but the argument to the logisti
 fun
tion is now quadrati
 in x. The 
orresponding
lassi�er, whi
h has quadrati
 
ontours of equal posterior probability, is referred to as a quadrati

lassi�er.Maximum likelihood estimatesIn this se
tion we show how to obtain maximum likelihood parameter estimates based on a trainingset D 
omposed of N observations: D = f(xn; yn);n = 1; : : : ; Ng. This problem has a straightfor-ward solution that makes use of our work on density estimation in Chapter 5. Reasoning intuitively,suppose that we split the training data into two subsets, one in whi
h yn = 0 and the other inwhi
h yn = 1. To estimate � we 
al
ulate the proportion of the data in the subset 
orresponding toyn = 1; this is the maximum likelihood estimate of �. Moreover, we obtain separate maximum like-lihood estimates of the Gaussian parameters for ea
h of the two 
lasses, pooling the estimates of thevarian
es to take a

ount of the fa
t that �j is the same in the two 
lasses. This intuitively-de�nedsolution is in fa
t the overall maximum likelihood solution, as we now verify.We �rst form the log likelihood:l(� j D) = log8<: NYn=1 p(yn j�) mYj=1 p(xj;n j yn; �j)9=; (7.12)



7.2. GENERATIVE MODELS 13= NXn=1 log p(yn j�) + NXn=1 mXj=1 log p(xj;n j yn; �j); (7.13)where we see that we obtain two separate terms, one for the marginal distribution of Y and theother for the 
onditional distribution of Xj given Y . Maximizing with respe
t to � involves onlythe former term, and for � we therefore obtain:�̂ML = arg max� NXn=1 log p(yn j�) (7.14)= arg max� NXn=1 fyn log � + (1� yn) log(1� �)g ; (7.15)where the latter equation uses Eq. (7.1). As we have seen in Chapter 5 (
f. Eq. (5.37)), the solutionto this 
onstrained optimization problem is the sample proportion:�̂ML = PNn=1 ynN ; (7.16)where the numeratorPNn=1 yn is the 
ount of the number of times that the 
lass Y = 1 is observed.Maximization with respe
t to the parameters �j involves only the se
ond term in Eq. (7.13),whi
h we expand further as:NXn=1 mXj=1 log p(xj;n j yn; �j)= NXn=1 mXj=1 log �p(xj;n j yn = 1; �j1; �j)ynp(xj;n j yn = 0; �j0; �j)1�yn	 (7.17)= mXj=1( NXn=1 yn log p(xj;n j yn = 1; �j1; �j) + NXn=1(1� yn) log p(xj;n j yn = 0; �j0; �j)) : (7.18)Ea
h term in the bra
kets depends on only one of the parameter ve
tors �j = (�j0; �j1; �j). Thusthe problem de
omposes into m separate optimization problems, one for ea
h j.Let us �rst 
onsider the estimation of �j1. Plugging in from Eq. (7.3) for p(xj;n j yn = 1; �j1; �j),and dropping 
onstants, we have:�̂j1;ML = arg max�j1 (�12 NXn=1 yn(xj;n � �1j)2) : (7.19)This is a weighted least-squares problem, where the \weights" are the binary values yn. Taking thederivative and setting to zero, we obtain:�̂j1;ML = PNn=1 ynxj;nPNn=1 yn : (7.20)



14 CHAPTER 7. LINEAR CLASSIFICATIONThus the maximum likelihood estimate is the sample average of the values xj;n for those data pointsin 
lass Y = 1. Similarly, for �̂j0 we obtain:�̂j0;ML = PNn=1(1� yn)xj;nPNn=1(1� yn) ; (7.21)whi
h is the average of the xj;n for those data points in 
lass Y = 0.Finally, as we ask the reader to verify in Exer
ise ??, maximization with respe
t to the varian
e�2j yields: �̂2j;ML = PNn=1 yn(xj;n � �̂j1;ML)2 +PNn=1(1� yn)(xj;n � �̂j0;ML)2N ; (7.22)a pooled estimate of the varian
e.Multiway 
lassi�
ationIn this se
tion we 
onsider the generalization to multiway 
lassi�
ation, in whi
h the 
lass label Y
an take on one of K values.Let Y be a multinomial random variable with 
omponents Y k and parameter ve
tor �. Byde�nition we have: �k = p(Y k = 1 j�): (7.23)For ea
h of the K values of Y , de�ne a Gaussian 
lass-
onditional density:p(x jY k = 1; �) = 1(2�)m=2j�j1=2 exp��12(x� �k)T��1(x� �k)� ; (7.24)where �k is the mean asso
iated with the kth 
lass and � is a 
ovarian
e matrix, assumed 
onstanta
ross the K 
lasses. If � is diagonal, then the 
omponents of X are 
onditionally independentgiven the 
lass label Y and the appropriate graphi
al model is given by Figure 7.4(a). For general�, we represent our model as Figure 7.4(
).The posterior probability of 
lass k is obtained via Bayes rule:p(Y k = 1 jx; �) = p(x jY k = 1; �)p(Y k = 1 j�)Pl p(x jY l = 1; �p(Y l = 1 j�)) (7.25)= �k expf�12 (x� �k)T��1(x� �k)gPl �l expf�12 (x� �l)T��1(x� �l)g (7.26)= expf�Tk��1x� 12�Tk��1�k + log �kgPl expf�Tl ��1x� 12�Tl ��1�l + log �lg ; (7.27)where the 
an
ellation of the quadrati
 xT��1x terms again leaves us with exponents that arelinear in x. De�ning parameter ve
tors �k:�k , � ��Tk��1�k + log �k��1�k � (7.28)
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Figure 7.9: Contours of the softmax fun
tion. Ea
h line is obtained by setting �k(z) = �l(z) fork 6= l. Su
h a line is a 
ontour of equal posterior probability for 
lasses k and l.and again simplifying our result by augmenting the ve
tor x to in
lude a �rst 
omponent equal toone, we have: p(Y k = 1 jx; �) = e�Tk xPl e�Tl x : (7.29)The fun
tion �k(z) , ezk=Pl ezl is a smooth fun
tion known as the softmax fun
tion.The softmax fun
tion is a generalization of the logisti
 fun
tion and it has a similar geomet-ri
 interpretation. Indeed we 
an transfer mu
h of our earlier work to the multiway setting by
onsidering the ratios of posterior probabilities between pairs of 
lasses. In taking the ratio ofp(Y k = 1 jx; �) and p(Y l = 1 jx; �), for k 6= l, the denominator in the softmax fun
tion 
an
elsand we obtain an exponential with exponent (�k � �l)Tx. This again involves a proje
tion andthus 
ontours of equal pairwise probability are again lines in the feature spa
e (see Figure 7.9).Moreover, the prior probabilities � again take the form of log odds and a
t as additive 
onstantsin the exponential.When � = �I, we see from Eq. (7.28) that �k is proportional to �k, and thus the 
ontours ofequal probability are again orthogonal to the di�eren
es between the 
lass means. For general �we obtain the same orthogonal geometry for the transformed 
oordinates w , ��1x, whi
h impliesan aÆne geometry for the features x.The 
al
ulation of maximum likelihood estimates for the multiway Gaussian 
lassi�er is straight-forward and we we ask the reader to 
arry out the 
al
ulation in Exer
ise ??. The results 
an besummarized as follows: We again divide the data into subsets 
orresponding to the di�erent valuesof Y . Separate maximum likelihood estimates of the Gaussian parameters are obtained for ea
h
lass, and the 
ovarian
e estimates are pooled. Moreover, the maximum likelihood estimates of �are the proportions of data falling into the K 
lasses.The 
lassi�er that we have presented in this se
tion is again a linear 
lassi�er. The linearity



16 CHAPTER 7. LINEAR CLASSIFICATIONagain arises from the Gaussian assumption for the 
lass-
onditional densities, together with theassumption of a 
onstant 
ovarian
e matrix.7.2.2 The naive Bayes 
lassi�erWe now turn to the setting of dis
rete features, in whi
h ea
h feature Xj 
an take on one of Kvalues. In this setting the graphi
al model shown in Figure 7.4(a) is often referred to as the \naiveBayes 
lassi�er." We dis
uss the naive Bayes 
lassi�er in this se
tion, 
al
ulating the posteriorprobability and maximum likelihood parameter estimates.Mu
h of the work in the previous se
tion 
arries over to the dis
rete setting. In parti
ular, thejoint probability remains the same as before:p(x; y j �) = p(y j�) mYj=1 p(xj j y; �j): (7.30)We again let Y be a multinomial random variable with 
omponents Y k, de�ning the probabilityve
tor �, where: �k , p(Y k = 1 j�): (7.31)Finally, treating the variables Xj as multinomial random variables with 
omponents Xkj , whereXkj = 1 for one and only one value of k, we write the 
lass-
onditional densities as follows:p(x1; x2; : : : ; xm jY i = 1; �) =Yj Yk �xkjijk; (7.32)where �ijk , p(xkj = 1 jY i = 1; �) is the probability that the jth feature Xj takes on its kth value,for the ith value of the 
lass label Y . Note that the produ
t over k in Eq. (7.32) arises from thede�nition of multinomial probabilities, and the produ
t over j re
e
ts the assumption that thefeatures are 
onditionally independent.Posterior probabilityLet us 
al
ulate the posterior probability for the naive Bayes 
lassi�er. We have:p(Y i = 1 jx; �) = �iQjQk �xkjijkPl �lQjQk �xkjljk (7.33)= expflog �i +PjPk xkj log �ijkgPl expflog �l +PjPk xkj log �ljkg : (7.34)As in the Gaussian 
ase, this is again a softmax fun
tion of a linear 
ombination of the features.We 
an express this result in the standardized form:p(Y i = 1 jx; �) = e�Ti xPl e�Tl x ; (7.35)



7.2. GENERATIVE MODELS 17with a bit of 
reativity in the de�nitions of x and �. In parti
ular, we rede�ne the ve
tor x bysta
king the multinomial ve
tors xj verti
ally. Thus, the 
omponents of x are the values xkj , wherethe supers
ript k varies more rapidly than the subs
ript j. We also augment the resulting ve
torto have a �rst 
omponent of one. Similarly, we de�ne �i as a ve
tor in whi
h the doubly-indexed
omponents log �ijk are arranged, with i �xed and k varying faster than j. We let the the �rst
omponent of �i be equal to log �i. Given these de�nitions we obtain Eq. (7.35) as the posteriorprobability for the naive Bayes model.Although the feature spa
e is a dis
rete hyper
ube in the naive Bayes setting, it is interestingthat the 
lassi�er is formally the same as the linear dis
riminant 
lassi�er, with log odds playingthe role that di�eren
e ve
tors played in the Gaussian 
ase.In the 
ase of binary 
lassi�
ation, we 
an divide numerator and denominator by the numeratorin Eq. (7.34) and obtain the logisti
 fun
tion of a linear fun
tion of the features:p(Y = 1 jx; �) = 11 + expf��Txg (7.36)for appropriate de�nitions of � and x.Maximum likelihood estimatesFinally, let us 
al
ulate the maximum likelihood estimates of the parameters for the naive Bayes
lassi�er. We again assume that we have a training set D 
omposed of N observations: D =f(xn; yn);n = 1; : : : ; Ng.From Eq. (7.30) we obtain the log likelihood:l(� j D) = NXn=1 log p(yn j�) + NXn=1 mXj=1 log p(xj;n j yn; �); (7.37)where for the purposes of this se
tion we de�ne x and y to be the ve
tors of all observations xj;n andyn, respe
tively. The �rst term again de
ouples to yield separate maximum likelihood estimates of�. Fo
using on the se
ond term, and re
alling that the sum over k of the parameters �ijk mustequal one, we introdu
e Lagrange multipliers �ij and maximize:~l(� j D) , NXn=1Xi Xj Xk xkj;nyin log �ijk +Xi Xj �ij(1�Xk �ijk): (7.38)This yields: �~l��ijk = Pn xkj;nyin�ijk � �ij: (7.39)Setting to zero and summing both sides with respe
t to k, we have:�ij = Xk Xn xkj;nyin (7.40)



18 CHAPTER 7. LINEAR CLASSIFICATION= Xn Xk xkj;nyin (7.41)= Xn yin: (7.42)Finally, substituting ba
k into Eq. (7.39), we obtain:�̂ijk;ML = Pn xkj;nyinPn yin ; (7.43)in whi
h the numerator is the number of observations in the ith 
lass for whi
h the the jth featuretakes on its kth value. The denominator normalizes this 
ount by dividing by the number ofobservations in the ith 
lass.7.2.3 The exponential familyFor all of the generative 
lassi�
ation models studied thus far, the posterior probability takes asimple fun
tional form|a logisti
 fun
tion for the binary problem and a softmax fun
tion in themultiway problem. Moreover, for multinomial and Gaussian 
lass-
onditional densities (in thelatter 
ase with equal, but otherwise arbitrary, 
lass 
ovarian
e matri
es), the 
ontours of equalposterior probability are hyperplanes in the feature spa
e. In fa
t, as we see in this se
tion, theseresults are not restri
ted to multinomial and Gaussian probabilities; but hold for a wide range of
lass-
onditional densities.The exponential family of probability distributions is a large family that in
ludes the multino-mial and Gaussian distributions, as well as a number of other 
lassi
al distributions su
h as thebinomial, the Poisson, the gamma and the Diri
hlet. In Chapter 8 we provide a detailed dis
ussionof the exponential family; here we simply present the fun
tional form of this family, and 
onsiderusing exponential family distributions as 
lass-
onditional densities for 
lassi�
ation.The exponential family is de�ned as follows:p(x j �) = expf�Tx� a(�)gh(x); (7.44)where � is a parameter ve
tor. It is a useful exer
ise to verify that the distributions listed above
an all be put in this standard form, for appropriate de�nitions of the fun
tions a(�) and h(x).(We will 
arry out this exer
ise in Chapter 8).Let us now 
onsider a binary 
lassi�
ation problem for a generi
 
lass-
onditional density fromthe exponential family. We assume that the densities for the two 
lasses are the same, up to theparameter ve
tor �. That is, we let the density for 
lass Y = 1 be parameterized by �1 and let thedensity for 
lass Y = 0 be parameterized by �0. Let the prior probabilities be equal for simpli
ity.We obtain the posterior probability from Bayes rule:p(Y = 1 jx; �) = p(x jY = 1; �)p(Y = 1 j�)p(x jY = 1; �)p(Y = 1 j�) + p(x jY = 0; �)p(Y = 0 j�) (7.45)= expf�T1 x� a(�1)gh(x)expf�T1 x� a(�1)gh(x) + expf�T0 x� a(�0)gh(x) (7.46)



7.3. DISCRIMINATIVE MODELS 19= 11 + expf�(�0 � �1)Tx� a(�0) + a(�1)g : (7.47)Thus we �nd that the posterior probability is the logisti
 fun
tion of a linear fun
tion of x.Similarly, for the multiway 
lassi�
ation problem we have:p(Y k = 1 jx; �) = p(x jY k = 1; �k)p(Y k = 1 j�)Pl p(x jY l = 1; �l)p(Y l = 1 j�) (7.48)= expf�Tk x� a(�k)gh(x)Pl expf�Tl x� a(�l)gh(x) (7.49)= expf�Tk x� a(�k)gPl expf�Tl x� a(�l)g ; (7.50)where again we have assumed equal 
lass priors for simpli
ity. The result is the softmax fun
tionof a linear fun
tion of x.7.3 Dis
riminative modelsIn Se
tion 7.2.3 we have seen that a wide range of 
lass-
onditional densities all yield the samelogisti
-linear or softmax-linear form for the posterior probability. This invarian
e of the fun
tionalform of the posterior probability to the spe
i�
 
hoi
e of 
lass-
onditional density is good news,be
ause in pra
ti
e it 
an be diÆ
ult to 
hoose the 
lass-
onditional density. This problem isparti
ularly diÆ
ult in the 
ase of a high-dimensional feature ve
tor. Consider the Gaussian 
ase.The assumption of a diagonal 
ovarian
e matrix|
orresponding to 
onditional independen
e ofthe features|is often unrealisti
. We 
an allow arbitrary 
ovarian
e matri
es, but this requiresus to estimate O(m2) parameters, whi
h may be prohibitive for large m. Often we would likeinstead to 
onsider families of 
ovarian
e matri
es that depend on more than m but fewer thanm2 parameters. In some 
ases there is a natural ordering or grouping of the features (e.g., in the
ase of time series data or spatial data) that yield natural de�nitions of su
h stru
tured 
ovarian
ematri
es. In many other 
ases, however, there is no obvious way to justify a parti
ular form ofstru
tured 
ovarian
e matrix, and we are left with a 
hoi
e between the (highly-biased) 
ase of adiagonal 
ovarian
e matrix and the (highly-variable) 
ase of a full 
ovarian
e matrix. The fa
t,however, that all of these 
hoi
es yield the same linear form for the posterior probability suggeststhat it may not be ne
essary to make su
h a 
hoi
e. Moreover, the fa
t that densities other thanthe Gaussian density yield the same linear 
lassi�er suggests that we may not even need to spe
ifythe density.In this se
tion we dis
uss dis
riminative models. In dis
riminative modeling the posterior prob-ability is modeled dire
tly, quite apart from any 
onsiderations regarding 
lass-
onditional proba-bilities. Instead of assuming Gaussian or multinomial 
lass-
onditional densities and deriving thelinearity of the 
lassi�er as a 
onsequen
e, we instead assume linearity at the outset, by assum-ing that x enters into the model via a linear 
ombination �Tx. To 
omplete the model, we makean additional assumption regarding the (nonlinear) fun
tion that maps from �Tx to the posterior
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Figure 7.10: The graphi
al representation of a dis
riminative 
lassi�
ation model.probability. Taking a hint from the generative setting, we assume a logisti
 or softmax fun
tion atthe outset, but we will also explore other possibilities.The main problem will be that of estimating the parameters of the resulting 
lassi�er. Giventhat we no longer have underlying 
lass-
onditional densities, we 
annot de�ne the parameters ofthe 
lassi�er in terms of underlying means, 
ovarian
es, log probabilities or the like. Instead wewill have to �nd a way to estimate the parameters \dire
tly."The graphi
al model that we study in this se
tion is shown in Figure 7.10. Note that in this�gure we have treated the 
omponents of the feature ve
tor X as separate nodes: X1;X2; : : : ;Xm.We have done this to emphasize the relationship|as well as the 
ontrast|with the dis
ussion ofthe generative approa
h in the previous se
tion. Note in parti
ular that we are not assuming norimplying 
onditional independen
e of the features. Indeed, in this se
tion we make no assumptionsregarding the marginal probability p(x); our goal is only to model the 
onditional probabilityp(y jx). This is of 
ourse the same setting as that of regression, and indeed the methods that wedis
uss in this se
tion are 
losely related to regression.7.3.1 Logisti
 regressionWe begin by 
onsidering the 
ase of binary 
lassi�
ation. The �rst model that we 
onsider is logisti
regression, in whi
h the 
onditional probability p(y jx) is modeled as a fun
tion �(�Tx), where �is the logisti
 fun
tion. This fun
tional form is of 
ourse suggested by the generative models inSe
tion 7.2.The 
lass label Y is a Bernoulli random variable, and the modeling problem is that of deter-mining the probability that Y takes the value one for ea
h input X. Note that this probability,p(Y = 1 jx), is the same as the 
onditional expe
tation:E(y jx) = 1 � p(Y = 1 jx) + 0 � p(Y = 0 jx) (7.51)



7.3. DISCRIMINATIVE MODELS 21= p(Y = 1 jx): (7.52)Thus, as in the 
ase of regression, the goal is that of modeling the 
onditional expe
tation of Ygiven X. In the regression 
ase, we added a Gaussian error term � to the 
onditional expe
tation.This approa
h, however, is 
learly inappropriate here given that Y 
an only take on the dis
retevalues zero and one. Instead, we de�ne �(x) , p(Y = 1 jx) and write the Bernoulli distribution inthe following way: p(y jx) = �(x)y(1� �(x))1�y: (7.53)This is the usual de�nition of the Bernoulli distribution; however, we still need to spe
ify thedependen
e of the Bernoulli parameter �(x) on x.To 
omplete the spe
i�
ation of the model, we assume that (1) the 
onditional expe
tationdepends on x via the inner produ
t �(x) , �Tx, where � is a parameter ve
tor, and (2) the innerprodu
t �(x) is 
onverted to a probability s
ale via the logisti
 fun
tion. Thus we have:�(x) = 11 + e��(x) : (7.54)as the probability model for the 
onditional expe
tation �(x) , p(Y = 1 jx; �).Re
all that in the 
urrent se
tion we simply treat these assumptions as axiomati
|as an attemptto model posterior probabilities in a simple parametri
 way independently of assumptions regarding
lass-
onditional densities. Figure 7.11 shows an example that helps to suggest the reasonablenessof this approa
h. In this �gure it appears to be diÆ
ult to 
hoose a model for the 
lass-
onditionaldensities; in parti
ular, a Gaussian assumption does not seem reasonable. It seems signi�
antlyless problemati
 to 
hoose a dis
riminative model in this 
ase, and indeed the linear boundaryimplied by the logisti
 regression model appears to be reasonable. Su
h examples are by no meansun
ommon.Some properties of the logisti
 fun
tionIn this se
tion we 
olle
t together several results regarding the logisti
 fun
tion that will be of usein the following se
tion and in several later 
hapters.Let us write the logisti
 fun
tion as a map from a variable � to a variable �:� = 11 + e�� (7.55)The logisti
 fun
tion is invertible; thus we 
an also obtain a map from � to �:� = log� �1� �� ; (7.56)whi
h has the form of a log odds.This inverse form simpli�es the 
al
ulation of derivatives. In parti
ular, we have:d�d� = dd� log� �1� �� (7.57)= 1�(1� �) ; (7.58)
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Figure 7.11: An example in whi
h it is diÆ
ult to spe
ify the 
lass-
onditional densities requiredfor a generative model, but where a linear dis
riminative boundary between the 
lasses seemsreasonable.from whi
h we obtain: d�d� = �(1� �): (7.59)This expresses the derivative of the logisti
 fun
tion as a fun
tion of �. We 
an also use Eq. (7.55)to obtain the derivative as a fun
tion of �, but the form in Eq. (7.59) will prove to be more useful.The likelihoodIn this se
tion we begin our dis
ussion of maximum likelihood estimation of the parameters � basedon a training set D = f(xn; yn);n = 1; : : : ; Ng. As in our dis
ussion of regression in Chapter 6, we
onsider bat
h and on-line methods for parameter estimation.Let �n = �Txn and let �n = 1=(1+e��n ) denote the 
orresponding value of the logisti
 fun
tion,in a

ordan
e with our de�nitions in the previous se
tion. Note that we have omitted the expli
itdependen
e of �n on xn to simplify our notation. Moreover, let � and � denote the ve
tors of thesevalues as we range a
ross n; thus: � = (�1; �2; : : : ; �N ) and � = (�1; �2; : : : ; �N ).To obtain the likelihood we take the produ
t of N Bernoulli probabilities using Eq. (7.53):p(y1; : : : ; yN jx1; : : : ; xN ; �) =Yn �ynn (1� �n)1�yn : (7.60)



7.3. DISCRIMINATIVE MODELS 23Taking logarithms yields:l(� j D) =Xn fyn log�n + (1� yn) log(1� �n)g ; (7.61)and it is this expression that we must maximize with respe
t to �.2 Re
all that �n is a fun
tion of� whereas yn is not.We 
al
ulate the gradient of the log likelihood:r�l = Xn � yn�n � 1� yn1� �n� d�nd�n xn (7.62)= Xn yn � �n�n(1� �n)�n(1� �n)xn (7.63)= Xn (yn � �n)xn: (7.64)It is interesting to note that this gradient has the same form as the gradient of the log likelihoodfor linear regression (
f. Eq. (6.12)). In both 
ases we obtain a di�eren
e between yn and the
onditional expe
tation �n, multiplied by the input xn.An on-line estimation algorithmAn on-line estimation algorithm 
an be obtained by dropping the summation sign and followingthe sto
hasti
 gradient of the log likelihood. Let �(t) denote the value of the parameter ve
tor atthe tth step of the algorithm. If (xn; yn) denotes the data point presented to the algorithm at thetth step, we write: �(t+1) = �(t) + �(yn � �(t)n )xn; (7.65)where �(t)n , �(�(t)T xn) and where � is a step size.Note that this on-line algorithm is identi
al in form to the LMS algorithm di�ering only inthe de�nition of the 
onditional expe
tation. To understand the (important) impli
ations of thedi�eren
e, let us return to an issue that motivated our development of 
lassi�
ation methods.Re
all in parti
ular Figure ??, where we 
onsidered the e�e
t on linear regression of adding thepoint (1:5; 1) to the training set. The linear �t is altered signi�
antly by the addition of this point.One way to see this is to note that the error, (yn � �(t)n ), in the LMS algorithm is large; thusthe algorithm will make a large adjustment to the parameter ve
tor �(t). For the on-line logisti
regression algorithm in Eq. (7.65), however, �(t)n is near one, given that the logisti
 fun
tion isevaluated in its rightmost tail. As suggested in Figure 7.12, the error, (yn � �(t)n ), is thereforeessentially zero. Thus, as we see from Eq. (7.65), there is little 
hange in the parameters. Ingeneral, points that are already 
lassi�ed 
orre
tly do not a�e
t the �t.2The fun
tion in Eq. (7.61) is the 
ross-entropy fun
tion. See Appendix XXX for further dis
ussion of the 
ross-entropy in the 
ontext of information theory.
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xFigure 7.12: (a) The �t of a logisti
 regression model to the data in Figure 7.1. (b) Adding thepoint (1.5,1) to the data set does not 
hange the �t (
f. Figure 7.2).The iteratively reweighted least squares (IRLS) algorithmTo obtain a bat
h algorithm we 
ould restore the summation sign in Eq. (7.64) and follow thesteepest des
ent dire
tion, but as in the linear regression 
ase this algorithm has little to re
ommendit. We instead des
ribe an algorithm, known as the iteratively reweighted least squares (IRLS)algorithm, that is 
loser in spirit to the dire
t solution of the normal equations.The IRLS algorithm is a Newton-Raphson algorithm.3 In preparation for deriving the algorithm,let us note that the normal equations 
an also be viewed, somewhat perversely, from the point ofview of the Newton-Raphson algorithm.Consider a fun
tion J(�) whi
h is to be minimized with respe
t to �. Re
all (see Appendix XXX)that the Newton-Raphson algorithm is an iterative algorithm that takes the following general form:�(t+1) = �(t) �H�1r�J; (7.66)where r�J and H are the gradient ve
tor and Hessian matrix of J(�) respe
tively (and both areevaluated at �(t)).In the 
ase of linear regression, the 
ost fun
tion, J = 12(y � X�)T (y � X�), is a quadrati
fun
tion of �. We 
al
ulated the gradient of J in Chapter 6, �nding:r�J = �XT (y �X�): (7.67)Taking another derivative we obtain the Hessian:H = �XTX: (7.68)3This statement is not entirely a

urate, but it is a

urate enough for 
urrent purposes. See Chapter 8 for furtherdetails.



7.3. DISCRIMINATIVE MODELS 25Thus we 
an apply the Newton-Raphson algorithm to the problem of minimizing J , obtaining:�(t+1) = �(t) + (XTX)�1XT (y �X�(t)) (7.69)= (XTX)�1XT y; (7.70)where we see that the right-hand-side is the solution to the normal equations. Thus Newton-Raphson hops to the solution in a single step, not a surprise given that J is a quadrati
 fun
tion.In the logisti
 regression problem, the fun
tion to be optimized is the log likelihood, and thisfun
tion is not quadrati
. Nonetheless it is \nearly" quadrati
, and we should not be surprised tosee that Newton-Raphson for logisti
 regression has similarities to the linear regression solution.Indeed, as we will see, the similarity is strong.The fun
tion that we wish to optimize is the log likelihood shown in Eq. (7.61). We have already
al
ulated the gradient of the log likelihood in Eq. (7.64). Writing this result in ve
tor notation,we have: r�l =Xn (yn � �n)xn = XT (y � �); (7.71)where we have de�ned � , (�1; �2; : : : ; �N )T . Taking a se
ond derivative, we have:H = �Xn d�nd�n xnxTn (7.72)= �Xn �n(1� �n)xnxTn (7.73)= �XTWX; (7.74)where we have de�ned the diagonal weight matrix:W , diagf�1(1� �1); �2(1� �2); : : : ; �N (1� �N )g; (7.75)Note that the �n values depend on the parameter ve
tor �, thus the weight matrix W dependson �. We thus will use the notation W (t) to denote the weight matrix at the tth iteration of thealgorithm.Substituting into Eq. (7.66), we obtain:�(t+1) = �(t) + (XTW (t)X)�1XT (y � �(t)) (7.76)= (XTW (t)X)�1 hXTW (t)X�(t) +XT (y � �(t))i (7.77)= (XTW (t)X)�1XTW (t)z(t); (7.78)where we de�ne: z(t) = � + [W (t)℄�1(y � �(t)): (7.79)The algorithm in Eq. (7.78) is the IRLS algorithm.Inspe
ting Eq. (7.78) makes it 
lear why the algorithm is known as the \iteratively reweightedleast squares" algorithm. Ea
h iteration of the algorithm involves solving a weighted least-squares
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all Eq. (??)). Moreover, given that the weight matrix W 
hanges at ea
h iteration,the least-squares problem is \iteratively reweighted."We 
an obtain some more insight into the IRLS algorithm, and in parti
ular understand therole played by z(t), if we view the Newton-Raphson algorithm as solving a sequen
e of linearizedproblems.Consider the following (heuristi
) argument. For a parti
ular value �, and a parti
ular ve
tor xn,let us linearize the logisti
 fun
tion around the \operating point," �n = �Txn. This linearizationallows us to 
onvert the value yn, whi
h is on a nonlinear s
ale, \ba
kwards" to a value zn onthe linear s
ale de�ned by �n. In pari
ular, re
all that the logisti
 fun
tion 
an be inverted (
f.Eq. (7.56)) to yield a map from �n to �n. Expanding this inverse fun
tion in a �rst-order Taylorseries, we de�ne: zn , �n + d�nd�n (yn � �n); (7.80)where the derivative is evaluated at �n, and thus depends impli
itly on the parameter ve
tor �.This argument suggests using zn as a surrogate for yn, in a linearized version of our logisti
regression problem. We have another issue to deal with, however, if we wish to use linear regressionmethods to �nd parameter estimates: the Bernoulli random variables yn do not have equal varian
e.In parti
ular, yn has varian
e �n(1 � �n). To deal with this issue, we use weighted least squares.In parti
ular, note that the elements of the weighting matrix W de�ned in Eq. (7.75) are exa
tlythe Bernoulli varian
es. Thus we use W as our weight matrix.We now solve a weighted least squares problem, with data zn and weight matrix W . Writingthe normal equations for this weighted least squares problem, and making the dependen
e on theiteration number t expli
it, we obtain the IRLS iteration in Eq. (7.78).The Newton-Raphson algorithm is a se
ond-order algorithm and it generally 
onverges rapidly.A small number of iterations of Eq. (7.78) are usually suÆ
ient to obtain 
onvergen
e of theparameter ve
tor.7.3.2 Multiway 
lassi�
ationIn this se
tion we dis
uss a generalization of logisti
 regression to the setting of multiway 
lassi�-
ation. Re
all that in this 
ase the 
lass label Y 
an take on one of K values.In Se
tion 7.2.1 we derived the softmax-linear model:p(Y k = 1 jx; �) = e�Tk xPl e�Tl x (7.81)as the multiway generalization of the logisti
-linear model. In that se
tion, the softmax-linear formfor the posterior probability was a 
onsequen
e of our assumption of Gaussian (or more generally,exponential family) 
lass-
onditional probabilities. In the 
urrent se
tion, however, we adopt adis
riminative perspe
tive in whi
h the softmax-linear form is treated as an assumption, and wemake no attempt to spe
ify 
lass-
onditional probabilities. In this 
ontext, we refer to the modelin Eq. (7.81) as a softmax regression model. As in the 
ase of logisti
 regression, the main problemthat we fa
e is estimating the parameters �k \dire
tly," without making use of an underlying
lass-
onditional model.



7.3. DISCRIMINATIVE MODELS 27We use the notation �kn to denote the posterior probability in Eq. (7.81). We also use �kn = �Tk xnto denote the linear 
omponent of the softmax-linear model.Some properties of the softmax fun
tionThe softmax fun
tion has several properties that are analogs of those of the logisti
 fun
tion thatwe dis
ussed in Se
tion 7.3.1.The softmax fun
tion 
an be written as a map from a ve
tor variable � to a ve
tor variable �.Letting �i represent the ith 
omponent of � and letting �i represent the ith 
omponent of �, wewrite: �i = e�iPk e�k : (7.82)This fun
tion is invertible up to an additive 
onstant. That is, if we add the 
onstant C to ea
hof the 
omponents �i, then the fa
tor eC 
an
els in the numerator and denominator of Eq. (7.82),yielding the same value of �i. Note in parti
ular that if we take the logarithm of both sides ofEq. (7.82), we obtain the inverse: �i = log �i +D; (7.83)where D = logPk e�k is a 
onstant. Any other 
onstant (in
luding zero) will yield an equivalentinverse of the softmax fun
tion.We turn to the 
al
ulation of the softmax derivatives. A subtlety in this 
ase is that thederivative of �i with respe
t to �j is non-zero for i 6= j, due to the denominator in Eq. (7.82). The
al
ulation pro
eeds as follows: ��i��j = (Pk e�k)e�iÆij � e�ie�j(Pk e�k)2 (7.84)= e�iPk e�k �Æij � e�jPk e�k� (7.85)= �i(Æij � �j); (7.86)where Æij is equal to one if i = j and zero otherwise.Maximum likelihood estimationIn the multiway 
lassi�
ation problem the output Y is a multinomial random variable. Re
allingthat in softmax regression �kn denotes the posterior probability of the kth 
lass for the nth datapoint, we 
an write the multinomial probability distribution in the following form:p(yn jxn; �) =Yk ��kn�ykn (7.87)where � , (�1n; �2n; : : : ; �Kn )T is the multinomial parameter ve
tor. The likelihood is the produ
t ofN su
h probabilities. Taking the logarithm, we obtain:l(� j D) =Xn Xk ykn log�kn (7.88)



28 CHAPTER 7. LINEAR CLASSIFICATIONas the log likelihood for the multiway 
lassi�
ation problem. As in the binary 
ase, this log likelihoodhas the form of a 
ross-entropy.To 
al
ulate the gradient of the log likelihood with respe
t to the parameter ve
tor �i, we makeuse of the intermediate variable �in = �Ti xn. Re
alling that the derivative of �kn with respe
t to �inis nonzero be
ause of the shared denominator in the softmax fun
tion, we have:r�il = Xn Xk �l��kn ��kn��in d�ind�i (7.89)= Xn Xk ykn�kn�kn(Æik � �in)xn (7.90)= Xn Xk ykn(Æik � �in)xn (7.91)= Xn (yin � �in)xn; (7.92)where we have used the fa
t that Pk ykn = 1.The gradient that we have obtained has the same form as the gradient for logisti
 regressionand linear regression! (Re
all Eq. (7.64) and Eq. (6.21)). We will see in Chapter 8 that this resultis not a 
oin
iden
e, but re
e
ts a general property of probability distributions in the exponentialfamily.As in the 
ase of logisti
 regression and linear regression, we obtain an on-line parameterestimation algorithm by dropping the sum over n in Eq. (7.92). This algorithm is the analog of theLMS algorithm for multiway 
lassi�
ation.It is straightforward to generalize the IRLS algorithm and thereby obtain a bat
h algorithmfor softmax regression. Rather than pursuing that generalization here, we return to the IRLSalgorithm in Chapter 8, where we develop a generi
 IRLS algorithm for the family of generalizedlinear models, of whi
h softmax regression and logisti
 regression are examples.7.3.3 Probit regressionIn this se
tion and the remainder of the 
hapter, we return to binary 
lassi�
ation and 
onsidersome alternatives to logisti
 regression.Although the logisti
 regression model arises naturally from a generative perspe
tive|as theposterior probability obtained from a wide 
lass of 
lass-
onditional probabilities|there are other
hoi
es of 
lass-
onditional probabilities that do not yield the logisti
-linear form for the posteriorprobability. Thus, even from a generative point of view there is some motivation for exploringalternative representations for the posterior probability. In this se
tion we engage in su
h anexploration within the dis
riminative framework, motivating alternative models \dire
tly," withoutreferen
e to 
lass-
onditional distributions. For simpli
ity we retain the linearity assumption, andmotivate fun
tions other than the logisti
 fun
tion for 
onverting the linear 
ombination �Tx to aprobability s
ale.



7.3. DISCRIMINATIVE MODELS 29One natural way to obtain a dis
riminative 
lassi�
ation model is to 
onsider \noisy threshold"models. In parti
ular, we might suppose that a data pair (x; y) is obtained by a pro
ess in whi
hsome external agent 
onverts the ve
tor x to a s
alar value �, de�ned as a linear 
ombination�Tx, and 
ompares the resulting value to a threshold. If the value ex
eeds the threshold, then thelabel 1 is assigned, otherwise the label 0 is assigned. A probabilisti
 version of this model 
an beobtained by assuming that the threshold is sto
hasti
. Thus, let Z be a s
alar random variablewith a 
umulative distribution fun
tion F (z). We de�ne:p(Y = 1 jx) = p(Z � �) = F (�): (7.93)Making the further assumption that � is parameterized linearly, as � , �Tx, we obtain a dis
rimi-native 
lassi�
ation model: p(Y = 1 jx; �) = F (�Tx); (7.94)for a given distribution fun
tion F .The logisti
 regression model 
an be interpreted as a spe
ial 
ase of this model, given that thelogisti
 fun
tion, 1=(1 + exp(�x)), is a distribution fun
tion. There is no parti
ular reason to usea logisti
 random variable as the noisy threshold model, however. Indeed, given that many naturalsour
es of \noise" have a Gaussian distribution, a 
ommon 
hoi
e is to take Z to be a Gaussianrandom variable. This 
hoi
e yields the probit regression model. Thus, in the probit model we have:p(Y = 1 jx; �) = �(�Tx); (7.95)where �(w) = Z w�1 1(2�)1=2 e� 12 �2d� (7.96)is the 
umulative distribution fun
tion of a Gaussian random variable with zero mean and unitvarian
e.4Figure 7.13 shows a graphi
al model representation of the probit regression model. In thisrepresentation, the threshold variable Z is represented as an expli
it latent variable. The graphi
almodel requires a marginal distribution for Z, whi
h in the probit model we take as N (0; 1), and a
onditional distribution for Y , given X and Z. This 
onditional is a degenerate distribution: Y isequal to zero if �Tx is less than Z, and one otherwise.Figure 7.14 shows a plot of the logisti
 fun
tion and the Gaussian 
umulative distributionfun
tion. As this plot makes 
lear, there is not a large di�eren
e between the two fun
tions, andindeed probit regression and logisti
 regression generally give rather similar results.Probit regression is an instan
e of the family of generalized linear models that we des
ribe inChapter 8. Maximum likelihood estimates 
an be obtained via sto
hasti
 gradient des
ent or thegeneral version of the IRLS algorithm that we present in that 
hapter.4The assumption of zero mean and unit varian
e is without loss of generality, be
ause any linear transformationof the features 
an be absorbed in the parameter ve
tor �.
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Figure 7.13: A graphi
al model representation of the probit regression model.
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Figure 7.14: Link fun
tions for binary 
lassi�
ation. The solid 
urve is the logisti
 fun
tion(Eq. 7.55), the long-dashed 
urve is the 
umulative Gaussian fun
tion (Eq. 7.96), and the small-dashed 
urve is the 
omplementary log-log fun
tion (the inverse of Eq. 7.105).



7.3. DISCRIMINATIVE MODELS 31
1X 2X

1Z
mX

2Z mZ

YFigure 7.15: A graphi
al model representation of the noisy-OR model.7.3.4 The noisy-OR modelA wide range of models 
an be obtained as \noisy" versions of formulas from propositional logi
,in the setting in whi
h the features Xi are binary. In this se
tion we des
ribe an example of this
lass of models known as the noisy-OR model. As with the other models dis
ussed in this 
hapterthe noisy-OR model is a linear 
lassi�er.Let us begin with the Boolean formula:Y = X1 _X2 _ � � � _Xm; (7.97)where Xi 2 f0; 1g, for all i. To obtain a \noisy" version of the formula, let us view ea
h variable Xias en
oding a binary \trigger" that 
an \
ause" Y to o

ur. Eq. (7.97) states that the presen
e ofany single trigger suÆ
es to 
ause Y to o

ur. Suppose now that ea
h trigger 
an \fail" with someprobability �i, in that the trigger 
an be present, but 
an fail to 
ause the o

urren
e of Y . Supposemoreover that the failure probabilities asso
iated with the di�erent triggers are independent. Thus,introdu
ing independent binary random variables Zi to represent the failure events, we have:Y = � 1 (X1 ^ :Z1) _ (X2 ^ :Z2) � � � _ (Xm ^ :Zm)0 otherwise: (7.98)The graphi
al model representing this noisy version of the logi
al OR formula is shown in Fig-ure 7.15.If we let �i , p(zi = 1) denote the Bernoulli parameters asso
iated with the Zi, we obtain fromEq. (7.98): p(Y = 0 jx; �) = mYi=1 fp(zi = 1)gxi = mYi=1 �xii : (7.99)
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an be interpreted as stating that the probability of Y not o

urring is the produ
tof the (independent) failure probabilities asso
iated with those features xi that are present in theinput. That is, if all triggers fail, then Y doesn't o

ur.To express the noisy-OR model in a linear form, let us rewrite Eq. (7.99):p(Y = 0 jx; �) = exp( mXi=1 xi log �i) : (7.100)Letting �i , � log �i, we obtain our �nal result:p(Y = 1 jx; �) = 1� e��T x (7.101)for the posterior probability for the noisy-OR model.7.3.5 Other exponential modelsA number of useful 
lassi�
ation models are based on the Poisson distribution. Re
all that Z is aPoisson random variable with parameter � if:p(z j�) = �ze��z! ; (7.102)where z ranges over the nonnegative integers. Poisson variables arise in many 
ontexts, in parti
ularas models of 
ounts of rarely o

urring, independent events. For example, in a well-stirred solutionthat 
ontains a small amount of a virus, the amount of virus in any sample might be a Poissonvariable with parameter proportional to the volume of the sample. In su
h situations, it is often ofinterest to distinguish between the 
ase in whi
h Z takes on the value zero and the 
ase in whi
hZ takes on a non-zero value. (For example, a model of transmission of viral disease would wantto distinguish the 
ase that a sample of the solution 
ontained no viral 
ells). De�ning a binaryvariable Y that is equal to one in the latter 
ase, we have:p(Y = 1) = 1� p(Z = 0) = 1� e��; (7.103)from Eq. (7.102). If we treat the parameter � as a linear fun
tion of a set of input variables x, weobtain a 
lassi�
ation model: p(Y = 1 jx; �) = 1� e��T x: (7.104)This model is identi
al in form to the noisy-OR model, although the ve
tor x is no longer restri
tedto be a binary ve
tor.An awkward aspe
t of the model in Eq. (7.104) is that the linear 
ombination �Tx must berestri
ted to lie between zero and in�nity if we are to obtain a posterior probability that liesbetween zero and one. To remove this restri
tion, it is 
onvenient to reparameterize the model sothat the argument � is the exponential fun
tion of some underlying variable �. We obtain a linear
lassi�
ation model if we assume that the underlying variable � is linear in x:p(Y = 1 jx; �) = 1� e�e�T x : (7.105)



7.4. SUMMARY 33An appealing feature of this model is that there are no longer any restri
tions on �. In fa
t, insituations involving Poisson variables it is often natural to measure the e�e
t of the variables x on alogarithmi
 s
ale. In parti
ular, in the example of the viral solution, x might measure the fra
tionof some diluting agent in the solution.The model in Eq. (7.105) is referred to as the 
omplementary log-log model. (The terminologyrefers to the inverse of the nonlinear fun
tion in Eq. (7.105)). Figure 7.14 in
ludes a plot of thenonlinearity in this model. Note again the similarity to the logisti
 fun
tion.7.4 SummaryWe have presented a number of simple probabilisti
 models for dis
rete variables within the frame-work of binary and multiway 
lassi�
ation problems. We dis
ussed generative models, in whi
hthe dis
rete variable is a parent of the feature variables. We also dis
ussed dis
riminative models,in whi
h the dis
rete variable is a 
hild of the feature variables. We also fo
used on some of therelationships between generative and dis
riminative models.Maximum likelihood estimates are readily obtained in both 
ases. In the 
ase of a generativemodel, maximum likelihood estimation essentially redu
es to density estimation. That is, we �ndestimates of the 
lass-
onditional densities separately for ea
h of the 
lasses. In the dis
riminativesetting, we model the 
lass label as a Bernoulli or multinomial variable, whi
h yields a 
ross entropyfor the log likelihood. The IRLS algorithm 
an be used to maximize this log likelihood in the bat
hsetting. We also presented a sto
hasti
 gradient algorithm for the on-line setting, noting the 
loserelationship to the LMS algorithm.All of the models that we have presented in this 
hapter are linear 
lassi�ers. That is, in all
ases the input variable x enters into the model via a linear 
ombination � = �Tx. In the generativesetting this linear form was a 
onsequen
e of the parti
ular kinds of 
lass-
onditional densities thatwe assumed. In the dis
riminative setting we assumed the linear form at the outset.Generative and dis
riminative models have 
omplementary strengths and weaknesses. Thegenerative approa
h allows knowledge about 
lass-
onditional densities to be exploited. If thisknowledge is indeed re
e
tive of the true data-generation pro
ess, then the generative approa
h
an be more eÆ
ient than a 
orresponding dis
riminative model, in the sense that it will tend torequire fewer data points. On the other hand, dis
riminative approa
hes tend to be more robustthan generative approa
hes, making use of weaker assumptions regarding 
lass-
onditional densities.Note also that the dis
riminative framework presents a straightforward \upgrade path" toward thedevelopment of nonlinear 
lassi�ers|we 
an retain the logisti
 and softmax fun
tions, but repla
ethe linear 
ombination � = �Tx with a nonlinear fun
tion (see Chapter 25).7.5 Histori
al remarks and bibliography


