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Chapter 2

Conditional Independence and
Factorization

A graphical model can be thought of as a probabilistic database, a machine that can answer
“queries” regarding the values of sets of random variables. We build up the database in pieces, using
probability theory to ensure that the pieces have a counsistent overall interpretation. Probability
theory also justifies the inferential machinery that allows the pieces to be put together “on the fly”
to answer queries.

Consider a set of random variables {X;, Xy,...,X,,} and let z; represent the realization of
random variable X;. Each random variable may be scalar-valued or vector-valued. Thus x; is in
general a vector in a vector space. In this section, for concreteness, we assume that the random
variables are discrete; in general, however, we make no such restriction. There are several kinds of
query that we might be interested in making regarding such an ensemble. We might, for example,
be interested in knowing whether one subset of variables is independent of another, or whether one
subset of variables is conditionally independent of another subset of variables given a third subset.
Or we might be interested in calculating conditional probabilities—the probabilities of one subset of
variables given the values of another subset of variables. Still other kinds of queries will be described
in later chapters. In principle all such queries can be answered if we have in hand the joint proba-
bility distribution, written P(X; = 21, X2 = z9,..., X,, = z,,). Questions regarding independence
can be answered by factoring the joint probability distribution, and questions regarding conditional
probabilities can be answered by appropriate marginalization and normalization operations.

To simplify our notation, we will generally express discrete probability distributions in terms of
the probability mass function p(z1,zs,...,z,), defined as p(z1,2,...,2,) = P(X; = 21, Xy =
z2,..., X, = zp). We also will often use X to stand for {X;,...,X,}, and z to stand for
{z1,...,2,}, so that P(X; = z1,X9 = =z9,...,X,;, = z,) can be written more succinctly as
P(X = x), or, more succinctly still, as p(z). Note also that subsets of indices are allowed wherever
single indices appear. Thus if A = {2,4} and B = {3}, then X4 is shorthand for {X, X4}, Xp is
shorthand for {X3}, and P(X4 = 24| Xp = zp) is shorthand for P(X9 = x9, Xy = 24| X3 = x3).

While it is in fact our goal to maintain and manipulate representations of joint probabilities,
we must not be naive regarding the size of the representations. In the case of discrete random
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4 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATION

variables, one way to represent the joint probability distribution is as an n-dimensional table,
in which each cell contains the probability p(z1,x2,...,2,) for a specific setting of the variables
{z1,z9,...,2,}. If each variable z; ranges over r values, we must store and manipulate " numbers,
a quantity exponential in n. Given that we wish to consider models in which 7 is in the hundreds
or thousands, such a naive tabular representation is out.

Graphical models represent joint probability distributions more economically, using a set of
“local” relationships among variables. To define what we mean by “local” we avail ourselves of
graph theory.

2.1 Directed graphs and joint probabilities

Let us begin by considering directed graphical representations. A directed graph is a pair G(V, £),
where V is a set of nodes and £ a set of (oriented) edges. We will assume that G is acyclic.

Each node in the graph is associated with a random variable. Formally, we assume that there
is a one-to-one mapping from nodes to random variables, and we say that the random variables are
indezed by the nodes in the graph. Thus, for each 7 € V, there is an associated random variable Xj.
Letting V = {1,2,...,n}, as we often do for convenience, the set of random variables associated
with the graph is given by {X, Xs,..., X, }.

Although nodes and random variables are rather different formal objects, we will find it conve-
nient to ignore the distinction, letting the symbol “X;” refer both to a node and to its associated
random variable. Indeed, we will often gloss over the distinction between nodes and random vari-
ables altogether, using language such as “the marginal probability of node X;.”

Note that we will also sometimes use lower-case letters—that is, the realization variables x;—
to label nodes, further blurring distinctions. Given the strict one-to-one correspondence that we
enforce between the notation for random variables (X;) and their realizations (z;), however, this is
unlikely to lead to confusion.

It would be rather inconvenient to be restricted to the symbol “X” for random variables, and we
often use other symbols as well. Thus, we may consider examples in which sets such as {W, X, Y, Z}
or {X1, X5, X3,Y1,Y2, Y3} denote the set of random variables associated with a graph. As long as
it is clear which random variable is associated with which node, then formally the random variables
are “indexed” by the nodes in the graph as required, even though the indexing is not necessarily
made explicit in the notation.

Each node has a set of parent nodes, which can be the empty set. For each node 7 € V, we
let 7; denote the set of parents of node i. We also refer to the set of random variables X, as
the “parents” of the random variable X;, exploiting the one-to-one relationship between nodes and
random variables.

We use the locality defined by the parent-child relationship to construct economical represen-
tations of joint probability distributions. To each node i € V we associate a function f;(x;,zy,).
These functions are assumed to have the properties of conditional probability distributions: that
is, fi(xi, xx,;) is nonnegative and sums to one with respect to x; for each value of z,,. We impose no
additional constraint on these functions; in particular, there is no assumption of any relationship
between the functions at different nodes.
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Let V ={1,2,...,n}. Given a set of functions { fi(z;, zr,) : ¢ € V}, we define a joint probability
distribution as follows:

p(zy, o, .. ., 1,) 2 Hfz(:vl,xm) (2.1)
=1

That is, we define the joint probability as a product of the local functions at the nodes of the
graph. To verify that the definition obeys the constraints on a joint probability, we check: (1) the
right-hand side is clearly nonnegative; and (2) the assumption that each factor f;(z;,zr,) sums to
one with respect to x;, together with the assumption that the graph is acyclic, implies that the
right-hand side sums to one with respect to {z1,z2,...,z,}. In particular, we can sum “backward”
from the leaves of the graph, summing over the values of leaf nodes and removing the nodes from
the graph, obtaining a value of one at each step.!

By choosing specific numerical values for the functions f;(z;, z5,), we generate a specific joint
probability distribution. Ranging over all possible numerical choices for these functions, we define
a family of joint probability distributions associated with the graph G. It will turn out that this
family is a natural mathematical object. In particular, as we will see later in this chapter, this
family can be characterized not only in terms of products of local functions, but also more “graph-
theoretically” in terms of the patterns of edges in the graph. It is this relationship between the
different ways to characterize the family of probability distributions associated with a graph that
is the key to the underlying theory of probabilistic graphical models.

With a definition of joint probability in hand, we can begin to address the problem of calcu-
lating conditional probabilities under this joint. Suppose in particular that we calculate p(z; | zr,)
under the joint probability in Eq. (2.1). What, if any, is the relationship between this conditional
probability and f;(z;,zr,), a function which has the properties of a conditional probability but is
otherwise arbitrary? As we ask the reader to verify in Exercise 77, these functions are in fact one
and the same. That is, under the definition of joint probability in Eq. (2.1), the function f;(z;, ;)
is necessarily the conditional probability of z; given z.,. Put differently, we see that the functions
fi(zi, ;) must form a consistent set of conditional probabilities under a single joint probability.
This is a pleasant and somewhat surprising fact given that we can define the functions f;(x;, zr,)
arbitrarily.

Given that functions f;(z;,zr,) are in fact conditional probabilities, we henceforth drop the f;
notation and write the definition in terms of p(z; | z,,):2

n

p(xy, o, ..., xy) = l_Ip(gcZ | Tr,). (2.2)
1=1

f this point is not clear now, it will be clear later when we discuss inference algorithms.

2Eq. (2.2) is often used as the definition of the joint probability for a directed graphical model. Such a definition
risks circularity, however, because it is not clear in advance that an arbitrary collection of conditional probabilities,
{p(zi|z=~;)}, are necessarily conditionals under the same joint probability. Moreover, it is not clear in advance that
an arbitrary collection of conditional probabilities is internally consistent. We thus prefer to treat Eq. (2.1) as the
definition and view Eq. (2.2) as a consequence. Having made this cautionary note, however, for simplicity we refer
to Eq. (2.2) as the “definition” of joint probability in the remainder of the chapter.
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X
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X X,

Figure 2.1: An example of a directed graphical model.

We refer to the conditional probabilities p(z; | zx,) as the local conditional probabilities associated
with the graph G. These functions are the building blocks whereby we synthesize a joint distribution
associated with the graph G.

Figure 2.1 shows an example on six nodes. According to the definition, we obtain the joint
probability as follows:

p(x1, 22,23, 74,75, 26) = p(21)p(w2 | 21)p(23 | 21)p(04 | 22)p(25 | 3)p(T6 | 22, T5), (2.3)

by taking the product of the local conditional distributions.

Let us now return to the problem of representational economy. Are there computational ad-
vantages to representing a joint probability as a set of local conditional probabilities?

Each of the local conditional probabilities must be represented in some manner. In later chapters
we will consider a number of possible representations for these probabilities; indeed, this represen-
tational issue is one of the principal topics of the book. For concreteness, however, let us make a
simple choice here. For a discrete node X;, we must represent the probability that node X; takes
on one of its possible values, for each combination of values for its parents. This can be done using
a table. Thus, for example, the probability p(x1) can be represented using a one-dimensional table,
and the probability p(z¢ | 2, z5) can be represented using a three-dimensional table, one dimension
for each of 29,25 and xg. The entire set of tables for our example is shown in Figure 2.2, where
for simplicity we have assumed that the nodes are binary-valued. Filling these tables with specific
numerical values picks out a specific distribution in the family of distributions defined by Eq. (2.3).

In general, if m; is the number of parents of node X;, we can represent the conditional probability
associated with node X; with an (m; + 1)-dimensional table. If each node takes on r values, then
we require a table of size ™t

We have exchanged exponential growth in n, the number of variables in the domain, for expo-
nential growth in m;, the number of parents of individual nodes X; (the “fan-in”). This is very
often a happy exchange. Indeed, in many situations the maximum fan-in in a graphical model is
relatively small and the reduction in complexity can be enormous. For example, in hidden Markov
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X2

X3 1

Figure 2.2: The local conditional probabilities represented as tables. Each of the nodes is assumed
to be binary-valued. Each of these tables can be filled with arbitrary nonnegative numerical values,
subject to the constraint that they sum to one for given fixed values of the parents of a node. Thus,
each column in each table must sum to one.
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models (see Chapter 12), each node has at most a single parent, while the number of nodes n can
be in the thousands.

The fact that graphs provide economical representations of joint probability distributions is
important, but it is only a first hint of the profound relationship between graphs and probabilities.
As we show in the remainder of this chapter and in the following chapter, graphs provide much more
than a data structure; in particular, they provide inferential machinery for answering questions
about probability distributions.

2.1.1 Conditional independence

An important class of questions regarding probability distributions has to do with conditional inde-

pendence relationships among random variables. We often want to know whether a set of variables

is independent of another set, or perhaps conditionally independent of that set given a third set.

Independence and conditional independence are important qualitative aspects of probability theory.
By definition, X 4 and Xpg are independent, written X 4 1L X g, if:

p(za,zB) = p(za)p(zp), (2.4)
and X4 and X¢ are conditionally independent given Xp, written X4 1l X | Xp, if:

p(za,zc|zp) =plralzp)plzc|zp), (2.5)
or, alternatively,
p(zalzp,zc) =plzalzp), (2.6)
for all p such that p(xp) > 0. Thus, to establish independence or conditional independence we
need to factor the joint probability distribution.

Graphical models provide an intuitively appealing, symbolic approach to factoring joint prob-
ability distributions. The basic idea is that representing a probability distribution within the
graphical model formalism involves making certain independence assumptions, assumptions which
are embedded in the structure of the graph. From the graphical structure other independence rela-
tions can be derived, reflecting the fact that certain factorizations of joint probability distributions
imply other factorizations. The key advantage of the graphical approach is that such factorizations
can be read off from the graph via simple graph search algorithms. We will describe such an al-
gorithm in Section 2.1.2; for now let us try to see in general terms why graphical structure should
encode conditional independence.

The chain rule of probability theory allows a probability mass function to be written in a general
factored form, once a particular ordering for the variables is chosen. For example, a distribution
on the variables { X1, Xo,..., Xs} can be written as:

p(xla XT2,X3,T4,T5, $6)
= p(x1)p(w2 | z1)p(x3 | 21, 22)p(T4 | 1, T2, 33)P(05 | X1, T2, T3, T4)P(T6 | T1, T2, T3, T4, T5),

where we have chosen the usual arithmetic ordering of the nodes. In general, we have:

n
p(z1,22,. .., 2n) =HP($¢|5€1,-~-7%71)- (2.7)
i=1
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Comparing this expansion, which is true for an arbitrary probability distribution, with the defi-
nition in Eq. (2.2), we see that our definition of joint probability involves dropping some of the
conditioning variables in the chain rule. Inspecting Eq. (2.6), it seems natural to try to interpret
these missing variables in terms of conditional independence. For example, the fact that p(z4|z2)
appears in Eq. (2.3) in the place of p(x4 | z1, z2, z3) suggests that we should expect to find that Xy
is independent of X; and X3 given Xs.

Taking this idea a step further, we might posit that missing variables in the local conditional
probability functions correspond to missing edges in the underlying graph. Thus, p(z4 | x2) appears
as a factor in Eq. (2.3) because there are no edges from X; and X3 to Xy. Transferring the
interpretation from missing variables to missing edges we obtain a probabilistic interpretation
for the missing edges in the graph in terms of conditional independence. Let us formalize this
interpretation.

Define an ordering I of the nodes in a graph G to be topological if for every node ¢ € V the nodes
in 7; appear before i in the ordering. For example, the ordering I = (1,2,3,4,5,6) is a topological
ordering for the graph in Figure 2.1. Let v; denote the set of all nodes that appear earlier than
i in the ordering I, excluding the parent nodes m;. For example, v5 = {1,2,4} for the graph in
Figure 2.1.

As we ask the reader to verify in Exercise 77, the set v; necessarily contains all ancestors of
node 4 (excluding the parents 7;), and may contain other nondescendant nodes as well.

Given a topological ordering I for a graph G we associate to the graph the following set of basic
conditional independence statements:

{X; X, | X} (2.8)

for 4 € V. Given the parents of a node, the node is independent of all earlier nodes in the ordering.
For example, for the graph in Figure 2.1 we have the following set of basic conditional indepen-
dencies:

X |0 (2.9)

Xl | X (2.10)

XUXy | X, (2.11)
Xgl{X1, X3} | X (2.12)

Xs L {X), X0, Xa} | X3 (2.13)
Xl {X1, X5, X4} | {Xo, X5, (2.14)

where the first two statements are vacuous.

Is this interpretation of the missing edges in terms of conditional independence consistent with
our definition of the joint probability in Eq. (2.2)7 The answer to this important question is “yes,”
although proof will be again postponed until later. Let us refer to our example, however, to provide
a first indication of the basic issues.

Let us verify that X; and X3 are independent of X4 given Xy by direct calculation from the
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joint probability in Eq. (2.3). We first compute the marginal probability of {X;, X9, X3, X4 }:

p($1,.’L‘2,.’L‘3,LE4) = Zzp($1,$2,$3,$4,$5,$6) (215)
T5 Tg

= > p(@)p(@z |z1)p(zs | @1)p(es | 22)p(s | 23)p(ws | 22, 05)  (2.16)
T5 Tg

= p(x1)p(w2 | @1)p(as | w1)p(@a | w2) Y plws |w3) Y plws | z,25)  (2.17)

= p(z1)p(x2 |21)p(zs | 21)p(24 | 72), (2.18)
and also compute the marginal probability of { X, X9, X3}:

p(w1,x2,@3) = Y plai)p(ws |21)p(ws |21)p(ws| 72) (2.19)
= plz)p(z2|z1)p(es |21). (2.20)

Dividing these two marginals yields the desired conditional:

p(za |21, 2, 23) = p(34 | 22), (2.21)

which demonstrates the conditional independence relationship X4 1l { X1, X3} | Xo.

We can readily verify the other conditional independencies in Eq. (2.14), and indeed it is not
hard to follow along the lines of the example to prove in general that the conditional indepen-
dence statements in Eq. (2.8) follow from the definition of joint probability in Eq. (2.2). Thus
we are licensed to interpret the missing edges in the graph in terms of a basic set of conditional
independencies.

More interestingly, we might ask whether there are other conditional independence statements
that are true of such joint probability distributions, and whether these statements also have a
graphical interpretation.

For example, for the graph in Figure 2.1 it turns out that X; is independent of Xy given
{X3, X3}. This is not one of the basic conditional independencies in the list in Eq. (2.14), but it is
implied by that list. We can verify this conditional independence by algebra. In general, however,
such algebraic calculations can be tedious and it would be appealing to find a simpler method for
checking conditional independencies. Moreover, we might wish to write down all of the conditional
independencies that are implied by our basic set. Is there any way to do this other than by trying
to factorize the joint distribution with respect to all possible triples of subsets of the variables?

A solution to the problem is suggested by examining the graph in Figure 2.3. We see that the
nodes X5 and X3 separate X from Xg, in the sense that all paths between X and Xg pass through
X9 or X3. Moreover, returning to the list of basic conditional independencies in Eq. (2.14), we see
that the parents X, block all paths from the node X; to the earlier nodes in a topological ordering.
This suggests that the notion of graph separation can be used to derive a graphical algorithm for
inferring conditional independence.

We will have to take some care, however, to make the notion of “blocking” precise. For example,
Xy is not necessarily independent of X3 given X; and Xg, as would be suggested by a naive
interpretation of “blocking” in terms of graph separation.
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X4
X
X
X, 6
X X

Figure 2.3: The nodes X5 and X3 separate X; from Xg.

We will pursue the analysis of blocking and conditional independence in the following section,
where we provide a general graph search algorithm to solve the problem of finding implied inde-
pendencies.

Let us make a final remark on the definition of the set of basic conditional independence state-
ments in Eq. (2.8). Note that this set is dependent on both the graph G and on an ordering I. It
is also possible to make an equivalent definition that is defined only in terms of the graph G. In
particular, recall that the set v; necessarily includes all ancestors of i (excluding the parents ;).
Note that the set of ancestors is independent of the ordering I. We thus might consider defining
a basic set of independence statements that assert the conditional independence of a node from
its ancestors, conditional on its parents. It turns out that the independence statements in this set
hold if and only if the independence statements in Eq. (2.8) hold. As we ask the reader to verify
in Exercise 77, this equivalence follows easily from the “Bayes ball” algorithm that we present in
the following section.

The definition in Eq. (2.8) was chosen so as to be able to contrast the definition of the joint
probability in Eq. (2.2) with the general chain rule in Eq. (2.7). An order-independent definition of
the basic set of conditional independencies is, however, an arguably more elegant characterization
of conditional independence in a graph, and it will take center stage in our more formal treatment
of conditional independence and Markov properties in Chapter 16.

2.1.2 Conditional independence and the Bayes ball algorithm

The algorithm that we describe is called the Bayes ball algorithm, and it has the colorful inter-
pretation of a ball bouncing around a graph. In essence it is a “reachability” algorithm, under a
particular definition of “separation.”

Our approach will be to first discuss the conditional independence properties of three canonical,
three-node graphs. We then embed these properties in a protocol for the bouncing ball; these are
the local rules for a graph-search algorithm.

Two final remarks before we describe the algorithm. In our earlier discussion in Section 2.1.1,
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X Y Z X Y Z

O—0—0 OU—@—0

(a) (b)

Figure 2.4: (a) The missing edge in this graph corresponds to the conditional independence state-
ment X 1l Z|Y. As suggested in (b), conditioning on Y has the graphical interpretation of blocking
the path between X and Z.

and also in the current section, we presented conditional independence as being subservient to the
basic definition in Eq. (2.2) of the joint probability. That is, we justified an assertion of conditional
independence by factorizing Eq. (2.2) or one of its marginals. This is not the only point of view
that we can take, however. Indeed it turns out that this relationship can be reversed, with Eq. (2.2)
being derived from a characterization of conditional independence, and we will also introduce this
point of view in this section. By the end of the current section we hope to have clarified what is
meant by a “characterization of conditional independence.”

On a related note, let us recall a remark that was made earlier, which is that to each graph we
associate a family of joint probability distributions. In terms of the definition of joint probability in
Eq. (2.2), this family arises as we range over different choices of the numerical values of the local
conditional probabilities p(z; | ;). Our work in the current section can be viewed as providing an
alternative, more qualitative, characterization of a family of probability distributions associated to
a given graph. In particular we can view the conditional independence statements generated by the
Bayes ball algorithm as generating a list of constraints on probability distributions. Those joint
probabilities that meet all of the constraints in this list are in the family, and those that fail to meet
one or more constraints are out. It is then an interesting question as to the relationship between
this characterization of a family of probability distributions in terms of conditional independence
and the more numerical characterization of a family in terms of local conditional probabilities. This
is the topic of Section 2.1.3.

Three canonical graphs

As we discussed in Section 2.1.1, the missing edges in a directed graphical model can be interpreted
in terms of conditional independence. In this section, we flesh out this interpretation for three
simple graphs.

Consider first the graph shown in Figure 2.4, in which X, Y, and Z are connected in a chain.
There is a missing edge between X and Z, and we interpret this missing edge to mean that X and
Z are conditionally independent given Y; thus:

X1Z|Y. (2.22)

Moreover, we assert that there are no other conditional independencies associated with this graph.
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Let us justify the first assertion, showing that X 1l Z|Y can be derived from the assumed form
of the joint distribution for directed models Eq. (2.2). We have:

p(z,y,2) = p(x)ply | z)p(2 | y), (2.23)
which implies:
_ plw,y,2)
p(z|z,y) = oy (2.24)
— pl@ply|z)p(2|y)
= o (2.25)
= p(z]y), (2.26)

which establishes the independence.

The second assertion needs some explanation. What do we mean when we say that “there are no
other conditional independencies associated with this graph”? It is important to understand that
this does not mean that no further conditional independencies can arise in any of the distributions
in the family associated with this graph (that is, distributions that have the factorized form in
Eq. (2.23)). There are certainly some distributions which exhibit additional independencies. For
example, we are free to choose any local conditional probability p(y | z); suppose that we choose a
distribution in which the probability of y happens to be the same no matter the value of x. We
can readily verify that with this particular choice of p(y | z), we obtain X 1L Y.

The key point, then, is that Figure 2.4 does not assert that X and Y are necessarily depen-
dent (i.e., not independent). That is, edges that are present in a graph do not necessarily imply
dependence (whereas edges that are missing do necessarily imply independence). But the “lack
of independence” does have a specific interpretation: the general theory that we present in Chap-
ter 16 will imply that if a statement of independence is not made, then there exists at least one
distribution for which that independence relation does not hold. For example, it is easy to find
distributions that factorize as in Eq. (2.23) and in which X is not independent of Y.

In essence, the issue comes down to a difference between universally quantified statements
and existentially quantified statements, with respect to the family of distributions associated with
a given graph. Asserted conditional independencies always hold for these distributions. Non-
asserted conditional independencies sometimes fail to hold for the distributions associated with a
given graph, but sometimes they do hold. This of course has important consequences for algorithm
design. In particular, if we build an algorithm that is based on conditional independencies, the
algorithm will be correct for all of the distributions associated with the graph. An algorithm based
on the absence of conditional independencies will sometimes be correct, sometimes not.

For an intuitive interpretation of the graph in Figure 2.4, let X be the “past,” Y be the “present,”
and Z be the “future.” Thus our conditional independence statement X 1l 7 |Y translates into the
statement that the past is independent of the future given the present, and we can interpret the
graph as a simple classical Markov chain.

Our second canonical graph is shown in Figure 2.5. We associate to this graph the conditional
independence statement:

XUZY, (2.27)
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Y Y

(a) (b)

Figure 2.5: (a) The missing edge in this graph corresponds to the conditional independence state-
ment X 1l Z|Y. As suggested in (b), conditioning on Y has the graphical interpretation of blocking
the path between X and Z.

and once again we assert that no other conditional independencies associated with this graph.
A justification of the conditional independence statement follows from the factorization rule.
Thus:

p(z,y,2) = ply)p(z |y)p(z | y) (2.28)
implies:
_ pyp(z|y)p(z|y)
p(z,z|y) = e (2.29)
= plz|y)p(z|y), (2.30)

which means that X and Z are independent given Y.

An intuitive interpretation for this graph can be given in terms of a “hidden variable” scenario.
Let X be the variable “shoe size,” and let Z be the variable “amount of gray hair.” In the general
population, these variables are strongly dependent, because children tend to have small feet and no
gray hair. But if we let Y be “chronological age,” then we might be willing to assert that X 1. Z|Y’;
that is, given the age of a person, there is no further relationship between the size of their feet
and the amount of gray hair that they have. The hidden variable Y “explains” all of the observed
dependence between X and Z.

Note once again we are making no assertions of dependence based on Figure 2.5. In particular,
we do not necessarily assume that X and Z are dependent because they both “depend” on the
variable Y. (But we can assert that there are at least some distributions in which such dependencies
are to be found).

Finally, the most interesting canonical graph is that shown in Figure 2.6. Here the conditional
independence statement that we associate with the graph is actually a statement of marginal
independence:

X1 Z, (2.31)
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O O

(a) (b)

Figure 2.6: (a) The missing edge in this graph corresponds to the marginal independence statement
X 1 Z. Asshown in (b), this is a statement about the subgraph defined on X and Z. Note moreover
that conditioning on Y does not render X and Z independent, as would be expected from a naive
characterization of conditional independence in terms of graph separation.

which we leave to the reader to verify in terms of the form of the joint probability. Once again, we
assert that no other conditional independencies hold. In particular, note that we do not assert any
conditional independence involving all three of the variables.

The fact that we do not assert that X is independent of Z given Y in Figure 2.6 is an important
fact that is worthy of some discussion. Based on our earlier discussion, we should expect to be
able to find scenarios in which a variable X is independent of another variable Z, given no other
information, but once a third variable Y is observed these variables become dependent. Indeed,
such a scenario is provided by a “multiple, competing explanation” interpretation of Figure 2.6.

Suppose that Bob is waiting for Alice for their noontime lunch date, and let {late = “yes” }
be the event that Alice does not arrive on time. One explanation of this event is that Alice has
been abducted by aliens, which we encode as {aliens = “yes”} (see Figure 2.7). Bob uses Bayes’
theorem to calculate the probability P(aliens = “yes” | late = “yes”) and is dismayed to find that
it is larger than the base rate P(aliens = “yes”). Alice has perhaps been abducted by aliens.
Now let {watch = “no”} denote the event that Bob forgot to set his watch to reflect daylight

savings time. Bob now calculates P(aliens = “yes” |late = “yes”, watch = “no”) and is relieved
to find that the probability of {aliens = “yes”} has gone down again. The key point is that
P(aliens = “yes” |late = “yes”) # P(aliens = “yes” |late = “yes”, watch = “no”), and thus

aliens is not independent of watch given late.

On the other hand, it is reasonable to assume that aliens is marginally independent of watch,;
that is, Bob’s watch-setting behavior and Alice’s experiences with aliens are presumably unrelated
and we would evaluate their probabilities independently, outside of the context of the missed lunch
date.

This kind of scenario is known as “explaining-away” and it is commonplace in real-life situations.
Moreover, there are other such scenarios (e.g., those involving multiple, synergistic explanations)
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aliens watch

late

Figure 2.7: A graph representing the fact that Alice is late for lunch with Bob, with two possible
explanations—that she has been abducted by aliens and that Bob has forgotten to set his watch
to reflect daylight savings time.

in which variables that are marginally independent become dependent when a third variable is
observed. We clearly do not want to assume in general that X is independent of Z given Y in
Figure 2.6.

Graph separation

We would like to forge a general link between graph separation and assertions of conditional inde-
pendence. Doing so would allow us to use a graph-search algorithm to answer queries regarding
conditional independence.

Happily, the graphs in Figure 2.4 and Figure 2.5 exhibit situations in which naive graph sepa-
ration corresponds directly to conditional independence. Thus, as shown in Figure 2.4(b), shading
the Y node blocks the path from X to Z, and this can be interpreted in terms of the conditional
independence of X and Z given Y. Similarly, in Figure 2.5(b), the shaded Y node blocks the path
from X to Z, and this can be interpreted in terms of the conditional independence of X and Z
given Y.

On the other hand, the graph in Figure 2.6 involves a case in which naive graph separation
and conditional independence are opposed. It is when the node Y is unshaded that X and Z are
independent; when Y is shaded they become dependent. If we are going to use graph-theoretic
ideas to answer queries about conditional independence, we need to pay particular attention to this
case.

The solution is straightforward. Rather than relying on “naive” separation, we define a new
notion of separation that is more appropriate to our purposes. This notion is known as d-separation,
for “directed separation.” We provide a formal discussion of d-separation in Chapter 16; in the
current chapter we provide a simple operational definition of d-separation in terms of the Bayes
ball algorithm.
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Figure 2.8: We develop a set of rules to specify what happens when a ball arrives from a node X
at a node Y, en route to a node Z.

The Bayes ball algorithm

The problem that we wish to solve is to decide whether a given conditional independence statement,
X4l Xp|Xc, is true for a directed graph G. Formally this means that the statement holds for
every distribution that factors according to G, but let us not worry about formal issues for now,
and let our intuition—aided by the three canonical graphs that we have already studied—help us
to define an algorithm to decide the question.

The algorithm is a “reachability” algorithm: we shade the nodes X, place a ball at each of
the nodes X 4, let the balls bounce around the graph according to a set of rules, and ask whether
any of the balls reach one of the nodes in Xpg. If none of the balls reach Xp, then we assert that
Xall Xp| X is true. If a ball reaches Xp then we assert that X4 1l Xp| X¢ is not true.

The basic problem is to specify what happens when a ball arrives at a node Y from a node X,
en route to a node Z (see Figure 2.8). Note that we focus on a particular candidate destination
node Z, ignoring the other neighbors that ¥ may have. (We will be trying all possible neighbors,
but we focus on one at a time). Note also that the balls are allowed to travel in either direction
along the edges of the graph.

We specify these rules by making reference to our three canonical graphs. In particular, referring
to Figure 2.4, suppose that ball arrives at Y from X along an arrow oriented from X to Y, and we
are considering whether to allow the ball to proceed to Z along an arrow oriented from Y to Z.
Clearly, if the node Y is shaded, we do not want the ball to be able to reach Z, because X 1L Z | Y
for this graph. Thus we require the ball to be “blocked” in this case. Similarly, if a ball arrives
at Y from Z, we do not allow the ball to proceed to X; again the ball is blocked. We summarize
these rules with the diagram in Figure 2.9(a).
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Figure 2.9: The rules for the case of one incoming arrow and one outgoing arrow. (a) When the
middle node is shaded, the ball is blocked. (b) When the middle node is unshaded, the ball passes
through.

On the other hand, if Y is not shaded, then we want to allow the ball to reach Z from X
(and similarly X from Z), because we do not want to assert conditional independence in this case.
Thus we have the diagram in Figure 2.9(b), which shows the ball “passing through” when Y is not
shaded.

Similar considerations apply to the graph in Figure 2.5, where the arrows are oriented outward
from the node Y. Once again, if Y is shaded we do not want the ball to pass between X and Z,
thus we require it to be blocked at Y. On the other hand, if Y is unshaded we allow the ball to
pass through. These rules are summarized in Figure 2.10.

Finally, we consider the graph in Figure 2.6 in which both of the arrows are oriented towards
node Y (this is often referred to as a “v-structure”). Here we simply reverse the rules. Thus, if Y
is not shaded we require the ball to be blocked, reflecting the fact that X and Z are marginally
independent. On the other hand, if Y is shaded we allow the ball to pass through, reflecting the
fact that we do not assert that X and Z are conditionally independent given Y. The rules for this
graph are given in Figure 2.11.

We also intend for these rules to apply to the case in which the source node and the destination
node (X and Z, respectively) are the same. That is, when a ball arrives at a node, we consider
each possible outgoing edge in turn, including the edge the ball arrives on.

Consider first the case in which the ball arrives along an edge that is oriented from X to Y. In
this case, the situation is effectively one in which a ball arrives on the head of an arrow and departs
on the head of an arrow. This situation is covered by Figure 2.11. We see that the ball should be
blocked if the node is unshaded and should “pass through” if the node is shaded, a result that is
summarized in Figure 2.12. Note that the action of “passing through” is better described in this
case as “bouncing back.”

The remaining situation is the one in which the ball arrives along an edge that is oriented from
Y to X. The ball arrives on the tail of an arrow and departs on the tail of an arrow, a situation
which is covered by Figure 2.10. We see that the ball should be blocked if the node is shaded and
should bounce back if the node is unshaded, a result that is summarized in Figure 2.13.

Let us consider some examples. Figure 2.14 shows a chain-structured graphical model (a Markov
chain) on a set of nodes { Xy, Xo,..., X, }. The basic conditional independencies for this graph (cf.
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Figure 2.10: The rules for the case of two outgoing arrows. (a) When the middle node is shaded,
the ball is blocked. (b) When the middle node is unshaded, the ball passes through.
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Figure 2.11: The rules for the case of two outgoing arrows. (a) When the middle node is shaded,
the ball passes through. (b) When the middle node is unshaded, the ball is blocked.
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Figure 2.12: The rules for this case follow from the rules in Figure 2.11. (a) When the ball arrives
at an unshaded node, the ball is blocked. (b) When the ball arrives at a shaded node, the ball
“passes through,” which effectively means that it bounces back.
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Figure 2.13: The rules for this case follow from the rules in Figure 2.10. (a) When the ball arrives
at an unshaded node, the ball “passes through,” which effectively means that it bounces back. (b)
When the ball arrives at a shaded node, the ball is blocked.

Figure 2.14: The separation of X3 from X, given its parent, Xs, is a basic independence statement
for this graph. But conditioning on X3 also separates any subset of X;, Xy from any subset of
X4, X5, and all of these separations also correspond to conditional independencies.



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 21

X4
X
\ X
X, - 6
N
< > g
X, X<

Figure 2.15: A ball arriving at X from X; is blocked from continuing on to X,. Also, a ball
arriving at Xg from X5 is blocked from continuing on to Xs.

Eq. (2.8)) are the conditional independencies:
Xi_|_1J_|_{X1,X2,...,Xi_1}|Xi. (232)

There are, however, many other conditional independencies that are implied by this basic set, such
as:
X1 X5 | Xy, X1 X5 | X, XL X5 [ { Xy, X4}, (2.33)

each of which can be established from algebraic manipulations starting from the definition of the
joint probability. Indeed, in general we can obtain the conditional independence of any subset of
“future” nodes from any subset of “past” nodes given any subset of nodes that separates these
subsets. This is clearly the set of conditional independence statements picked out by the Bayes ball
algorithm; the ball is blocked when it arrives at X3 from either the left or the right.

Consider the graph in Figure 2.1 and consider the conditional independence X4 1l { X7, X3} | Xo
which we demonstrated to hold for this graph (this is one of the basic set of conditional indepen-
dencies for this graph; recall Egs. 2.9 through eq:example-set-of-basic-CI). Using the Bayes ball
approach, let us consider whether it is possible for a ball to arrive at node X, from either node X3
or node X3, given that Xy is shaded (see Figure 2.15). To arrive at X4, the ball must pass through
X5. One possibility is to arrive at Xy from X;, but the path through to X4 is blocked because of
Figure 2.9(a). The other possibility is to arrive at Xo via Xg. However, any ball arriving at Xg
must do so via X5, and such a ball is blocked at X because of Figure 2.11(b).

Note that balls can also bounce back at Xs and Xg, but this provides no help with respect to
arriving at Xj.

We claimed in Section 2.1.1 that X; 1 X¢ |{X3, X3}, a conditional independence that is not in
the basic set. Consider a ball starting at X; and traveling to X3 (see Figure 2.16). Such a ball
cannot pass through to X5 because of Figure 2.9(a). Similarly, a ball cannot pass from X; through
X (to either X or Xg) because of Figure 2.9(a).
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X4

Figure 2.16: A ball cannot pass through X5 to Xg nor through X3.
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Figure 2.17: A ball can pass from Xy through X4 to X5, and thence to X3.

We also claimed in Section 2.1.1 that it is not the case that Xo Il X3 |{X;, Xs}. To establish this
claim we note that a ball can pass through Xs to Xg because of Figure 2.9(b), and (see Figure 2.17)
can then pass from through X¢ to X5, on the basis of Figure 2.11(a). The ball then passes through
X5 and arrives at X3. Intuitively (and loosely), the observation of Xg implies the possibility of an
“explaining-away” dependency between Xy and X5. Clearly X5 and X3 are dependent, and thus
X5 and X3 are dependent.

Finally, consider again the scenario with Alice and Bob, and suppose that Bob does not actually
observe that Alice fails to show at the hour that he expects her. Suppose instead that Bob is an
important executive and there is a security guard for Bob’s building who reports to Bob whether a
guest has arrived or not. We augment the model to include a node report for the security guard’s
report and, as shown in Figure 2.18, we hang this node off of the node late. Now observation of
report is essentially as good as observation of late, particularly if we believe that the security
guard is reliable. That is, we should still have aliens Il watch, and moreover we should not assert



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 23

aliens watch

late

report

Figure 2.18: An extended graphical model for the Bob-Alice scenario, including a node report for
the security guard’s report.

aliens | watch |report. That is, if the security guard reports that Alice has not arrived, then
Bob worries about aliens and subsequently has his worries alleviated when he realizes that he has
forgotten about daylight savings time.

This pattern is what the Bayes ball algorithm delivers. Consider first the marginal independence
aliens |l watch. As can be verified from Figure 2.19(a), a ball that starts at aliens is blocked from
passing though late directly to watch. Moreover, although a ball can pass through late to report,
such a ball dies at report. Thus the ball cannot arrive at watch.

Consider now the situation when report is observed (Figure 2.19(b)). As before a ball that
starts at aliens is blocked from passing though late directly to watch; however, a ball can pass
through late to report. At this point Figure 2.12(b) implies implies that the ball bounces back at
report. The ball can then pass through late on the path from report to watch. Thus we cannot
conclude independence of aliens and watch in the case that report is observed.

Some further thought will show that it suffices for any descendant of late to be observed in
order to enable the explaining-away mechanism and render aliens and watch dependent.

Remarks

We hope that the reader agrees that the Bayes ball algorithmn is a simple, intuitively-appealing
algorithm for answering conditional independence queries. Of course, we have not yet provided a
fully-specified algorithm, because there are many implementational details to work out, including
how to represent multiple balls when X4 and Xp are not singleton sets, how to make sure that
the algorithm considers all possible paths in an efficient way, how to make sure that the algorithm
doesn’t loop, etc. But these details are just that—details—and with a modicum of effort the reader
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Figure 2.19: (a) A ball cannot pass from aliens to watch when no observations are made on late
or report. (b) A ball can pass from aliens to watch when report is observed.

can work out such an implementation. Our main interest in the Bayes ball algorithm is to provide
a handy tool for quick evaluation of conditional independence queries, and to provide concrete
support for the more formal discussion of conditional independence that we undertake in the next
section.

2.1.3 Characterization of directed graphical models

A key idea that has emerged in this chapter is that a graphical model is associated with a family
of probability distributions. Moreover, as we now discuss, this family can be characterized in two
equivalent ways.

Let us define two families and then show that they are equivalent. Actually we defer the proof
of equivalence until Chapter 16, but we state the theorem here and discuss its consequences.

The first family is defined via the definition of joint probability for directed graphs, which we
repeat here for convenience. Thus for a directed graph G, we have:

n

p(z1,T2,...,7,) = I_Ip(acZ | Tr,). (2.34)
i=1

Let us now consider ranging over all possible numerical values for the local conditional probabilities
{p(zi|zx,)}, imposing only the restriction that these functions are nonnegative and normalized.
For discrete variables this would involve ranging over all possible real-valued tables on nodes x;
and their parents. While in practice, we often want to choose simplified parameterizations instead
of these tables, for the general theory we must range over all possible tables.
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Figure 2.20: The list in (b) shows all of the conditional independencies that hold for the graph in

(a).

For each choice of numerical values for the local conditional probabilities we obtain a partic-
ular probability distribution p(zi,...,z,). Ranging over all such choices we obtain a family of
distributions that we refer to as D;.

Let us now consider an alternative way to generate a family of probability distributions associ-
ated with a graph G. In this approach we will make no use of the numerical parameterization of
the joint probability in Eq. (2.34)—this approach will be more “qualitative.”

Given a graph G we can imagine making a list of all of the conditional independence statements
that characterize the graph. To do this, imagine running the Bayes ball algorithm for all triples of
subsets of nodes in the graph. For any given triple X 4, Xp and X, the Bayes ball algorithmn tells
us whether or not X 4 1l X | X¢ should be included in the list associated with the graph.

For example, Figure 2.20 shows a graph, and all of its associated conditional independence
statements. In general such lists can be significantly longer than the list in this example, but they
are always finite.

Now consider all possible joint probability distributions p(x1, ..., %), where we make no restric-
tions at all. Thus, for discrete variables, we consider all possible n-dimensional tables. For each
such distribution, imagine testing the distribution against the list of conditional independencies
associated with the graph G. Thus, for each conditional independence statement in the list, we test
whether the distribution factorizes as required. If it does, move to the next statement. If it does
not, throw out this distribution and try a new distribution. If a distribution passes all of the tests
in the list, we include that distribution in a family that we denote as Ds.

In Chapter 16, we state and prove a theorem that shows that the two families D1 and Dy are the
same family. This theorem, and an analogous theorem for undirected graphs, provide a strong and
important link between graph theory and probability theory and are at the core of the graphical
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model formalism. They show that the characterizations of probability distributions via numerical
parameterization and conditional independence statements are one and the same, and allow us to
use these characterizations interchangeably in analyzing models and defining algorithms.

2.2 Undirected graphical models

The world of graphical models divides into two major classes—those based on directed graphs
and those based on undirected graphs.® In this section we discuss undirected graphical models,
also known as Markov random fields, and carry out a development that parallels our discussion
of the directed case. Thus we will present a factorized parameterization for undirected graphs,
a conditional independence semantics, and an algorithm for answering conditional independence
queries. There are many similarities to the directed case—and much of our earlier work on directed
graphs carries over—but there are interesting and important differences as well.

An undirected graphical model is a graph G(V, &), where V is a set of nodes that are in one-
to-one correspondence with a set of random variables, and where £ is a set of undirected edges.
The random variables can be scalar-valued or vector-valued, discrete or continuous. Thus we will
be concerned with graphical representations of a joint probability distribution, p(z1,z2,...,z,)—a
mass function in the discrete case and a density function in the continuous case.

2.2.1 Conditional independence

As we saw in Section 2.1.3, there are two equivalent characterizations of the class of joint probability
distributions associated with a directed graph. Our presentation of directed graphical models began
(in Section 2.1) with the factorized parameterization and subsequently motivated the conditional
independence characterization. We could, however, have turned this discussion around and started
with a set of conditional independence axioms, subsequently deriving the parameterization. In the
case of undirected graphs, indeed, this latter approach is the one that we will take. For undirected
graphs, the conditional independence semantics is the more intuitive and straightforward of the
two (equivalent) characterizations.

To specify the conditional independence properties of a graph, we must be able to say whether
Xall X¢ | Xp is true for the graph, for arbitrary index subsets A, B, and C. For directed graphs
we defined the conditional independence properties operationally, via the Bayes ball algorithm (we
provide a corresponding declarative definition in Chapter 16). For undirected graphs we go straight
to the declarative definition.

We say that X4 is independent of X¢ given Xp if the set of nodes Xp separates the nodes
X4 from the nodes X¢, where by “separation” we mean naive graph-theoretic separation (see
Figure 2.21). Thus, if every path from a node in X4 to a node in X¢ includes at least one node
in Xp, then we assert that X4 1l X¢ | Xp holds; otherwise we assert that X4 Il X¢ | Xp does not
hold.

3There is also a generalization known as chain graphs that subsumes both classes. We will discuss chain graphs
in Chapter ?7.



