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model formalism. They show that the characterizations of probability distributions via numerical
parameterization and conditional independence statements are one and the same, and allow us to
use these characterizations interchangeably in analyzing models and defining algorithms.

2.2 Undirected graphical models

The world of graphical models divides into two major classes—those based on directed graphs
and those based on undirected graphs.® In this section we discuss undirected graphical models,
also known as Markov random fields, and carry out a development that parallels our discussion
of the directed case. Thus we will present a factorized parameterization for undirected graphs,
a conditional independence semantics, and an algorithm for answering conditional independence
queries. There are many similarities to the directed case—and much of our earlier work on directed
graphs carries over—but there are interesting and important differences as well.

An undirected graphical model is a graph G(V, &), where V is a set of nodes that are in one-
to-one correspondence with a set of random variables, and where £ is a set of undirected edges.
The random variables can be scalar-valued or vector-valued, discrete or continuous. Thus we will
be concerned with graphical representations of a joint probability distribution, p(z1,z2,...,z,)—a
mass function in the discrete case and a density function in the continuous case.

2.2.1 Conditional independence

As we saw in Section 2.1.3, there are two equivalent characterizations of the class of joint probability
distributions associated with a directed graph. Our presentation of directed graphical models began
(in Section 2.1) with the factorized parameterization and subsequently motivated the conditional
independence characterization. We could, however, have turned this discussion around and started
with a set of conditional independence axioms, subsequently deriving the parameterization. In the
case of undirected graphs, indeed, this latter approach is the one that we will take. For undirected
graphs, the conditional independence semantics is the more intuitive and straightforward of the
two (equivalent) characterizations.

To specify the conditional independence properties of a graph, we must be able to say whether
Xall X¢ | Xp is true for the graph, for arbitrary index subsets A, B, and C. For directed graphs
we defined the conditional independence properties operationally, via the Bayes ball algorithm (we
provide a corresponding declarative definition in Chapter 16). For undirected graphs we go straight
to the declarative definition.

We say that X4 is independent of X¢ given Xp if the set of nodes Xp separates the nodes
X4 from the nodes X¢, where by “separation” we mean naive graph-theoretic separation (see
Figure 2.21). Thus, if every path from a node in X4 to a node in X¢ includes at least one node
in Xp, then we assert that X4 1l X¢ | Xp holds; otherwise we assert that X4 Il X¢ | Xp does not
hold.

3There is also a generalization known as chain graphs that subsumes both classes. We will discuss chain graphs
in Chapter ?7.
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Figure 2.21: The set Xp separates X4 from X¢. All paths from X 4 to X¢ pass through Xp.

As before, the meaning of the statement “X 41 X | Xp holds for a graph G” is that every
member of the family of probability distributions associated with G exhibits that conditional in-
dependence. On the other hand, the statement “X4 1l X | Xp does not hold for a graph G”
means—in its strong form—that some distributions in the family associated with G do not exhibit
that conditional independence.

Given this definition, it is straightforward to develop an algorithm for answering conditional
independence queries for undirected graphs. We simply remove the nodes Xp from the graph and
ask whether there are any paths from X4 to X¢. This is a “reachability” problem in graph theory,
for which standard search algorithms provide a solution.

Comparative semantics

Is it possible to reduce undirected models to directed models, or vice versa? To see that this is not
possible in general, consider Figure 2.22.

In Figure 2.22(a) we have an undirected model that is characterized by the conditional indepen-
dence statements X 1LY |{W,Z} and W 1L Z | {X,Y }. If we try to represent this model in a directed
graph on the same four nodes, we find that we must have at least one node in which the arrows
are inward-pointing (a “v-structure”). (Recall that our graphs are acyclic). Suppose without loss
of generality that this node is Z, and that this is the only v-structure. By the conditional indepen-
dence semantics of directed graphs, we have X 1LY | W, and we do not have X LY | {W, Z}. We are
unable to represent both conditional independence statements, X LY |[{W,Z} and W L Z | {X,Y },
in the directed formalism.

On the other hand, in Figure 2.22(b) we have a directed graph characterized by the singleton
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Figure 2.22: (a) An undirected graph whose conditional independence semantics cannot be captured
by a directed graph on the same nodes. (b) A directed graph whose conditional independence
semantics cannot be captured by an undirected graph on the same nodes.

independence statement X 1L Y. No undirected graph on three nodes is characterized by this
singleton set. A missing edge in an undirected graph only between X and Y captures X 1LY | Z,
not X 1l'Y. An additional missing edge between X and Z captures X 1LY, but implies X 1 7.

We will show in Chapter 16 that there are some families of probability distributions that can be
represented with either directed or undirected graphs. There is no good reason to restrict ourselves
to these families, however. In general, directed models and undirected models are different modeling
tools, and have different strengths and weaknesses. The two together provide modeling power
beyond that which could be provided by either alone.

2.2.2 Parameterization

As in the case of directed graphs, we would like to obtain a “local” parameterization for undirected
graphical models. For directed graphs the parameterization was based on local conditional prob-
abilities, where “local” had the interpretation of a set {4, 7;} consisting of a node and its parents.
The definition of the joint probability as a product of such local probabilities was motivated via
the chain rule of probability theory.

In the undirected case it is rather more difficult to utilize conditional probabilities to represent
the joint. One possibility would be to associate to each node the conditional probability of the
node given its neighbors. This approach falls prey to a major consistency problem, however—it is
hard to ensure that the conditional probabilities at different nodes are consistent with each other
and thus with a single joint distribution. We are not able to choose these functions independently
and arbitrarily, and this poses problems both in theory and in practice.

A better approach turns out to be to abandon conditional probabilities altogether. By so doing
we will lose the ability to give a local probabilistic interpretation to the functions used to represent
the joint probability, but we will retain the ability to choose these functions independently and
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arbitrarily, and we will retain the all-important representation of the joint as a product of local
functions.

A key problem is to decide the domain of the local functions; in essence, to decide the meaning
of “local” for undirected graphs. It is here that the discussion of conditional independence in the
previous section is helpful. In particular, consider a pair of nodes X; and X that are not linked in
the graph. The conditional independence semantics imply that these two nodes are conditionally
independent given all of the other nodes in the graph (because upon removing this latter set there
can be no paths from X; to X;). Thus it must be possible to obtain a factorization of the joint
probability that places x; and z; in different factors. This implies that we can have no local
function that depends on both x; and z; in our representation of the joint. Such a local function,
say 1 (x,2;,2), would not factorize with respect to x; and z; in general—recall that we are
assuming that the local functions can be chosen arbitrarily.

Recall that a cligue of a graph is a fully-connected subset of nodes. Our argument thus far has
suggested that the local functions should not be defined on domains of nodes that extend beyond
the boundaries of cliques. That is, if X; and X; are not directly connected, they do not appear
together in any clique, and correspondingly there should be no local function that refers to both
nodes. We now consider the flip side of the coin. Should we allow arbitrary functions that are
defined on all of the cliques? Indeed, an interpretation of the edges that are present in the graph in
terms of “dependence” suggests that we should. We have not defined dependence, but heuristically,
dependence is the “absence of independence” in one or more of the distributions associated with a
graph. If X; and X; are linked, and thus appear together in a clique, we can achieve dependence
between them by defining a function on that clique.

The mazimal cliqgues of a graph are the cliques that cannot be extended to include additional
nodes without losing the property of being fully connected. Given that all cliques are subsets of one
or more maximal cliques, we can restrict ourselves to maximal cliques without loss of generality.
Thus, if X3, X9, and X3 form a maximal clique, then an arbitrary function 9 (z1,z2,x3) already
captures all possible dependencies on these three nodes; we gain no generality by also defining
functions on sub-cliques such as { X1, Xo} or {Xo, X3}.4

In summary, our arguments suggest that the meaning of “local” for undirected graphs should
be “maximal clique.” More precisely, the conditional independence properties of undirected graphs
imply a representation of the joint probability as a product of local functions defined on the max-
imal cliques of the graph. This argument is in fact correct, and we will establish it rigorously in
Chapter 16. Let us proceed to make the definition and explore some of its consequences.

Let C be a set of indices of a maximal clique in an undirected graph G, and let C be the set
of all such C. A potential function, ¥ x.(zc), is a function on the possible realizations z¢ of the
maximal clique X¢.

Potential functions are assumed to be nonnegative, real-valued functions, but are otherwise
arbitrary. This arbitrariness is convenient, indeed necessary, for our general theory to go through,

“While there is no need to consider non-maximal cliques in developing the general theory relating conditional
independence and factorization—our topic in this section—in practice it is often convenient to work with potentials
on non-maximal cliques. This issue will return in Section 2.3 and in later chapters. Let us define joint probabilities
in terms of maximal cliques for now, but let us be prepared to relax this definition later.
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Figure 2.23: The maximal cliques in this graph in are {X;, Xo}, {X1, X3}, {Xo, X4}, {X3, X5},
and {Xo9, X5, X¢}. Letting all nodes be binary, we represent a joint distribution on the graph via
the potential tables that are displayed.

but it also presents a problem. There is no reason for a product of arbitrary functions to be
normalized and thus define a joint probability distribution. This is a bullet which we simply have
to bite if we are to achieve the desired properties of arbitrary, independent potentials and a product
representation for the joint.
Thus we define: .
p@) = - [ ¥xe(@e), (2.35)

cec

where Z is the normalization factor:

Z 23 11 ¥xelzo), (2:36)

z CeC

obtained by summing the product in Eq. (2.35) over all assignments of values to the nodes X.

An example is shown in Figure 2.23. The nodes in this example are assumed discrete, and
thus tables can be used to represent the potential functions. An overall configuration z picks out
subvectors x¢, which determine particular cells in each of the potential tables. Taking the product
of the numbers in these cells yields an unnormalized representation of the joint probability p(z).
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Figure 2.24: An undirected representation of a three-node Markov chain. The conditional indepen-
dence associated with this graph is X Il Z|Y.

The normalization factor Z is obtained by summing over all configurations . There are an
expounential number of such configurations and it is unrealistic to try to perform such a sum by
naively enumerating all of the summands. Note, however, that the expression being summed over
is a factored expression, in which each factor refers to a local set of variables, and thus we can
exploit the distributive law. This is an issue that is best discussed in the context of the more
general discussion of probabilistic inference, and we return to it in Chapter 3.

Note, however, that we do not necessarily have to calculate Z. In particular, recall that a
conditional probability is a ratio of two marginal probabilities. The factor Z appears in both of
the marginal probabilities, and cancels when we take the ratio. Thus we calculate conditionals by
summing across unnormalized probabilities—the numerator in Eq. (2.35)—and taking the ratio of
these sums.

The interpretation of potential functions

Although local conditional probabilities do not provide a satisfactory approach to the parameteri-
zation of undirected models, it might be thought that marginal probabilities could be used instead.
Thus, why not replace the potential functions ¢ x . (z¢) in Eq. (2.35) with marginal probabilities
p(zc)?

An example will readily show that this approach is infeasible. Consider the model shown in
Figure 2.24. The conditional independence that is associated with this graph is X I Z|Y. This
independence statement implies (by definition) that the joint must factorize as:

p(z,y,2) = ply)p(z |y)p(z|y). (2.37)

The cliques in Figure 2.24 are {X,Y } and {Y, Z}. We can multiply the first two factors in Eq. (2.37)
together to obtain a potential function p(z,y) on the first clique, leaving p(z|y) as the potential
function on the second clique. Alternatively, we can multiply p(z|y) by p(y) to yield a potential
p(y, z) on the second clique, leaving p(z |y) as the potential on the first clique. Thus we can obtain
a factorization in which one of the potentials is a marginal probability, and the other is a conditional
probability. But we are unable to obtain a representation in which both potentials are marginal
probabilities. That is:

p(z,y,2) # p(w,y)p(y, 2). (2.38)

In fact, it is not hard to see that p(x,y, z) = p(z,y)p(y, z) implies p(y) = 0 or p(y) = 1, and that
this representation is thus a rather limited and unnatural one.
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Figure 2.25: (a) A chain of binary random variables X;, where X; € {—1,1}. (b) A set of potential
tables that encode a preference for neighboring variables to have the same values.

In general, potential functions are neither conditional probabilities nor marginal probabilities,
and in this sense they do not have a local probabilistic interpretation. On the other hand, po-
tential functions do often have a natural interpretation in terms of pre-probabilistic notions such
as “agreement,” “constraint,” or “energy,” and such interpretations are often useful in choosing
an undirected model to represent a real-life domain. The basic idea is that a potential function
favors certain local configurations of variables by assigning them a larger value. The global con-
figurations that have high probability are, roughly, those that satisfy as many of the favored local
configurations as possible.

Consider a set of binary random variables, X; € {-1,1},i = 0,...,n, arrayed on a one-
dimensional lattice as shown in Figure 2.25(a). In physics, such lattices are used to model magnetic
behavior of crystals, where the binary variables have an interpretation as magnetic “spins.” All else
being equal, if a given spin X; is “up”; that is, if X; = 1, then its neighbors X; ; and X;; are likely
to be “up” as well. We can easily encode this in a potential function, as shown in Figure 2.25(b).
Thus, if two neighboring spins agree, that is, if X; =1 and X; ; =1, orif X; = -1l and X; ;| = —1,
we obtain a large value for the potential on the clique {X;_1, X;}. If the spins disagree we obtain
a small value.

The fact that potentials must be nonnegative can be inconvenient, and it is common to exploit
the fact that the exponential function, f(z) = exp(z), is a nonnegative function, to represent
potentials in an unconstrained form. We let:

Pxo(zc) = exp{—Hc(zc)}, (2.39)

for a real-valued function He(z¢), where the negative sign is a standard convention. Thus if we
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range over arbitrary Heo(z¢), we can range over legal potentials.
The exponential representation has another useful feature. In particular, products of exponen-
tials behave nicely, and from Eq. (2.35) we obtain:

pe) = o [T el-Holro) (2.40)
cec
= Sen(= Y Heleo)) (2:41)
cec

as an equivalent representation of the joint probability for undirected models. The sum in the latter
expression is generally referred to as the “energy”:

H(z) £ He(zo) (2.42)
Ccec

and we have represented the joint probability of an undirected graphical model as a Boltzmann
distribution:

plr) =  exp{~H(z)}. (2.43)

Without going too far astray into the origins of the Boltzmann representation in statistical physics,
let us nonetheless note that the representation of a model in terms of energy, and in particular the
representation of the total energy as a sum over local contributions to the energy, is exceedingly
useful. Many physical theories are specified in terms of energy, and the Boltzmann distribution
provides a translation from energies into probabilities.

Quite apart from any connection to physics, the undirected graphical model formalism is often
quite useful in domains in which global constraints on probabilities are naturally decomposable into
sets of local constraints, and the undirected representation is apt at capturing such situations.

2.2.3 Characterization of undirected graphical models

In Section 2.1.3 we discussed a theorem that shows that the two different characterizations of the
family of probability distributions associated with a directed graphical model—one based on local
conditional probabilities and the other based on conditional independence assertions—were the
same. A formally identical theorem holds for undirected graphs.

For a given undirected graph G, we define a family of probability distributions, ¢;, by ranging
over all possible choices of positive potential functions on the maximal cliques of the graph.

We define a second family of probability distributions, Us, via the conditional independence
assertions associated with G. Concretely, we make a list of all of the conditional independence
statements, X4 Il Xp | X, asserted by the graph, by assessing whether the subset of nodes X 4 is
separated from Xp when the nodes X¢ are removed from the graph. A probability distribution is
in Uy if it satisfies all such conditional independence statements, otherwise it is not.

In Chapter 16 we state and prove a theorem, the Hammersley-Clifford theorem, that shows
that Uy and Uy are identical. Thus the characterization of probability distributions in terms of
potentials on cliques and conditional independence are equivalent. As in the directed case, this is
an important and profound link between probability theory and graph theory.
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2.3 Parameterizations

We have introduced two kinds of graphical model representations in this chapter—directed graph-
ical models and undirected graphical models. In each of these cases we have defined conditional
independence semantics and corresponding parameterizations. Thus, in the directed case, we have:

n

p(z) & [ [ plxi| zx), (2.44)

1=1

and in the undirected case, we have:

p(z) £ % I xc(zo). (2.45)

cec

By ranging over all possible conditional probabilities in Eq. (2.44) or all possible potential functions
in Eq. (2.45) we obtain certain families of probability distributions, in particular exactly those
distributions which respect the conditional independence statements associated with a given graph.

Conditional independence is an exceedingly useful constraint to impose on a joint probability
distribution. In practical settings conditional independence can sometimes be assessed by domain
experts, and in such cases it provides a powerful way to embed qualitative knowledge about the
relationships among random variables into a model. Moreover, as we will discuss in the following
chapter, the relationship between conditional independence and factorization allows the develop-
ment of powerful general inference algorithms that use graph-theoretic ideas to compute marginal
probabilities of interest. We often impose conditional independence as a rough, tentative assump-
tion in a domain so as to be able to exploit the efficient inference algorithms and begin to learn
something about the domain.

On the other hand, conditional independence is by no means the only kind of constraint that
one can impose on a probabilistic model. Another large class of constraints arise from assumptions
about the algebraic structure of the conditional probabilities or potential functions that define a
model. In particular, rather than ranging over all possible conditional probabilities or potential
functions, we may wish to range over a proper subset of these functions, thus defining a proper
subset of the family of probability distributions associated with a graph. Thus, in practice we often
work with reduced parameterizations that impose constraints on probability distributions beyond
the structural constraints imposed by conditional independence.

We will present many examples of reduced parameterizations in later chapters. Let us briefly
consider two such examples in the remainder of this section to obtain a basic appreciation of some
of the issues that arise.

Directed graphical models require conditional probabilities, and if the number of parents of
a given node is large, then the specification of the conditional probability can be problematic.
Consider in particular the graph shown in Figure 2.26(a), where all of the variables are assumed
binary (for simplicity), and where the number of parents of Y is assumed large. In particular, if
Y has 50 parents, then ranging over “all possible conditional probabilities” means specifying 25°
numbers, one probability for each configuration of the parents. Clearly such a specification cannot
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Figure 2.26: An example in which a node has many parents. In such a graph, a general specifi-
cation of the local conditional probability distribution requires an impractically large number of
parameters.

be stored on a computer, and, equally problematically, it would be impossible to collect enough
data to be able to estimate these numbers with any degree of precision. We are forced to consider
“reduced parameterizations.” One such parameterization, discussed in detail in Chapter 8, is the
following;:

p(Y =1 |:U) = f(91$1 + 92162 +--+ mem), (2.46)

for a given function f(-) whose range is the interval (0, 1) (we will provide examples of such functions
in Chapter 8). Here, we need only specify the 50 numbers 6; to specify a distribution.

In general, we can consider directed graphical models in which each node is parameterized as
shown in Eq. (2.46). The family of probability distributions associated with the model as a whole
is that obtained by ranging over all possible values of 6; in the defining conditional probabilities.
This is a proper sub-family of the family of distributions associated with the graph.

If practical considerations often force us to work with reduced parameterizations, of what value
is the general definition of “the family of distributions associated with a graph”? As we will see
in Chapter 4 and Chapter 17, given a graph, efficient probabilistic inference algorithms can be
defined that operate on the graph. These algorithms are based solely on the graph structure and
are correct for any distribution that respects the conditional independencies encoded by the graph.
Thus such algorithms are correct for any distribution in the family of distributions associated with
a graph, including those in any proper sub-family associated with a reduced parameterization.

Similar issues arise in undirected models. Consider in particular the graph shown in Fig-
ure 2.27(a). From the point of view of independence, there is little to say—there are no indepen-
dence assertions associated with this graph. Equivalently, the family of probability distributions
associated with the graph is the set of all possible probability distributions on the three variables,
obtained by ranging over all possible potential functions % (x1,x9,x3). Suppose, however, that we
are interested in models in which the potential function is defined algebraically as a product of
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Figure 2.27: (a) An undirected graph which makes no independence assertions. (b) An undirected
graph which asserts X3 AL { X, Xs}.

factors on smaller subsets of variables. Thus, we might let:

Y(21, 22, 23) = f(21,22)9(73), (2.47)

or let:
Yz, z2, 23) = (21, 2)s(@2, 3)t (21, 23), (2.48)

for given functions f, g, r, s and ¢t. Ranging over all possible choices of these functions, we obtain
potentials that are necessarily members of the family associated with the graph in Figure 2.27(a)—
because all such potentials respect the (vacuous) conditional independence requirement. The poten-
tial in Eq. (2.47), however, also respects the (non-vacuous) conditional independence requirement
of the graph in Figure 2.27(b). We would normally use this latter graph if we decide (a priori) to
restrict our parameterization to the form given in Eq. (2.47). On the other hand, the potential
given in Eq. (2.48) is problematic in this regard—there is no smaller graph that represents this
class of potentials. Any graph with a missing edge makes an independence assertion regarding one
or more pairs of variables, and v(z1, zo,x3) = r(z1, x2)s(z2, £3)t(x1, r3) does not respect such an
assertion, when we range over all functions r, s and ¢.

Thus we see that “factorization” is a richer concept than “conditional independence.” There
are families of probability distributions that can be defined in terms of certain factorizations of the
joint probability that cannot be captured solely within the undirected or directed graphical model
formalism. From the point of view of designing inference algorithms, this might not be viewed as
a problem, because an algorithm that is correct for the graph is correct for a distribution in any
sub-family defined on the graph. However, by ignoring the algebraic structure of the potential, we
may be missing opportunities for simplifying the algebraic operations of inference.

In Chapter 4 we introduce factor graphs, a graphical representation of probability distributions
in which such reduced parameterizations are made explicit. Factor graphs allow a more fine-grained
representation of probability distributions than is provided by either the directed or the undirected
graphical formalism, and in particular allow the factorization of the potential in Eq. (2.48) to be
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represented explicitly in the graph. While factor graphs provide nothing new in terms of rep-
resenting and exploiting conditional independence relationships—the main theme of the current
chapter—they do provide a way to represent and exploit algebraic relationships, an issue that will
return in Chapter 4.

2.4 Summary

In this chapter we have presented some of the basic definitions and basic issues that arise when
one associates probability distributions with graphs. A key idea that we have emphasized is that a
graphical model is a representation of a family of probability distributions. This family is charac-
terized in one of two equivalent ways—either in terms of a numerical parameterization or in terms
of a set of conditional independencies. Both of these characterizations are important and useful,
and it is the interplay between these characterizations that gives the graphical models formalism
much of its distinctive flavor.

Directed graphs and undirected graphs have different parameterizations and different condi-
tional independence semantics, but the key concept of using graph theory to capture the notion of
a joint probability distribution being constructed from a set of “local” pieces is the same in the two
cases.

We have also introduced simple algorithms that help make the problem of understanding con-
ditional independence in graphical models more concrete. The reader should be able to utilize
the Bayes ball algorithm to read off conditional independence statements from directed graphs.
Similarly, for undirected graphs the reader should understand that naive graph separation en-
codes conditional independence. Conditional independence assertions in undirected graphs can be
assessed via a graph reachability algorithm.

2.5 Historical remarks and bibliography



