
An Introdu
tion to Probabilisti
 Graphi
al ModelsMi
hael I. JordanUniversity of California, BerkeleyJune 30, 2003

2

Chapter 3The Elimination AlgorithmIn this
hapter we dis
uss the problem of
omputing
onditional and marginal probabilities ingraphi
al models|the problem of probabilisti
 inferen
e. Building on the ideas in Chapter 2,we show how the
onditional independen
ies en
oded in a graph
an be exploited for eÆ
ient
omputation of
onditional and marginal probabilities.We take a very
on
rete approa
h in the
urrent
hapter, basing the presentation on a simple\elimination algorithm" for probabilisti
 inferen
e. This algorithm applies equally well to dire
tedand undire
ted graphs. It requires little formal ma
hinery to des
ribe and to analyze. On the otherhand, the algorithm has its limitations, and is not our �nal word on the inferen
e problem. But itis a good pla
e to start.3.1 Probabilisti
 inferen
eLet E and F be disjoint subsets of the node indi
es of a graphi
al model, su
h that XE and XFare disjoint subsets of the random variables in the domain. Our goal is to
al
ulate p(xF jxE) forarbitrary subsets E and F . This is the general probabilisti
 inferen
e problem for graphi
al models(dire
ted or undire
ted).We begin by fo
using on dire
ted graphs. Almost all of our work, however, will transfer toundire
ted graphs with little or no
hange. Our subsequent treatment of undire
ted models inSe
tion 3.1.3 will be short and sweet.Throughout the
hapter we limit ourselves to the probability of
al
ulating the
onditionalprobability of a single node XF|whi
h we refer to as the \query node"|given an arbitrary set ofnodes XE . This is a limitation of the simple elimination algorithm that we dis
uss in this
hapter,and is not a limitation of the more general algorithms that we dis
uss in later
hapters.Graphi
ally we indi
ate the set of
onditioning variables by shading the
orresponding nodes inthe graph. Thus, the dark shading in Figure 3.1 indi
ates the nodes (indexed by E) on whi
h we
ondition. We will often refer to these nodes as the eviden
e nodes. The unshaded nodes (indexedby F) are the nodes for whi
h we wish to
ompute
onditional probabilities. Finally, the lightlyshaded nodes, indexed by R = V n(E[F), are the nodes that must be marginalized out of the jointprobability so that we
an fo
us on the
onditional, p(xF jxE), of interest. Thus, symboli
ally, we3

4 CHAPTER 3. THE ELIMINATION ALGORITHM
1X

2X

3X

X 4

X 5

X6

Figure 3.1: The dark shaded node, X6, is the node on whi
h we
ondition, the lightly shaded nodes,fX2;X3;X4;X5g, are nodes that are marginalized over, and the unshaded node, X1 is the nodefor whi
h we wish to
al
ulate
onditional probabilities. Thus, for this example, we have E = f6g,F = f1g, and R = f2; 3; 4; 5g.must
ompute the marginal: p(xE; xF) =XxR p(xE ; xF ; xR); (3.1)whi
h
an be further marginalized to yield p(E):p(xE) =XxF p(xE; xF); (3.2)from whi
h we obtain the
onditional probability:p(xF jxE) = p(xE; xF)p(xE) : (3.3)We will be interested in �nding e�e
tive
omputational methods for making these
al
ulations.A spe
ial
ase of the general problem is worth noting. Consider the
ase of just two nodes,X and Y , as shown in Figure 3.2(a). This model is spe
i�ed in terms of the distributions p(x)and p(y jx), re
e
ting the arrow from X to Y . Suppose that we
ondition on X, as shown inFigure 3.2(b), and wish to
al
ulate the probability of Y . This \
al
ulation" is simply a tablelookup using p(y jx). On the other hand, suppose that we
ondition on Y and wish to
al
ulate theprobability of X, as indi
ated in Figure 3.2(
). This is a
hieved via an appli
ation of Bayes rule:p(x j y) = p(y jx)p(x)p(y) : (3.4)where the denominator is
al
ulated as follows:p(y) =Xx p(y jx)p(x): (3.5)

3.1. PROBABILISTIC INFERENCE 5
X

Y

X

Y

X

Y

(a) (b) (c)Figure 3.2: (a) A two-node model. (b) Conditioning on X involves a simple evaluation of p(y jx).(
) Conditioning on Y requires the use of Bayes rule.Can we �nd an eÆ
ient extension of these familiar ideas to general graphs?The summations in Eq. (3.1) and Eq. (3.2) should give us pause. The summationPxR expandsinto a sequen
e of summations, one for ea
h of the random variables indexed by R. If ea
h su
hrandom variable
an take on k values, and there are jRj variables, we obtain kjRj terms in oursummation. A similar statement applies to the summation PxF . With jF j and jRj in the dozensor hundreds in typi
al
ases, naive summation is infeasible.We need to take advantage of the fa
torization o�ered by the de�nition of the joint probability.If we do not take advantage of the fa
torization we will be in trouble performing even a singlesummation, mu
h less a sequen
e of summations. Consider summing p(x1; x2; : : : ; x6) with respe
tto x6, where we naively represent the joint probability as a table of size k6. (Re
all that k is thenumber of values that ea
h variable xi
an take on, assumed independent of i for simpli
ity.) Giventhat we must perform the sum for ea
h value of the variables fx1; x2; : : : ; x5g, we see that we mustperform O(k6) operations to do a single sum (essentially, we must tou
h ea
h entry in the table).To redu
e the
omputational
omplexity let us instead represent the joint probability in its fa
toredform (
f. Eq. (2.3)) and exploit the distributive law:p(x1; x2; : : : ; x5) = Xx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5) (3.6)= p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)Xx6 p(x6 jx2; x5): (3.7)The summation over x6 is now applied to p(x6 jx2; x5), a table of size k3. We have redu
ed theoperation
ount from O(k6) to O(k3), a signi�
ant improvement.1Su

essive summations also take advantage of the fa
torization. A summation over, say, x5,
an also be moved along the
hain of fa
tors until it en
ounters a fa
tor involving x5. If ea
h su
hsummation is of redu
ed
omplexity, say O(kr) for some r, then the result is an algorithm that1Of
ourse this sum is unity by the de�nition of
onditional probability, and thus we don't a
tually have to performany operations at all, but let us pretend not to know that.

6 CHAPTER 3. THE ELIMINATION ALGORITHMs
ales as O(nkr) instead of O(kn). Of
ourse, the summations
reate intermediate fa
tors that maylink variables, making it not entirely
lear whether or not we
an keep r small. It is here thatgraphi
al methods are helpful. We
an determine the parameter r by a graph-theoreti
 algorithm.Let us introdu
e the basi
 ideas in the
ontext of an example. Referring to the graph inFigure 3.1, let us
ondition on the event fX6 = x6g and
al
ulate the
onditional probabilityp(x1 jx6).A point to note at the outset is that x6 is a �xed
onstant in this
al
ulation and does not
ontribute to the
omputational
omplexity of the
al
ulation. Thus, while the table representingp(x6 jx2; x5) is nominally a three-dimensional table, the observation of X6 involves taking a two-dimensional sli
e of this table. Unfortunately our notation is ambiguous in this regard; we have beenusing \x6" as a variable that ranges over the possible values of X6. In parti
ular it is meaningful tosum over \x6." In the remainder of this se
tion, to avoid
onfusion, we refer to a parti
ular �xedvalue of X6 as \�x6." Thus, we wish to
ompute p(x1 j �x6), for any x1 and for a parti
ular �x6.We begin by
omputing the probability p(x1; �x6) by summing over fx2; x3; x4; x5g. We introdu
esome notation to refer to intermediate fa
tors that arise when performing these sums. In parti
ular,let mi(xSi) denote the expression that arises from performing the sum Pxi , where xSi are thevariables, other than xi, that appear in the summand. Thus we have:p(x1; �x6) = Xx2 Xx3 Xx4 Xx5 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(�x6 jx2; x5) (3.8)= p(x1)Xx2 p(x2 jx1)Xx3 p(x3 jx1)Xx4 p(x4 jx2)Xx5 p(x5 jx3)p(�x6 jx2; x5) (3.9)= p(x1)Xx2 p(x2 jx1)Xx3 p(x3 jx1)Xx4 p(x4 jx2)m5(x2; x3) (3.10)where we de�ne m5(x2; x3) , Px5 p(x5 jx3)p(�x6 jx2; x5). (Note that to simplify notation we donot indi
ate expli
itly the dependen
e of this term on the
onstant �x6). Computing m5(x2; x3) haseliminated X5 from further
onsideration in the
omputation. As we will see later, this algebrai
notion of \elimination"
orresponds to a graphi
al notion of elimination in whi
h the node X5 isremoved from the graph. We
ontinue the derivation:p(x1; �x6) = p(x1)Xx2 p(x2 jx1)Xx3 p(x3 jx1)m5(x2; x3)Xx4 p(x4 jx2) (3.11)= p(x1)Xx2 p(x2 jx1)m4(x2)Xx3 p(x3 jx1)m5(x2; x3): (3.12)Of
ourse, m4(x2) ,Px4 p(x4 jx2) is equal to one by de�nition, and in pra
ti
e we would not dothis sum, but let us be systemati
 and keep the term in our
al
ulations. Finally, we have:p(x1; �x6) = p(x1)Xx2 p(x2 jx1)m4(x2)m3(x1; x2) (3.13)= p(x1)m2(x1): (3.14)

3.1. PROBABILISTIC INFERENCE 7From this result we
an also obtain the probability p(�x6) by taking an additional sum over x1:p(�x6) =Xx1 p(x1)m2(x1); (3.15)and the desired
onditional is obtained by dividing Eq. (3.14) into Eq. (3.15):p(x1 j �x6) = p(x1)m2(x1)Px1 p(x1)m2(x1) : (3.16)Alternatively we
an view p(x1; �x6) in Eq. (3.14) as an unnormalized representation of the
on-ditional probability p(x1 j �x6)|re
all on
e again that �x6 is a �xed
onstant. Thus we obtain the
onditional by normalization, where the normalization
onstant is given by Eq. (3.15).Lying behind this
urry of algebra is a simple general algorithm for
omputing marginal proba-bilities. We present this algorithm in Se
tion 3.1.2. First, however, we set the stage for the generalalgorithm with some preparatory remarks on
onditioning.3.1.1 ConditioningTo provide a simple exposition of the general elimination algorithm in Se
tion 3.1.2, and also tosimplify our exposition of inferen
e algorithms presented in later
hapters, it is useful to make useof a notational tri
k in whi
h
onditioning is viewed as a summation. This tri
k will allow us totreat marginalization and
onditioning as formally equivalent, and will make it easier to bring thekey operations of the inferen
e algorithms into fo
us.Let Xi be an eviden
e node whose observed value is �xi. To
apture the fa
t that Xi is �xedat the value �xi, we de�ne an eviden
e potential, Æ(xi; �xi), a fun
tion whose value is one if xi = �xiand zero otherwise. The eviden
e potential allows us to turn evaluations into sums: To evaluate afun
tion g(xi) at �xi we multiply g(xi) by Æ(xi; �xi) and sum over xi:g(�xi) =Xxi g(xi)Æ(xi; �xi); (3.17)a tri
k that also extends to multivariate fun
tions with xi as one of the arguments. In parti
ular,returning to the example from the previous se
tion, we
an express the evaluation of p(x6 jx2; x5)at �x6 as follows: m6(x2; x5) =Xx6 p(x6 jx2; x5)Æ(x6; �x6); (3.18)where m6(x2; x5) is nothing but p(�x6 jx2; x5).In general, let E be the set of nodes whose values are to be
onditioned on. That is, for a spe
i�

on�guration �xE, we wish to
ompute p(xF j �xE). Formally, we a
hieve this as follows. De�ne thetotal eviden
e potential : Æ(xE ; �xE) ,Yi2E Æ(xi; �xi); (3.19)

8 CHAPTER 3. THE ELIMINATION ALGORITHMa fun
tion that is equal to one if xE = �xE and is equal to zero otherwise. Using this potential, we
an obtain both the numerator and the denominator of the
onditional probability p(xF j �xE) bysummation. Thus: p(xF ; �xE) =XxE p(xF ; xE)Æ(xE ; �xE) (3.20)and: p(�xE) =XxF XxE p(xF ; xE)Æ(xE ; �xE): (3.21)This suggests that it may be useful to de�ne:pE(x) , p(x)Æ(xE ; �xE) (3.22)as a generalized measure that represents
onditional probability with respe
t to E. By for-mally \marginalizing" this measure with respe
t to xE , we evaluate p(x) at XE = �xE , and ob-tain p(xF ; �xE), an unnormalized version of the
onditional probability p(xF j �xE). Moreover, bymarginalizing over x, we obtain the total \mass" p(�xE).This ta
ti
 is parti
ularly natural in the
ase of undire
ted graphs, where multipli
ation by aneviden
e potential Æ(xi; �xi)
an be implemented by simply rede�ning the lo
al potentials (xi) fori 2 E. Thus, we de�ne: Ei (xi) , i(xi)Æ(xi; �xi); (3.23)for i 2 E. Leaving all other
lique potentials un
hanged, that is, letting EC (xC) , C(xC), forC =2 ffig : i 2 Eg, we obtain the desired unnormalized representation:pE(x) , 1Z YC2C EXC (xC): (3.24)Moreover, sin
e we are working with an unnormalized representation, we may as well drop the1=Z fa
tor, and simply work with QC2C EXC (xC) as an unnormalized representation of
onditionalprobability.It should be
lear that the use of eviden
e potentials is merely a pie
e of formal tri
kery thatwill (turn out to) simplify our des
ription of various inferen
e algorithms. In pra
ti
e we would nota
tually perform the sum over a fun
tion that we know to be zero over most of the sample spa
e,but rather we would take \sli
es" of the appropriate probabilities or potentials. Thus, in evaluatingp(x6 jx2; x5) at X6 = �x6, while formally we
an view ourselves as multiplying by Æ(x6; �x6) andsumming over x6, algorithmi
ally we would simply take the appropriate two-dimensional sli
e ofthe three-dimensional table representing p(x6 jx2; x5).3.1.2 Elimination and dire
ted graphsIn this se
tion we des
ribe a general algorithm for performing probabilisti
 inferen
e in dire
tedgraphi
al models.At ea
h step of the algorithm, we perform a sum over a produ
t of fun
tions. The fun
tionsthat
an appear in su
h sums in
lude the original lo
al
onditional probabilities, p(xi jx�i), the

3.1. PROBABILISTIC INFERENCE 9eviden
e potentials, Æ(xi; �xi), and the intermediate fa
tors, mi(xSi), generated by previous sums.All of these fun
tions are de�ned on lo
al subsets of nodes, and we use the generi
 term \potential"to refer to all of them.2 Thus our algorithm will involve taking sums over produ
ts of potentialfun
tions.The algorithm works as follows (see Figure 3.3 for a summary). Given a graph G = (V; E), aneviden
e set E, and a query node F , we �rst
hoose an elimination ordering I su
h that F appearslast in the ordering.3 Throughout the algorithm we maintain an a
tive list of potential fun
tions.The a
tive list is initialized to hold the lo
al
onditional probabilities, p(xi jx�i), for i 2 V, and theeviden
e potentials, Æ(xi; �xi), for i 2 E. At ea
h step of the algorithm, we �nd all those potentialson the a
tive list that referen
e the next node (
all it Xi) in the elimination ordering I. Thesepotential fun
tions are removed from the a
tive list. We take the produ
t of these fun
tions andsum this produ
t with respe
t to xi. This de�nes a new intermediate fa
tor, mi(xSi), where xSiare the variables (other than xi) that appear in the summand. This intermediate fa
tor is addedto the a
tive list. We then pro
eed to the next node in the elimination ordering.Note that we have introdu
ed the notation Ti = fig [Si in the des
ription of the algorithmin Figure 3.3. The subset Ti indexes the set of all variables that appear in the summand of theoperator Pxi . We give a graph-theoreti
 interpretation of Ti later in the
hapter.The algorithm terminates when we arrive at the �nal node in the elimination ordering, thequery nodeXF . The produ
t of potentials on the a
tive list at this point de�nes the (unnormalized)
onditional probability, p(xF ; �xE). Summing this produ
t over xF yields the normalization fa
torp(�xE).Let us now return to the example in Se
tion 3.1 and show how the steps of Eliminate
orre-spond to the steps in the algebrai

al
ulation in that se
tion. The eviden
e node in this exampleis X6 and the query node is X1. We
hoose the elimination ordering I = (6; 5; 4; 3; 2; 1), in whi
hthe query node appears last.We begin by pla
ing the lo
al
onditional probabilities, fp(x1); : : : ; p(x6 jx2; x5)g, on the a
tivelist. We also pla
e Æ(x6; �x6) on the a
tive list.We �rst eliminate node X6. The potential fun
tions on the a
tive list that referen
e x6 arep(x6 jx2; x5) and Æ(x6; �x6). Thus we have �6(x2; x5; x6) = p(x6 jx2; x5)Æ(x6; �x6). Summing thisexpression with respe
t to x6 yields m6(x2; x5) = p(�x6 jx2; x5). We pla
e this potential on thea
tive list, having removed p(x6 jx2; x5) and Æ(x6; �x6). We have simply evaluated p(x6 jx2; x5) at�x6. We now eliminate X5. The potentials on on the a
tive list that referen
e x5 are p(x5 jx3)2The reader may be
on
erned that we are using the term \potential" somewhat loosely here. In parti
ular we areusing it in the
ontext of dire
ted graphs and in the
ontext of subsets that may not be
liques; this usage
lashes withthe de�nition of \potential" in Chapter ??. We hope that the reader will forgive the seeming abuse of terminology.It is worth noting, however, that the \potentials" dis
ussed in this se
tion are in fa
t honest-to-goodness potentials,but not with respe
t to G. Rather they are potentials on the
liques of a di�erent graph, a graph known as the moralgraph Gm. This point will be
lari�ed in Se
tion ?? below.3We will not dis
uss the
hoi
e of elimination ordering in this
hapter, but instead will defer this (non-trivial)problem until Chapter 17, where it will arise in a more general way in the
ontext of the jun
tion tree algorithm.For now, let the ordering I be arbitrary, under the
onstraint that F appears last. We might en
ourage the reader,however, to start to ponder how to
hara
terize good elimination orderings. Some useful food for thought in thisregard will be provided in Se
tion ?? below.

10 CHAPTER 3. THE ELIMINATION ALGORITHM
Eliminate(G; E; F)Initialize(G; F)Eviden
e(E)Update(G)Normalize(F)Initialize(G; F)
hoose an ordering I su
h that F appears lastfor ea
h node Xi in Vpla
e p(xi jx�i) on the a
tive listendEviden
e(E)for ea
h i in Epla
e Æ(xi; �xi) on the a
tive listendUpdate(G)for ea
h i in I�nd all potentials from the a
tive list that referen
e xi and remove them from the a
tive listlet �i(xTi) denote the produ
t of these potentialslet mi(xSi) =Pxi �i(xTi)pla
e mi(xSi) on the a
tive listendNormalize(F)p(xF j �xE) �F (xF)=PxF �F (xF)Figure 3.3: The Eliminate algorithm for probabilisti
 inferen
e on dire
ted graphs.

3.1. PROBABILISTIC INFERENCE 11
1X

2X

3X

X 4

X 5

X6

Figure 3.4: The dark shaded node, X6, is the nodes on whi
h we
ondition, the lightly shadednodes, fX2;X3;X4;X5g, are the nodes that are marginalized over, and the unshaded node, X1, isthe node for whi
h we wish to
al
ulate
onditional probabilities.and m6(x2; x5). We remove them, and de�ne the produ
t �5(x2; x3; x5). Summing over x5 yieldsm5(x2; x3) (
f. Eq. (3.11)).The only potential that referen
es X4 is p(x4 jx2). The elimination of X4 thus involves summingp(x4 jx2) with respe
t to x4 to obtain the fa
torm4(x2). This fa
tor is identi
ally one and in pra
ti
ewe would not bother
omputing it.Eliminating X3 involves taking the sum over �3(x1; x2; x3) = p(x3 jx1)m5(x2; x3) to yieldm3(x1; x2) and we are now at Eq. (3.13) in the earlier derivation.We now eliminate X2 to obtain �1(x1) = p(x1)m2(x1), whi
h is the \unnormalized
onditionalprobability," p(x1; �x6). Eliminating X1 yields m1 =Px1 �1(x1), whi
h is the normalization fa
tor,p(�x6).3.1.3 Elimination and undire
ted graphsIn the
ase of dire
ted models, we have shown that the problem of
al
ulating
onditional proba-bilities
an be usefully viewed in terms of a simple elimination algorithm. The same perspe
tiveapplies to undire
ted models, and indeed the entire Eliminate algorithm from Figure 3.3 goesthrough without essential
hange to the undire
ted
ase.The only
hange needed to handle the undire
ted
ase o

urs in the Initialize pro
edure,where instead of using lo
al
onditional probabilities we initialize the a
tive list to
ontain thepotentials f XC (xC)g.Let us brie
y
onsider an example. Paralleling the example from Se
tion 3.1.2 we
al
ulate theprobability p(x1 j �x6) for the graph in Figure 3.4. We represent the joint probability on the graphvia potential fun
tions on the
liques fX1;X2g fX1;X3g, fX2;X4g, fX3;X5g, and fX2;X5;X6g.We �rst
al
ulate the probability p(x1; �x6). To simplify the presentation we drop the subs
riptin the XC (xC) notation, relying on the argument to the fun
tion to make it
lear whi
h potentialfun
tion is being referred to. Also we again make use of the notation mi(xSi) to denote the

12 CHAPTER 3. THE ELIMINATION ALGORITHMintermediate fa
tor that results from the summation over xi. We have:p(x1; �x6) = 1ZXx2 Xx3 Xx4 Xx5 Xx6 (x1; x2) (x1; x3) (x2; x4) (x3; x5) (x2; x5; x6)Æ(x6; �x6)= 1ZXx2 (x1; x2)Xx3 (x1; x3)Xx4 (x2; x4)Xx5 (x3; x5)Xx6 (x2; x5; x6)Æ(x6; �x6)= 1ZXx2 (x1; x2)Xx3 (x1; x3)Xx4 (x2; x4)Xx5 (x3; x5)m6(x2; x5)= 1ZXx2 (x1; x2)Xx3 (x1; x3)m5(x2; x3)Xx4 (x2; x4)= 1ZXx2 (x1; x2)m4(x2)Xx3 (x1; x3)m5(x2; x3)= 1ZXx2 (x1; x2)m4(x2)m3(x1; x2)= 1Zm2(x1): (3.25)Marginalizing further over x1 yields: p(�x6) = 1ZXx1 m2(x1); (3.26)and we
al
ulate the desired
onditional as:p(x1 j �x6) = m2(x1)Px1 m2(x1) ; (3.27)where the normalization fa
tor Z
an
els.Note that the
al
ulation in the example is formally identi
al to the
orresponding
al
ulationfor dire
ted graphs. Note, however, that the sum m4(x2), whi
h earlier
ould be omitted, no longerne
essarily sums to one and must be expli
itly
arried along in the
al
ulation.Finally, a remark on the
omputation of marginal probabilities p(xi). For a marginal probabilitythe normalization fa
tor Z does not
an
el, and must be
al
ulated expli
itly. Just as in the other
al
ulations in this se
tion, however, the
al
ulation of Z is a summation over the unnormalizedrepresentation of the joint probability, and indeed it is simply a summation over all of the variables.To obtain the marginal p(xi), we would de�ne an elimination ordering in whi
h xi is the �nalvariable, and then normalize the result to
al
ulate Z and obtain the marginal.In the dire
ted
ase, a variable that is parentless has its marginal represented expli
itly in theparameterization of the graphi
al model and no
al
ulation is needed. In general, nodes that aredownstream from a target node
an simply be deleted, and marginalization involves an inferen
e
al
ulation involving the an
estors of the node. The worst
ase is a leaf node. In the undire
ted
ase, there is no notion of \an
estor," and essentially all nodes are worst
ase. On the other hand,on
e Z is
al
ulated from a parti
ular elimination ordering, it
an be used to normalize othermarginal probabilities.

3.2. GRAPH ELIMINATION 13Undire
tedGraphEliminate(G; I)for ea
h node Xi in I
onne
t all of the remaining neighbors of Xiremove Xi from the graphendFigure 3.5: A simple greedy algorithm for eliminating nodes in an undire
ted graph G.3.2 Graph eliminationThe simple Eliminate algorithm
aptures the key algorithmi
 operation underlying probabilisti
inferen
e|that of taking a sum over a produ
t of potential fun
tions. What
an we say about theoverall
omputational
omplexity of the algorithm? In parti
ular, how
an we
ontrol the \size" ofthe summands that appear in the sequen
e of summation operations?In this se
tion, we show that questions regarding the
omputational
omplexity of the Elimi-nate algorithm
an be redu
ed to purely graph-theoreti

onsiderations. This graphi
al interpre-tation will also provide hints about how to design improved inferen
e algorithms that over
ome thelimitations of Eliminate.3.2.1 A graph elimination algorithmLet us put aside marginalization and probabilisti
 inferen
e for a moment, and
on
entrate solelyon graph-theoreti
 manipulations. We des
ribe a simple pro
edure that eliminates nodes in agraph. As will be
ome
lear, this pro
edure
aptures the graph-theoreti
 operations underlyingEliminate.We begin by des
ribing a node-elimination algorithm for undire
ted graphs, making the link todire
ted graphs shortly.Assume that we are given an undire
ted graph G = (V; E) and an elimination ordering I.We des
ribe a simple graph-theoreti
 algorithm that su

essively eliminates the nodes of G. Inparti
ular, at ea
h step, the algorithm eliminates the next node in the ordering I, where \eliminate"means removing the node from the graph and
onne
ting the (remaining) neighbors of the node.The algorithm, whi
h we refer to as Undire
tedGraphEliminate, is presented in Figure 3.5.We will be interested in the re
onstituted graph; the graph ~G = (V; ~E), whose edge set ~E is asuperset of E , in
orporating all of the original edges E , as well as any new edges
reated during arun of Undire
tedGraphEliminate.Consider in parti
ular the graph in Figure 3.6(a) and the elimination ordering (6; 5; 4; 3; 2; 1).Let us run through the graphi
al elimination pro
edure. Starting with node X6 we �rst
onne
tits neighbors, adding an edge between X2 and X5, as shown in Figure 3.6(b). We then remove X6,whi
h yields Figure 3.6(
). Moving to X5, we
onne
t its neighbors, X2 and X3, and remove X5,whi
h yields Figure 3.6(d). The pro
edure
ontinues in Figure 3.6(e){(g),
ulminating in a graphwith the single node X1, whi
h is then removed yielding the empty graph.

14 CHAPTER 3. THE ELIMINATION ALGORITHM

1X

2X

3X

X 4

X 5

X6

(a)

1X

2X

3X

X 4

X 5

X6

(b)

1X

2X

3X

X 4

X 5

(c)

1X

2X

3X

X 4

(d)

1X

2X

3X

(e)

1X

2X

(f)

1X

(g)Figure 3.6: A run of the elimination algorithm under the elimination ordering (6; 5; 4; 3; 2; 1). Theoriginal graph is shown in (a).

3.2. GRAPH ELIMINATION 15
1X

2X

3X

X 4

X 5

X6

Figure 3.7: The re
onstituted graph, showing the edges that were added during the eliminationpro
ess.Figure 3.7 shows the re
onstituted graph, where we have retained the edges that were
reatedduring the elimination pro
edure (in parti
ular, the edges between X2 and X3 and between X2and X5). This graph turns out to have some important graph-theoreti
 properties, propertieswhi
h underly the
omprehensive theory of inferen
e that will be the subje
t of Chapter 17.4 For
urrent purposes, however, the relevant properties of the graph
an be
aptured by re
ording theelimination
liques of the graph. In parti
ular, ea
h time we remove a node Xi in the se
ond stepof the algorithm, let us re
ord the
olle
tion of nodes that are the neighbors of Xi at that moment,in
luding Xi itself. These nodes form a fully-
onne
ted subset of nodes by virtue of the �rst step ofthe algorithm; that is, they form a
lique. We denote the set of indi
es of the nodes in this
liqueas Ti. Thus, in our example, T6 = f2; 5; 6g and T5 = f2; 3; 5g. (Note that index 6 does not appearin T5 be
ause X6 has already been eliminated when we pro
ess node X5).3.2.2 Graph elimination and marginalizationWhen we perform a marginalization operation, removing a random variable from a joint distribu-tion, we perform a sum over the produ
t of all fa
tors that depend on that random variable. This
ouples together all of the other random variables that appear in those fa
tors. Thus, for example,summing the produ
t (x3; x5)m6(x2; x5) with respe
t to x5
reates an intermediate fa
tor thatinvolves x2 and x3. This new fa
tor does not in general fa
torize with respe
t to x2 and x3; thus, wehave an indu
ed dependen
y between x2 and x3. Subsequent operations will have to treat x2 andx3 together. Undire
tedGraphEliminate makes this
oupling expli
it, by linking the neighborsof the node being summed over.In general, as we now show, the elimination
liques in Undire
tedGraphEliminate are thegraph-theoreti

ounterparts of the sets of variables on whi
h summations operate in probabilisti
4For readers who
annot bear the wait, the key property of the re
onstituted graph is that it is a triangulatedgraph; indeed, our elimination pro
edure is a simple algorithm for triangulating a graph.

16 CHAPTER 3. THE ELIMINATION ALGORITHMinferen
e using Eliminate.Consider the argument xTi to the fun
tion �i(xTi) in Eliminate, the fun
tion whi
h is thesummand for the operatorPxi . As our notation suggests, the variables referen
ed by �i are exa
tlythose in the elimination
lique
reated by Undire
tedGraphEliminate upon elimination of Xi.To see this, note that any potential removed from the a
tive list by Eliminate (when summing overxi) must referen
e xi. Now
onsider any other variable xj referen
ed by �i(xTi). We want to showthat Xi and Xj must be neighbors in the graph
onstru
ted by Undire
tedGraphEliminate.There are two
ases to
onsider,
orresponding to the two kinds of potentials that
an link variables:(1) If the potential is one of the original potentials C(xC), then Xj is ne
essarily linked to Xi,be
ause C is a
lique (by de�nition). (2) If xi and xj appear together in an intermediate fa
tormk(xSk), then this term was
reated by the elimination of an earlier node Xk. At the moment ofeliminating Xk, Undire
tedGraphEliminate must have linked the nodes Xi and Xj . Thus, ineither
ase, Xj is a neighbor of Xi, and these nodes must appear together in the elimination
liqueXTi .3.2.3 Computational
omplexityLet us now
onsider the
omputational
omplexity of Eliminate. At ea
h step we must sum over avariable xi for all
on�gurations of the variables in the summand �i(xTi). Assuming that there is nospe
ial algebrai
 stru
ture in this summand that
an be exploited, the time and spa
e
omplexitiesare exponential in the number of variables in the subset Ti. That is, the overall
omplexity of thealgorithm is determined by the number of variables in the largest elimination
lique. Thus, the ques-tion of the
omputational
omplexity of Eliminate
an be redu
ed to the purely graph-theoreti
question of the size of the largest elimination
lique
reated by Undire
tedGraphEliminate.The problem of obtaining a largest elimination
lique that is as small as possible, under allpossible elimination orderings, is a well-studied problem in graph theory. The problem is generallyexpressed in terms of a parameter k known as the treewidth, whi
h is one less than the smallesta
hievable value of the
ardinality of the largest elimination
lique, where we range over all possibleelimination orderings.Consider for example, the star graph on n nodes shown in Figure 3.8(a). If we were to eliminatethe
entral node �rst, we would immediately link all other nodes,
reating an elimination
liqueof size n. On the other hand, if we eliminate all of the leaf nodes �rst we never
reate a
lique of
ardinality greater than two. Indeed, the treewidth of this graph is equal to one.Figure 3.8(b) shows a se
ond example, in whi
h it
an be veri�ed that it is possible to eliminatethe nodes in su
h a way that the largest
lique
reated is of size three. The treewidth is thus equalto two.The general problem of �nding the best elimination ordering of a graph|an elimination orderingthat a
hieves the treewidth|turns out to be NP-hard. We dis
uss this hardness result, and its
onsequen
es for probabilisti
 inferen
e, in more detail in Chapter 17. Indeed, in that
hapterwe dis
uss an inferen
e algorithm (the jun
tion tree algorithm) that generalizes Eliminate andne
essitates a deeper dis
ussion of the treewidth problem and methods for ta
kling it. As we willshow, there are a number of useful heuristi
s for �nding good elimination orders, and these
anprovide viable solutions in pra
ti
al problems.

3.2. GRAPH ELIMINATION 17

(a) (b)Figure 3.8: (a) A graph whose treewidth is equal to one. (b) A graph whose treewidth is equal totwo.In the meantime, all of the graphs that we study in intervening
hapters will turn out to involvegraphs that have \obvious" optimal elimination orderings.The NP-hardness result should be taken as inje
ting a
autionary note into our study of elim-ination methods, suggesting that we should not expe
t Eliminate to provide a
omputationally-eÆ
ient solution to the general problem of probabilisti
 inferen
e. On the other hand, we
learlyshould never have expe
ted any su
h general solution from Eliminate. The fully-
onne
ted graph,for example, yields a single
lique
ontaining all of the nodes, under all possible elimination order-ings, and thus has no graph-theoreti
 stru
ture that Eliminate
an exploit. To have any hope foreÆ
ient probabilisti
 inferen
e in su
h a graph, we need to hope that other stru
tural features ofprobability theory
an be brought to bear.5We
an also take the NP-hardness result as providing a
risp statement of the
omputationalbottlene
k that arises in Eliminate. Indeed, note that Undire
tedGraphEliminate providesa pra
ti
ally useful tool for assessing the severity of this bottlene
k. For a given eliminationordering, we
an obtain a
heap assessment of the predi
ted running time of Eliminate by runningUndire
tedGraphEliminate. If Undire
tedGraphEliminate yields elimination
liques ofreasonably small
ardinality, then we know that it is viable to run Eliminate.3.2.4 Graph elimination and dire
ted graphsAll of the
onsiderations of the previous three se
tions also apply to dire
ted graphs. There is,however, a minor idiosyn
ra
y of dire
ted graphi
al models that must be addressed if we are to usethe
on
ept of \elimination
lique" to analyze the dire
ted version of Eliminate.The fun
tions that are used to initialize the a
tive list in the dire
ted
ase are
onditionalprobabilities, p(xi jx�i). Note that a pair of variables Xj and Xk that are parents of Xi are linked5That is, there may be spe
ial algebrai
 stru
ture in the potentials, or symmetries, or simpli�
ations broughtabout by laws of large numbers. These issues will return in our
onsideration of approximate inferen
e algorithms,in Chapter 20 and Chapter 21.

18 CHAPTER 3. THE ELIMINATION ALGORITHMDire
tedGraphEliminate(G; I)Gm = Moralize(G)Undire
tedGraphEliminate(Gm; I)Moralize(G)for ea
h node Xi in I
onne
t all of the parents of Xienddrop the orientation of all edgesreturn GFigure 3.9: An algorithm for eliminating nodes in an dire
ted graph G.
1X

2X

3X

X 4

X 5

X6

Figure 3.10: The moral graph
orresponding to the dire
ted graph in Figure 2.1.fun
tionally by their presen
e in the fun
tion p(xi jx�i), but they are not ne
essarily neighbors inthe graph G (e.g., X2 and X5 are not linked in Figure 3.1). This breaks the relationship betweenelimination
liques and sets of arguments that we established in the previous se
tion for undire
tedgraphs.There is a simple �x. To de�ne the elimination
liques for a dire
ted graph, �rst
onne
t all ofthe parents of ea
h node|this
aptures the basi
 fa
t that fa
tors involving all variables X�i willne
essarily appear in our
al
ulations. Then drop the orientation of all of the edges in the graph,
onverting the graph to an undire
ted graph. This pro
edure, of \marrying" the parents of thenodes in a dire
ted graph and
onverting to an undire
ted graph, is referred to as moralization.The resulting graph is referred to as a moral graph. We use moralization as a subroutine in thealgorithm, Dire
tedGraphEliminate, for eliminating dire
ted graphs (see Figure 3.9).The graph in Figure 3.10 is the moral graph
orresponding to the dire
ted graph in Figure 2.1.

3.3. DISCUSSION 19Note that (in the elimination order that we have been using in our example) X6 is eliminated beforeits parents X2 and X5, and the elimination step already adds a link between these two nodes. Thatis, in this
ase, we do not need to moralize; elimination does it for us. On the other hand, if aparent of X6 appears before X6 in the elimination order, we need to moralize expli
itly. Considerin parti
ular an elimination ordering in whi
h X5 is eliminated �rst. The other parent, X2, is not aneighbor of X5 when the latter node is eliminated, and thus is not in
luded within the elimination
lique of X5. This fails to
apture the fa
t that summing over X5
reates an intermediate fa
torthat refers to X2 and the other neighbors of X5. In general we need to moralize in the dire
tedgraphi
al setting if we want the elimination
liques to
apture all su
h dependen
ies.The
onsiderations in this se
tion may help to explain the important role that undire
tedgraphi
al models play in designing and analyzing inferen
e algorithms, a role that we will see againin later
hapters, even when the original graphi
al model is dire
ted. In a dire
ted model, the basi
fa
tors that appear in the joint probability are
onditional probabilities. There is of
ourse a greatdi�eren
e between the appearan
e of a variable on the left-hand or right-hand side of a
onditionalprobability. From the point of view of Eliminate, however, this di�eren
e is irrelevant. When wesum over xk, the fa
tor p(xi jxj ; xk) and the fa
tor p(xj jxi; xk) both
reate an intermediate fa
torlinking xi and xj . Thus, to understand the
omputational
omplexity of inferen
e, we need to ignorethe dire
tionality asso
iated with a
onditional probability. The undire
ted graphi
al formalism,whi
h treats su
h a probability as a general potential, (xi; xj ; xk), does this automati
ally.3.3 Dis
ussionOur presentation of the elimination algorithm for probabilisti
 inferen
e raises a number of ques-tions:� Can we prove that it works?� What are its limitations?� Can it be generalized?Detailed answers to these questions will emerge in later
hapters, but let us try to provide someshort answers here.It is not diÆ
ult to prove that the algorithm that we have presented is
orre
t. Indeed, we askthe reader to provide a proof by indu
tion in Exer
ise ??, and we present a proof by indu
tion of the
orre
tness of a
losely-related algorithm (the Sum-Produ
t algorithm) in Chapter 4. Moreover,in Chapter 17 we prove the
orre
tness of the general jun
tion tree algorithm, an algorithm thatgeneralizes both Eliminate and Sum-Produ
t.The Eliminate algorithm has a number of limitations, some whi
h are easily
orre
ted andothers whi
h are not. In parti
ular, taking Eliminate seriously as an algorithm to be implementedon a
omputer reveals a number of ineÆ
ien
ies. Most importantly, the use of a single \a
tive list" asa data stru
ture requires an ineÆ
ient traversal of the entire list every time the algorithm eliminatesa node. This
an be �xed by maintaining a separate list, or \bu
ket," for ea
h node. Wheneverthe algorithm
reates a new intermediate fa
tor, mi(xSi), it s
ans the elimination ordering I, and

20 CHAPTER 3. THE ELIMINATION ALGORITHM
q q

1 2 3 T

1 2 3 T

X X X X

Y Y Y YFigure 3.11: A
hain-stru
tured graphi
al model.�nds the �rst o

urren
e of an index in Si. It then pla
es mi(xSi) in the bu
ket asso
iated withthat index. This \bu
ket elimination" approa
h to elimination is explored in Exer
ise ??.A more serious limitation of the basi
 elimination methodology is the restri
tion to a singlequery node. While it is not diÆ
ult to develop variations of the algorithm that handle small sets ofinter
onne
ted query nodes, signi�
antly more work is required to generalize the algorithm further,in parti
ular to handle the
ommon situation in whi
h we require the
onditional probability of allof the non-eviden
e nodes in the graph.Consider, for example, the graphi
al model shown in Figure 3.11, an important graph that wewill meet again in Chapter 12 and Chapter 15. Here we have a ba
kbone of unshaded nodes Xi forwhi
h we require the
onditional probabilities, where we
ondition on the shaded nodes Yi hangingo� the ba
kbone. Computing the
onditional probability of any single node is a straightforwardappli
ation of Eliminate. Thus, for example, we
an
al
ulate p(x1 j y), where y = fy1; y2; : : : ; yng,by de�ning an elimination ordering in whi
h x1 is the �nal node. Similarly we
an
hoose anyintermediate node xi as the �nal node in an elimination ordering; for example, we
an
hoose anelimination ordering in whi
h the
ow is forward from x1 to xi, and ba
kward from xn to xi.We
an obviously
al
ulate the
onditionals by running the elimination algorithm n times,on
e for node xi. Clearly, however, this approa
h is ineÆ
ient, requiring us to repeat the sameelimination steps many times. For example, in
al
ulating p(x1 j y) and p(x2 j y), all of the stepsinvolved in marginalizing over x3; : : : ; xn would be repeated.It is not diÆ
ult to �gure out how to avoid the redundant
al
ulations in the
ase of the graphin Figure 3.11, and indeed we will present various algorithms in Chapter 12 and Chapter 15 that
al
ulate all of the desired
onditionals via a single forward and ba
kward pass along the
hain.What we would like, however, is a general pro
edure for avoiding redundant
omputation.We will make the step up to su
h a general pro
edure in two steps. First, in Chapter 4, wedes
ribe the Sum-Produ
t algorithm, a pro
edure that allows the
omputation of all singletonmarginals, but is restri
ted to trees. Se
ond, in Chapter 17, we put together what we have learnedfrom the elimination approa
h and the sum-produ
t algorithm, and des
ribe a general pro
edure|the jun
tion tree algorithm|that
omputes marginals for general graphs. The key idea behindthe jun
tion tree algorithm is to avoid the multiple, di�erent elimination orderings that repeatedruns of elimination would require, in essen
e by developing a general data stru
ture for
a
hing and

3.4. HISTORICAL REMARKS AND BIBLIOGRAPHY 21
ombining intermediate fa
tors. Rather than fo
using on elimination orderings, the jun
tion treealgorithm fo
uses on the relationships between intermediate fa
tors, or \messages." The same ideais present in simpler form in the Sum-Produ
t algorithm, to whi
h we now turn.3.4 Histori
al remarks and bibliography

