conditional
probability query

renormalization

Exact Inference: Variable Elimination

In this chapter, we discuss the problem of performing inference in graphical models. We show
that the structure of the network, both the conditional independence assertions it makes and
the associated factorization of the joint distribution, is critical to our ability to perform inference
effectively even in complex networks.

Our focus in this chapter is on the most common query type: the conditional probability
query, P(Y | E = e) (see section 2.1.5). We have already seen several examples of conditional
probability queries in chapter 3 and chapter 4; as we saw, such queries allow for many useful
reasoning patterns, including explanation, prediction, intercausal reasoning, and many more.

By the definition of conditional probability, we know that

M 9.1

P(Y |B=e)= ZOR

1]
corresp

Each of the instantiations of the numerator is a probs
computed by summing out all entries in the joint
with y, e. More precisely, let W =X —-Y — E
nor evidence. Then

d to assignments consistent
ariables that are neither query

P(y,e) = P(y,e,w). 9.2)
w
Because Y, E, W are all of the bles, each term P(y, e, w) in the summation is
simply an entry in the joint dis i
The probability P d directly by summing out the joint. However, it
can also be comp
Ple)=)" 9.3)
v
which allows us to reus computation for equation (9.2). If we compute both equation (9.2)

and equation (9.3), we can then divide each P(y,e) by P(e), to get the desired conditional
probability P(y | e). Note that this process corresponds to taking the vector of marginal
probabilities P(y',e),..., P(y*, e) where k = [Val(Y')|) and renormalizing the entries to
sum to 1.

ession P(y, €), which can be -

9.1

-9.11

Theorem 9.1

3-8AT

288 Chapter 9. Variable Elimination

Analysis of Complexity

In principle, a graphical model can be used to answer all of the query types described earlier.
We simply generate the joint distribution and exhaustively sum out the joint (in the case of a
conditional probability query), search for the most likely entry (in the case of a MAP query), or
both (in the case of a partial MAP query). However, this approach to the inference problem is
not very satisfactory, since it returns us to the exponential blowup of the joint distribution that
the graphical model representation was precisely designed to avoid.

Unfortunately, we now show that exponential blowup of the inference task is (almost
certainly) unavoidable in the worst case: The problem of inference in graphical models is
NP-hard, and therefore it probably requires exponential time in the worst case (except
in the unlikely event that P = A'P). Even worse, approximate inference is also A"P-hard.
Importantly, however, the story does not end with this negative result. In general, we care
not about the worst case, but about the cases that we encounter in practice. As we show
in the remainder of this part of the book, many real-world applications can be tackled
very effectively using exact or approximate inference algorithms for graphical models.

In our theoretical analysis, we focus our discussion on Bayesian networks. Because any
Bayesian network can be encoded as a Markov network with no increase in its representation
size, a hardness proof for inference in Bayesian networks immediately implies hardness of

inference in Markov networks.

Analysis of Exact Inference

needto address the question of

how we encode a Bayesian network. Without going t detail, we can assume that
the encoding specifies the DAG structure and or the following results, we assume
|Val({X;} UPax,)|.

plexity are stated in terms of decision

problems. We therefore begin with e inference problem as a decision prob-

lem, and then discuss the numeri

Proor ;

full a network variables. In the verification phase, we check whether X = z
in § an) > 0. One of these guesses succeeds if and only if P(X = z) > 0.
Computing full assignment of the network variables requires only that we multiply

the relevant

be done in linear time.
To prove NP-hardness, we need to show that, if we can answer instances in BN-Pr-DP,

we can use that as a subroutine to answer questions in a class of problems that is known
to be N"P-hard. We will use a reduction from the 3-SAT problem defined in definition A.8.

s in the factors, as per the chain rule for Bayesian networks, and hence can -

[N

9.1 Analysis of Complexity

Figure 9.1 An outline of the network structure used in the reduction of 3-SAT to Bayesian network

inference.

To show the reduction, we show the following: Given any 3-SAT formula ¢, we can create a
Bayesian network B, with some distinguished variable X, such that ¢ is satisfiable if and only if
Pg,(X = z') > 0. Thus, if we can solve the Bayesian network inference problem in polynomial
time, we can also solve the 3-SAT problem in polynomial time. To enable this conclusion, our
BN By, has to be constructible in time that is polynomial in the len
Consider a 3-SAT instance ¢ over the propositional variables g,
the structure of the network constructed in this reduction.
Q. for each propositional variable g;; these variables are roo
node C; for each clause C;. There is an edge from Qy, to C; i
in C;. The CPD for C; is deterministic, and chosen sug
of the clause. Note that, because C; contains at mos
distributions, and at most sixteen entries.
We want to introduce a variable X that
the value 1. We can achieve this require
construction, however, has the property
written as a table. To avoid this difficul
so that A; is the “AND” of C; a
variable X is the “AND” of A,,,
value 1 if and only if all the clz
have at most three :
It follows that
for ¢. Because
probability Pg,(z
therefore test whether ¢, has

re 9.1 illustrates
B has a node
.5. It also has a

duplicates the behavior
e CPD has at most eight

and only if all the C;’s have
., Cr, be parents of X. This
.oy is exponentially large when
e intermediate “AND” gates A;,..., Am—a,
" of A; and Cj, and so on. The last
onstruction achieves the desired effect: X has
Furthermore, in this construction, all variables
o that the size of By is polynomial in the size of ¢.
1 if and only if ¢,..., ¢y, is a satisfying assignment
of each possible assignment is 1/27, we get that the overall
er of satisfying assignments to ¢, divided by 2". We can
isfying assignment simply by checking whether P(z!) > 0. m

This analysis shows that the decision problem associated with Bayesian network inference is
N'P-complete. However, the problem is originally a numerical problem. Precisely the same
construction allows us to provide an analysis for the original problem formulation. We define

the problem BN-Pr as follows:

Theorem 9.2

9.1.2

Definition 9.1

absolute error

290 Chapter 9. Variable Elimination

Given: a Bayesian network B over X, a variable X € X, and a value z € Val(X),
compute Pg(X =).

Our task here is to compute the total probability of network instantiations that are consistent
with X = z. Or, in other words, to do a weighted count of instantiations, with the weight being
the probability. An appropriate complexity class for counting problems is #P: Whereas NP
represents problems of deciding “are there any solutions that satisfy certain requirements,” #7P
represents problems that ask “how many solutions are there that satisfy certain requirements.” It
is not surprising that we can relate the complexity of the BN inference problem to the counting

class #P:

The problem BN-Pr is #P-complete.

We leave the proof as an exercise (exercise 9.1).

Analysis of Approximate Inference

Upon noting the hardness of exact inference; a natural question is whether we can circumvent
the difficulties by compromising, to some extent, on the accuracies of our answers. Indeed, in
many applications we can tolerate some imprecision in the final probabilities: it is often unlikely
that a change in probability from 0.87 to 0.92 will change our course of action. Thus, we now

To analyze the approximate inference task for
the quality of our approximation. We can comsi
how we choose to define our query. Consider first
probability query task, where our goal is to cg

evaluate its quality using any of the
appendix A.1.3.3.

. The approximate answer to this query is a number p,

whose accuracy we wish to ive to the correct probability. One way of evaluating

the accuracy of an estix

ough plausible, is somewhat weak. Consider, for example, a situation

probability is, say, 0.00001. In this case, an absolute error of 0.0001 is unacceptable, even
though such an error may be an excellent approximation for an event whose probability is 0.3.
A stronger definition of accuracy takes into consideration the value of the probability that we

are trying to estimate:

ing to compute the probability of a really rare disease, one whose trie

q
%

Definition 9.2

relative error

Theorem 9.3

Theorem 5.4

9.1 Analysis of Complexity : 291

An estimate p has relative error ¢ for P(y | e) if:
, .
1o SPwle)<p(l+e. .

Note that, unlike absolute error, relative error makes sense even for € > 1. For example, € = 4
means that P(y | e) is at least 20 percent of p and at most 600 percent of p. For probabilities,

where low values are often very important, relative error appears much more relevant than

absolute error.
With these definitions, we can turn to answering the question of whether approximate in-

ference is actually an easier problem. A priori, it seems as if the extra slack provided by the
approximation might help. Unfortunately, this hope turns out to be unfounded. As we now
show, approximate inference in Bayesian networks is also A/P-hard.

This result is straightforward for the case of relative error.

The following problem is N'P-hard:

Given a Bayesian network B over X, a wriable X € X, and a value x € Val(X), find a
number p that has relative error € for Pg(X = z).

Proor The proof is obvious based on the original A’P-hardness proof for exact Bayesian network

inference (theorem 9.1). There, we proved that it is A/P-hard to .d ther Pg(z!) > 0.
Now, assume that we have an algorithm that returns an esti Pg(z!), which
is guaranteed to have relative error € for some € > 0. The d only if Pg(z!) > 0.
Thus, achieving this relative error is as A'P-hard as the origin =

5 the input size n. Thus,
for example, we can define ¢(n) = 22" and the theo . Thus, in a sense, this result
is not so interesting as a statement about har ation. Rather, it tells us that
relative error is too strong a notion of approxifati edn this context.

What about absolute error? As we will s
P(X = x) up to some fixed absolut
Therefore, the problem cannot be NP-
on the exact case, where even the

Unfortunately, the good newsfis
evidence. Specifically, it is .
€< 1/2

scope, in that it disappears once we introduce
d an absolute approximation to P(z | e) for any

The following pro. 1 -hard for any € € (0,1/2):

over X, a wriable X € X, a wlue z € Val(X), and an

Given a Bayesian networ
X and e € Val(E), find a number p that has absolute error ¢

obsermtion E = e
for Pg(X =z | e).

Proor The proof uses the same construction that we used before. Consider a formula ¢, and
consider the analogous BN B, as described in theorem 9.1. Recall that our BN had a variable
Q; for each propositional variable ¢; in our Boolean formula, a bunch of other intermediate

9.2

292 , Chapter 9. Variable Elimination

variables, and then a variable X whose value, given any assignment of values ¢}, ¢) to the Q’s,
was the associated truth value of the formula. We now show that, given such an approx1mat10n
algorithm, we can decide whether the formula is satlsﬁable We begin by computing P(Q; | z1).
We pick the value v; for Q); that is most likely given z, and we instantiate it to this value. That
is, we generate a network B, that does not contain Ql, and that represents the distribution
B conditioned on Q; = v;. We repeat this process for Q,...,Q,. This results in some
assignment v1, . . ., v, to the);'s. We now prove that this is a satisfying assignment if and only
if the original formula ¢ was satisfiable.

We begin with the easy case. If ¢ is not satisfiable, then v;, ..., v, can hardly be a satisfying
assignment for it. Now, assume that ¢ is satisfiable. We show that it also has a satisfying
assignment with Q1 = v;. If ¢ is satisfiable with both Q; = ¢} and Q; = q), then this is
obvious. Assume, however, that ¢ is satisfiable, but not when Q; = v. Then necessarily, we
will have that P(Q; = v | ') is 0, and the probability of the complementary event is 1. If
we have an approximation p whose error is guaranteed to be < 1/2, then choosing the v that
maximizes this probability is guaranteed to pick the v whose probability is 1. Thus, in either
case the formula has a satisfying assignment where Q; = v.

We can continue in this fashion, proving by induction on & that ¢ has a satisfying assignment
with @1 = v1,...,Qr = vx. In the case where ¢ is satisfiable, this process will terminate with
a satisfying assxgnment In the case where ¢ is not, it clearly will not terminate with a satisfying
assignment. We can determine which is the case simply by checking whether the resulting

assignment satisfies ¢. This gives us a polynomial time pr r deciding satisfiability. n
Because € = 1/2 corresponds to random guessing, t isfquite discoufaging. It tells
us that, in the case where we have ev1dence, a i erefice is no easier than exact

inference, in the worst case.

Variable Elimination: The Basic

iscu principles underlying exact inference in
hicalistructure that allows a compact represen-

graphical models. As we show,
t infereénce. In particular, we can use dynamic

tation of complex distribution

(9.4)

Fortunately, we have all the required numbers in our Bayesian network representation: each
number P(a) is in the CPD for A4, and each number P(b | a) is in the CPD for B. Note that

appendix A.3.3) to perform inference even for certain

4

9.2. Variable Elimination: The Basic Ideas ’ 293

if A has k values and B has m values, the number of basic arithmetic operations required is
O(k x m): to compute P(b), we must multiply P(b | a) with P(a) for each of the k values of
A, and then add them up, that is, k multiplications and & — 1 additions; this process must be
repeated for each of the m values b.

Now, assume we want to compute P(C). Using the same analysis, we have that

P(C) =Y P(b)P(C | b). 9.5)
"

Again, the conditional probabilities P(c | b) are known: they constitute the CPD for C. The
probability of B is not specified as part of the network parameters, but equation (9.4) shows us
how it can be computed. Thus, we can compute P(C). We can continue the process in an
analogous way, in order to compute P(D).

Note that the structure of the network, and its effect on the parameterization of the CPDs, is
critical for our ability to perform this computation as described. Specifically, assume that A had
been a parent of C. In this case, the CPD for C' would have included A, and our computation
of P(B) would not have sufficed for equation (9.5).

Also note that this algorithm does not compute single values, but rather sets of values at a
time. In particular equation (9.4) computes an entire distribution over all of the possible values
of B. All of these are then used in equation (9.5) to compute P(C). This property turns out to
be critical for the performance of the general algorithm. _ '

Let us analyze the complexity of this process on a geperal c
chain with n variables X; — ... — X,,, where each v i
described, the algorithm would compute P(X; 1) from P(
step would consist of the following computation:

P(Xi+1) = ZP(X1,+1 l .’IJ,’)P(xi),

Ti

that we have a
as k values. As
»n— 1, Each such

costof each such step is O(k?): The

where P(X;) is computed in the previous
1) has &2 values; we need to

distribution over X; has & values, and
multiply P(z;), for each value z;, wi
then, for each value z;,1, sum up the
to perform this process for eve

By comparison, consider the
requires that we ge
at’least one exa
inference in lin

entries (k x (k — 1) additions). We need
., Xn; hence, the total cost is O(nk?).

ting the entire joint and summing it out, which
or the different events z,...,z,. Hence, we have
exponential size of the joint distribution, we can do

ever generating it explicitly. at is the basic insight that allows us to avoid the exhaustive
enumeration? Let us r this process in terms of the joint P(A, B, C, D). By the chain
rule for Bayesian networks, the joint decomposes as

P(A)P(B | A)P(C | B)YP(D | C)

To compute P(D), we need to sum together all of the entries where D = d2, and to (separately)
sum together all of the entries where D = d?. The exact computation that needs to be

294 Chapter 9. Variable Elimination

P(a’) P(b!|al) P(c!|b) P(d|c)
+ P(a?) P(b!]a®) P(c'|b') P(d'|c!)
+ P(al) P(b*|al) P(c!|b?) P(d'|ch)
+ P(a?) P(b*|a?) P(c!|b?) P(d'|c!)
+ P(al) P('|al) P(c|b') P(d'|c?)
+ P(a?) P(b!|a®) P([b') P(d'|c?)
+ P(al) P(?|al) P(c|b?) P(d'|c?)
+ P(a®) P(b*|a®) P(c*|b?) P(d'|c?)

P(al) P(b!|al) P(c[b) P(d?|cl)
+ P(a®) P(!|a%) P(c!|b') P(d®|c!)
+ P(al) P@*|al) P(ct|b?) P(d®]|c!)
+ P(a®) P(b*|a®) P(c!|b?) P(d®|c!)
+ P(al) P@!|al) P(c|b') P(d®|c?)
+ P(a®) P(b!|a%) P(c]|b') P(d®|c?)
+ P(al) P(?|al) P(c|0?) P(d®|c?)
+ P(a®) P(b*|a®) P(c*|0?) P(d®|c?)

Figure 9.2 Computing P(D) by summing over the joint distribution for a chain A — B —.C —
D; all of the variables are binary valued.

guge 9.2.!
or example, the third and
. We can therefore modify

performed, for binary-valued variables A, B, C, I, is sha
Examining this summation, we see that it has ‘alet o
fourth terms in the first two entries are both P(ct
the computation to first compute
P(a)P(b" | a') + P(a®) P(b" | a?)
and only then multiply by the com
table. If we perform the same trans e\get a new expression, as shown in figure 9.3.
We now observe that certain eral times in this expression. Specifically,
P@a')P(b! | a*) + P(a®)P, 2 | a!) + P(a®)P(b? | a?) are each
repeated four times. Thus, it at we can gain significant computational savings by

computing them once em. There are two such expressions, one for each
we : Val(B) +— IR, where 71 (b') is the first of these

two expres) econd. Note that 71(B) corresponds exactly to P(B).

The 1 i ming 71 (B) has been computed, is shown in figure 9.4. Examin-
ing thi ® that we once again can reverse the order of a sum and a product,
resuli jon of figure 9.5. And, once again, we notice some shared expressions,

once and used multiple times. We define 2 : Val(C) — R.
)P(c! | 1) + 7 (b°)P(c! | b7)
() = m(®)P(P|b') + 1 (b*)P(? | b?)

L When D is binary-valued, we can get away with doing only the first of these computations. However, this trick does
not carry over to the case of variables with more than two values or to the case where we have evidence. Therefore, our

example will show the computation in its generality.

L.mz;ﬁum,__«k ettt 4

9.2. Variable Elimination: The Basic Ideas o 295

P(ct |b') P(d']cl)
P(c' | v?) P(d'|cY)
P(c?|bY) P(d']|c?)
P(c?|b%) P(d']|c?)

(P(a)P(b" | a') + P(a®)P(b" | a?)
+ (P(a*)P(b? | a') + P(a?)P(b? [a?)
+ (P(a*)P(b* | a) + P(a?)P(b! | a?)
+ (P(a')P(b? | al) + P(a®)P(b? | a?)

(P(al)P(! [al) + P(a?)P(b! | a®)) P(c'|b') P(d?|cl)
(P(a®)P(¥ | a?) + P(a®)P(b? | a®)) P(c' |?) P(d*|ct)
(P(@)P(8! | al) + P(a®)P(b" |a®)) P(c|b') P(d?]|c?)
(P(a)P(®? | a') + P(a®)P(t? | %)) P([0*) P(d?|c?)

++ +

Figure 9.3 The first transformation on the sum of figure 9.2

n() P b)) P |c)
+ n(8?) P(|8?) Pd]c)
+ n@l) P(2|8Y) Pl |e)
+ () P |b?) Pd']c?)

(') P(ct|bY) P(d?]|ct)
+ 1 (8%) P(ct|b?) P(d?|ct)
+ (b)) P(P|bt) P(d?|P)
+ 7(6?) P(?|b?) P(d?|?)

Figure 9.4 The second transformation on

(T (B1)P(ct | 01) + 1 (B%)P(c* |)
+ (12(0Y)P(c? | b)) + 11 () P(c? Job

)

)

(V) P(ct | Y) + 7 (b
(@])

+ ((b")P(c? | b') + 71

Figure 9.5 The third tran; i suin of figure 9.2

e ransformation on the sum of figure 9.2

The final expression is figure 9.6.

Summarizing, we begin by computing 71 (B), which requires two multiplications and two
additions. Using it, we can compute 7,(C), which also requires four multiplications and two
additions. Finally, we can compute P(D), again, at the same cost. The total number of
operations is therefore 12. By comparison, generating the joint distribution requires 16 - 3 = 48

dynamic
programming

9.3
factor

296 o Chapter 9. Variable Elimination

multiplications (three for each of the 16 entries in the joint), and 14 additions (7 for each of
P(d') and P(d?)).

Written somewhat more compactly, the transformation we have performed takes the following
steps: We want to compute

P(D)=>"> "> P(A)P(B| A)P(C|B)P(D|C).
C B A

We push in the first summation, resulting in
Y P(D|C)Y_P(C|B)Y P(AP(B|A).
c B A

We compute thé product 91 (A, B) = P(A)P(B | A) and then sum out A to obtain the func-
tion 71(B) = 3 , ¥1(A, B). Specifically, for each value b, we compute 71 (b) = 3" , ¥1(4,b) =
>4 P(A)P(b| A). We then continue by computing:
$2(B,C) = m(B)P(C|B)
n(C) = 3 4a(B,C).
B

This computation results in a new vector 72(C'), which we then proceed to use in the final

phase of computing P(D).
This procedure is performing dynamic programming
mation the naive way would have us compute AP(A)P(b | A) many times,

would be computed exponentially many times. Dynamic pregtamming “inverts” the order of
computation — performing it inside out ing Specifically, we perform the

innermost summation first, computing ong

To summarize, the two ideas
distribution are:

¢ Because of the structu esian network, some subexpressions in the joint
depend only on a small riables.

¢ By computing th $§
them exponentially i

m demonstrated in the previous section, we need to introduce some
ter 4, we introduced the notion of a factor ¢ over a scope Scope[¢] = X,
which is a fu ¢ : Val(X) — IR. The main steps in the algorithm described here can be -
viewed as a manipulation of factors. Importantly, by using the factor-based view, we can define
the algorithm in a general form that applies equally to Bayesian networks and Markov networks.

9.3.1
9.3.1.1

Definition 9.3

factor
marginalization

by

9.3. Variable Elimination 297

al| bt ¢! 025

al| bt| ¢?| 035

al| p?| c' | 0.08

al| p?| ¢*] 0.16 al| ¢! {033
a*| b'| ¢! 005 at 0.51
a*| bt | 2| 007 a | c!'|0.05
a2 b 0o 2| 007
a@| bt | o @024
a@| b el ois a| & |039
a| bl 2| 021

31 b2 ¢l 0.09

31 b%) ¢ 018

Figure 9.7 Example of factor marginalization: summing out B.

Basic Elimination

Factor Marginalization

The key operation that we are performing when compu some subset of

variables is that of marginalizing out variables from a distribu efhave a distribution
over a set of variables X, and we want to compute the margin atidistribution over some

a factor. We define the factor
marginalization of Y in ¢, denoted Y, ¢, to such that:

Y(X) =) ¢(X,Y).
Y

This operation is also called sum

The key point in this definitio ‘! only’ sum up entries in the table where the values of

nifdistribution P(X,Y") onto X in a Bayesian network

in the factor corresponding to P. If we sum out all
g of a single number whase value is 1. If we sum out all of
distribution Pp defined by the product of factors in a Markov

variables, we get
the variables in the unnormali

network, we get the pd
A key observation used in performing inference in graphical models is that the operations of

factor product and summation behave precisely as do product and summation over numbers.
Specifically, both operations are commutative, so that ¢; - ¢ = ¢2 - ¢; and 3 x2y®=
>y 2_x ¢ Products are also associative, so that (¢1-¢2)-¢3 = @1 (d3-¢3). Most importantly,

9.3.1.2

298 Chapter 9. Variable Elimination

Algorithm 9.1 Sum-product variable elimination algorithm

Procedure Sum-Product-VE (
®, I/ Set of factors
Z, Il Set of variables to be eliminated
< I/ Ordering on Z
)
Let Z1,..., Zy be an ordering of Z such that
Z; < Z;ifand only if i < j
fori=1,...,k
® «— Sum-Product-Eliminate-Var(®, Z;)
¢* — H¢e<1> ¢

return ¢*

AW =

Procedure Sum-Product-Eliminate-Var (
®, /] Set of factors
Z |l Variable to be eliminated

o' — {ped : Z e Scopelg]}
O — &P

’(p «— H¢€‘I>I ¢

T Zz"p

return ®” U {7}

Gl W N =

we have a simple rule allowing us to exchan jon product: If X & Scope|¢;], then

Z(¢1 “$2) =1 'zfﬁz-
X X

9.6

The key to both of oug e last section is the application of equation (9.6). Specifi-
cally, in our chain e efof Section’9.2, we can write:

sum-product

variable
elimination

Theorem 9.5

9.3. Variable Elimination . 299

Applying equation (9.6), we can now conclude:

P(D) = 33" ¢a-¢5-dc-¢p

C B A

ch};sbc-qbp- <;¢A'¢3)
;@sp- (Zqusc- (Zf;m-m)) ,

where the different transformations are justified by the limited scope of the CPD factors; for
example, the second equality is justified by the fact that the scope of ¢c and ¢p does not
contain A. In general, any marginal probability computation involves taking the product of all
the CPDs, and doing a summation on all the variables except the query variables. We can do
these ‘steps in any order we want, as long as we only do a summation on a variable X after
multiplying in all of the factors that involve X. 5

In general, we can view the task at hand as that of computing the value of an expression of
the form: :

2 1Is

Z ¢cd

I

ws the effective
ited, allowing us
of only a subset of
ed sum-product variable
algorithm is that we sum out
ly all the factors that mention
e variable from this combined
ors to be dealt with.

We call this task the sum-product inference task. The
computation of this expression is the fact that the scope o
to “push in” some of the summations, performing them over
factors. One simple instantiation of this algorithm is ,
elimination (VE), shown in algorithm 9.1. 'The basicgi
variables one at a time. When we sum out any variable
that variable, generating a product factor. N
factor, generating a new factor that we ent

rs such that for each ¢ € @, Scope[p] C X.
Z = X —Y. Then for any ordering < over Z,
such that

Let X be some set of mfiables;: and kt P
LetY C X be a set of query
Sum-Product-VE@, Z, <) ret

We can apply
a Bayesian network B.

¢ I= {¢X1 } ?:1
where ¢x, = P(X; | Pax,). We then apply the variable elimination algorithm to the set
{Zy,...,Zn} = X - Y (that is, we eliminate all the nonquery variables).

We can also apply precisely the same algorithm to the task of computing conditional prob-
abilities in a Markov network. We simply initialize the factors to be the clique potentials and

orithm 40 the task of computing the probability distribution Pg(Y") for
e si instantiate @ to consist of all of the CPDs:

Example 9.1

300 Chapter 9. Variable Elimination

Figixre 8.8 The Extended-Student Bayesian network

run the elimination algorithm. As for Bayesian networks, we then apply the variable elimination
algorithm to the set Z = X — Y. The procedure returns an unnormalized factor over the query
variables Y. The distribution over ¥ can be obtained by izing the factor; the partition
function is simply the normalizing constant.

2. Eliminating D: Note that we have already eliminated one of the original factors that involve D
— ¢p(D,C) = P(D | C). On the other hand, we introduced the factor 1, (D) that involves

9.3. Variable Elimination i 301

D. Hence, we now compute:
¢2(G,I1D) ¢G(GaIvD)'Tl(D)
72(G, I) > 42(G,1,D).
D

3. Eliminating I: We compute the factors
¥3(G,1,S) = ¢1(I) ¢s(S,1)- (G, 1)
7(G,8) = Y 43(G,1,5).
I

4. Eliminating H: We compute the factors
¢4(G5J>H) = ¢H(H7G>J)
(G,) = Y (G, J H).
H

Note that 4 = 1 (all of its entries are exactly 1): we are simply computing ¥, P(H | G,J),
which is a probability distribution for every G, J, and hence sums to 1. A naive execution of this
algorithm will end up generating this factor, which has ro walue. Generating it has no impact
on the final answer, but it does complicate the algorithm. In parti the existence of this
factor complicates our computation in the next step.

5. Eliminating G: We compute the factors
"/"5(G1 J,L,S) = T4(G7J)'T3(G,S) ¢G’(L’G
(L L,S) = Y ¢5(G,J,L,S).
G

Note that, without the factor 74(G, J), the n

6. Eliminating S: We compute the factors
";[}6 (J 3 L) S)

76 (J ’ L)

th uld not have involved J.

Note that we can use any elimination ordering. For example, consider eliminating variables in
the order G, 1, S, L, H, C, D. We would then get the behavior of table 9.2. The result, as before,
is precisely P(J). However, note that this elimination ordering introduces factors with much larger
scope. We return to this point later on. ' u

302 Chapter 9. Variable Elimination
Step | Variable Factors Variables New
eliminated used involved factor
1 C $c(C), ¢p(D,C) C,D 71(D)
2 D ¢c(G, I, D), (D) G,I,D 72(G, 1)
3 I ér(D), ¢s(S,I), 2(G, I) G,S,1 73(@G, S)
4 H ou(H,G,J) H,G,J 74(G, J)
5 G (G, J), 3(G,8), ¢1(L,G) | G,J,L,S | 5(J,L,S)
6 S 75(J, L, S), $5(J, L, S) J LS 76(J, L)
7 L 76(J, L) J, L 77(J)
Table 9.1 A run of variable elimination for the query P(J)
Step | Variable Factors Variables New
eliminated used involved factor
1 G ¢c(G,1,D), ¢1(L,G), ¢a(H,G,J) | G,I,D,L,J,H | (I,D, L, J, H)
2 I ¢:1(I), ¢s(S,1), n(I,D,L,S,J,H) | S,1,D,L,J,H | 15(D,L,S,J, H)
3 S ¢s(J,L,S), (D, L, S, J, H) D,L,S,J,H 73(D, L, J, H)
4 L T3(D, L, J, H) ‘ D,L,J H 74(D, J, H)
5 H T4(D, J, H) ' D,J . H 75(D, J)
6 c 75(D,J), (D, C) J,C 76(D, J)
7 D 16(D, J) ‘ 77(J)
Table 9.2 A different run of variable i e query P(J)
9.3.1.3 Semantics of Factors

termediate factors generated as part of

ve given, they correspond to marginal or

ver, although these factors often correspond to
case. Consider, for example, the network of figure 9.9a.

It is interesting to consider the
this computation. In many of
conditional probabilities in t
such probabilities, this is n

onsider the various options for the meaning of this factor. Clearly, it
distribution where B is on the left hand side of the conditioning bar
,C)), as P(B | A) has not yet been multiplied in. The most obvious
candidate is

relies heavily on the properties of the CPD P(B | A); for example, if B is deterministically
equal to A, P(A | B) has a very different form than if B depends only very weakly on A. Since
the CPD P(B | A) was not taken into consideration when computing 7(4, B, C), it cannot
represent the conditional probability P(A,C | B). In general, we can verify that this factor

C | B). However, this conjecture is also false. The probability P(4 | B)-

9.3.2

factor reduction

9.3. Variable Elimination 303

(a) (b)

Figure 9.9 Understanding intermediate factors in variable elimination as conditional probabilities:
(a) A Bayesian network where elimination does not lead to factors that have an interpretation as conditional
probabilities. (b) A different Bayesian network where the resulting factor does correspond to a conditional

probability.

does not correspond to any conditional probability expression in this network.

It is interesting to note, however, that the resulting factor does,gin fact, correspond to a
conditional probability P(A,C | B), but in a different network:
where all CPDs except for B are the same. In fact, t hen
exercise 9.2).

Dealing with Evidence

It remains only to consider how we would introduce
the value ' (the student is intelligent) and A°
P(J | ¢ h%). First, we reduce this pro
P(J,i*, h®). From this intermediate r
equation (9.1), by renormalizing by.

How do we compute P(J,i', h0)?
us how to view, as a Gibbs dig

thappy). Our goal is to compute
g the unnormalized distribution

view this computation as summing out all of
the entries in the r : ‘ hose scope is {C, D, G, L, S, J}. This factor is no

ow apply precisely the same sum-product variable elim-
computing P(Y, e). We simply apply the algorithm to the set
of factors in the network, redd¢ed by E = e, and eliminate the variables in X — Y — E. The
returned factor ¢* (Y)i sely P(Y',). To obtain P(Y |) we simply renormalize ¢*(Y")
by multiplying it by 1 to obtain a legal distribution, where a is the sum over the entries in our
unnormalized distribution, which represents the probability of the evidence. To summarize, the
algorithm for computing conditional probabilities in a Bayesian or Markov network is shown in

algorithm 9.2. :
We demonstrate this process on the example of computing P(J, i, h%). We use the same

304 _ Chapter 9. Variable Elimination

Algorithm 9.2 Using Sum-Product-VE for computing conditional probabilities

‘Procedure Cond-Prob-VE (
K, Il A network over X
Y, /I Set of query variables
E =e |/l Evidence

1 ® < Factors parameterizing X
2 Replace each ¢ € @ by ¢|E = €]
3 Select an elimination ordering <
4 Z— =X-Y-E
5 @* « Sum-Product-VE(®, <, Z)
6 & ZyEVal(Y) ¢*(y)
7 return ¢, ¢*
Step | Variable. Factors Variables New
eliminated used involved factor
r C ¢c(C), ¢p(D,C) C,D | 7(D)
b4 D ¢cll =i'[(G, D), 4111 =4'](), 7{(D) | G,D | 7}(G)
5 G Té(G>’ éL (La G)' ¢H[H = h’o](G7 J) G,L,J Té(La '])
6’ S sl =i')(8S), ¢5(J, L S L,S | 74(J,L)
7 L 16(J, L), 78(J, L J, L T3 (J)
Table 9.3 A run of sum-product vari elir m for P(J,i', h°)

elimination ordering that we used in table ts are shown in table 9.3; the step num- -
bers correspond to the steps in tab, ing to note the differences between the two
runs of the algorithm. First, we n@fice t and (4) disappear in the computation with
evidence, since I and H do inatgd. More interestingly, by not eliminating 7,
we avoid the step that cor S. In this execution, G and S never appear together in
the same factor; they are bo , and only their end results are combined. Intuitively,
ighallihinde ent given I; hence, observing I renders them independént,
so that we do not ider their joint distribution explicitly. Finally, we notice that
i over an empty scope, which is simply a number. It can be
any point in the computation. We chose arbitrarily to incorporate
at'it our goal is to compute a conditional probability given the evidence,
of the evidence itself, we can avoid multiplying in this factor entirely,
sappear in the renormalization step at the end.

since its effect

~network B Box 9.A — Concept: The Network Polynomial. 7The network polynomial provides an interest-
' de“?_"“‘ﬂ ing and useful alternative view of variable elimination. We begin with describing the concept for
a the case of a Gibbs distribution parameterized via a set of full table Jactors ®. The polynomial fs

)

sensitivity
analysis

9.3. Variable Elimination 305

is defined over the following set of variables:

* For each factor ¢, € ® with scope X ., we have a wariable O, for every . € Val(X,).

* For each wriable X; and every value z; € Val(X;), we have a binary-valued variable).

In other words, the polynomial has one argument Jor each of the network parameters and for each
possible assignment to a network variable. The polynomial fg is now defined as follows:

500 = 3 (] b I |- o)

T1y-0Tn \ P.€EP i=1

Ewaluating the network polynomial is equivalent to the inference task. In particular, let Y = y
be an assignment to some subset of network variables; define an assignment NY as follows:

* foreachY; € Y, define \¥, = 1 and)\g. =0 forallY; # y;;
* Vi &Y, define \¥, =1 for all y; € Val(Y;).
With this definition, we can now show (exercise 9.4a) that:

fa(8,XY) = P(Y =y | 9). 9.8)

The derivatives of the network polynomial are also of significg ofest. ., We can show (exer-

cise 9.4b) that

8fs(6,\Y)
A,

where y_; is the assignment in y to all variables o % We can also show that

0f2(8,AY) _ Po(y,z.|6) |
00, Oc. '

= Py(zi,y_; | 6), (9.9)

(9.10)

can be used for various purposes, including

this fact is proved in lemma 19.1
rk (exercise 9.4c), and sensitivity analysis — comput-

retracting or modifying evidence

(exercise 9.5).

" Of course, as
fowever, we can use the algebraic operations performed in a

n to\define a network polynomial that has precisely the same complexity
we can also use the same structure to compute efficiently all of the
derivatives of the net, nomial, relative both to the \; and the 0. (see exercise 9.6).

EREY

9.4

9.4.1

9.4.2

306 Chapter 9. Variable Elimination

Complexity and Graph Structure: Variable Elimination

From the examples we have seen, it is clear that the VE algorithm can be computationally much
more efficient than a full enumeration of the joint. In this section, we analyze the complexity
of the algorithm, and understand the source of the computational gains.

We also note that, aside from the asymptotic analysis, a careful implementation of this
algorithm can have significant ramifications on performance; see box 10.A.

Simple Analysis

Let us begin with a simple analysis of the basic computational operations taken by algorithm 9.1.
Assume we have n random variables, and m initial factors; in a Bayesian network, we have
m = n; in a Markov network, we may have more factors than variables. For simplicity, assume
we run the algorithm until all variables are eliminated.

The algorithm consists of a set of elimination steps, where, in each step, the algorithm picks
a variable X;, then multiplies all factors involving that variable. The result is a single large
factor . The variable then gets summed out of ;, resulting in a new factor 7; whose scope
is the scope of ¢ minus X. Thus, the work revolves around these factors that get created and
processed. Let N; be the number of entries in the factor v, and let Ny, = max; N;.

We begin by counting the number of multiplication-steps. Here, we note that the total number
of factors ever entered into the set of factors @ is m + n: the m initial factors, plus the 7 factors
7;. Bach of these factors ¢ is multiplied exactly once: wheg

a large factor 1;, it is also extracted from ®. The cost o plying, ¢ to produce +; is at most
;. Thus, the total number

of multiplication steps is at most (n + m)N; <
the number of addition steps, we note that thea
entry in 1; exactly once. Thus, the cost of
once for each factor 9, so that the total
total amount of work required is O(
The source of the inevitable ex p is the potentially exponential size of the
factors 7). If each variable has
k; variables, then N; < y*
dominated by the sizes of
number of variables i

the computational cost of the VE algorithm is
factors generated, with an exponential growth in the

Altho created during the algorithm is clearly the dominant quantity in
the c gorithm, it is not clear how it relates to the properties of our problem
instanc the only aspect of the problem instance that affects the complexity of

ructure of the underlying graph that induced the set of factors on which

9.4.2.1

Definition 9.4

Proposition 9.1

9.4.2.2

9.4. Complexity and Graph Structure: Variable Elimination 307

Factors and Undirected Graphs

We begin with the observation that the algorithm does not care whether the graph that generated
the factors is directed, undirected, or partly directed. The algorithm’s input is a set of factors ®,
and the only relevant aspect to the computation is the scope of the factors. Thus, it is easiest
to view the algorithm as operating on an undirected graph H.

More precisely, we can define the notion of an undirected graph associated with a set of

factors:

Let ® be a set of factors. We define
Scope|®] = Uge s Scope|d]

to be the set of all variables appearing in one of the factors in ®. We define He to be the
undirected graph whose nodes correspond to the variables in Scope[®] and where we have an edge
X;—X; € Hg if and only if there exists a factor ¢ € ® such that X, X; € Scopeld]. n

In words, the undirected graph Hge introduces a fully connected subgraph over the scope of
each factor ¢ € ¥, and hence is the minimal I-map for the distribution induced by &.
We can now show that:

Let P be a distribution defined by multiplying the factors in @ rmalizing to define a
distribution. Letting X = Scope[®], '
1
PX)=+ I ¢,
PED

where Z = 3"y [1scq ¢ Then He is the minimal Ma
© are a parameterization of this network that definé

The proof is left as an exercise (exercise 9.7)

Note that, for a set of factors ® define
the undirected graph Hg is precisely t
factors is a normalized distribution,
simply 1. Figure 4.6a shows the initi

of G. In this case, the product of the
function of the resulting Markov network is
for our Student example.

duced by a set of factors ®[e] defined by the

actors, so X = Scope[®.] = X — E. Furthermore, as
t of the factors is P(X, e), and the partition function
k is precisely P(e). Figure 4.6b shows the initial graph for
ence G = g, and figure 4.6c shows the casé with evidence

the variables in
we discussed,

Elimination as Graph Transformation

Now, consider the effect of a variable elimination step on the set of factors maintained by the
algorithm and on the associated Markov network. When a variable’ X is eliminated, several

operations take place. First, we create a single factor ' that contains X and all of the variables

fill edge

9.4.2.3

Definition 9.5
induced graph

308 Chapter 9. Variable Elimination

(@) (b) ©

Figure 9.10 Variable elimination as graph transformation in the Student example, using the elimi-
nation order of table 9.1: (b) after eliminating C:; (c) after eliminating D; (d) after eliminating I.

Y with which it appears in factors. Then, we eliminate X from v, replacing it with a new
factor 7 that contains all of the variables Y but does not contain X. Let ®x be the resulting
set of factors. '

How does the graph He, differ from Mg? The ste
between all of the variables Y € Y. Some of them
introduced due to the elimination step; edge
called fill edges. The step of eliminating X from uct 7lias the effect of removing X
and all of its incident edges from the graph.

Consider again our Student network, in 4
shows the original Markov network. Figufe 9. e result of eliminating the variable
C. For clarity, the figure still contains va dges that are removed, but marked with

dashed lines. Note that there are ced in this step.
After an elimination step, the ination steps use the new set of factors. In

constructing 1) generates edges
nt in Hg, whereas others are

graphs resulting from elimj and then I. Note that the step of eliminating I results
factor G, I, S.

e algorithm is reflected in the graph as a clique. In fact,
we can ize\t fational cost using a single graph structure. -

The

We de ed graph that is the union of all of the graphs resulting from the different
steps of th elimination algorithm.

Let ® be a set of factors over X = {X1,...,X,}, and < be an elimination orderingfor some

subset- X C X. The induced graph Zs is an undirected graph over X, where X; and X
are connected by an edge if they both appear in some intermediate factor 1 generated by the VE
algorithm using < as an elimination ordering. =

gorithm are reflected in this series of graphs. Eve}y factor -

Theorem 9.6

9.4. Complexity and Graph Structure: Variable Elimination) 309

|mm e —— o,

©

duged graph for variable
(b) Lliques in the induced
for the induced graph.

Figure .11 Induced graph and clique tree for the Stude
elimination in the Student example, using the elimination order

graph: {C, D}, {D,1,G}, {I,G, S}, {G, J,S, L}, and {G,J, H}.

For a Bayesian network graph G, we use Zg,< to de duced graph for the factors ®
corresponding to the CPDs in G; similarly, fo
induced graph for the factors ® correspon

The induced graph Zg . for our St
the fill edge G—S, introduced in ste
tation corresponds to a complete subgraph
he graph. The connection between cliques in G

2. Every maximal clique in T, is the scope of some intermediate Sactor in the computation.

Proor We begin with st statement. Consider a factor (Y1, ...,Y}) generated during the
VE process. By the definition of the induced graph, there must be an edge between each Y; and
Y;. Hence Y1, ...,Y}, form a clique.

To prove the second statement, consider some maximal clique Y = {Y1,...,Y,}. Assume,
without loss of generality, that Y; is the first of the variables in ¥ in the ordering <, and is

n figure 9.1a. We can see that .

Definition 9.6
induced width

tree-width

9.4.3

Theorem 9.7

310 Chapter 9. Variable Elimination

therefore the first among this set to be eliminated. Since Y is a clique, there is an edge from
Y; to each other Y;. Note that, once Y; is eliminated, it can appear in no more factors, so
there can be no new edges added to it. Hence, the edges involving ¥; were added prior to
this point in the computation. The existence of an edge between Y; and Y; therefore implies
that, at this point, there is a factor containing both ¥; and Y;. When Y; is eliminated, all these
factors must be multiplied. Therefore, the product step results in a factor 1 that contains all
of Y1,Y3,..., Y. Note that this factor can contain no other variables; if it did, these variables

would also have an edge to all of Y7, ..., Y%, so that Y3, ..., ¥; would not constitute a maximal

connected subgraph. a

Let us verify that the second property holds for our example. Figure 9.11b shows the maximal

cliques in Zg _:

C, = {C,D}
CZ {DJ Ia G}
C; = {GLSJ}
Ccy, = {G,J, H}
Both these properties hold for this set of cliques. For example, C5 corresponds to the factor

generated in step (5).
Thus, there is a direct correspondence between the maxi

al factors generated by our
antly, the induced graph and
the elimination ordering.
t network. In this case, we

Consider, for example, our other elimination or
can verify that our induced graph has a maximal
S,1,D,L,J, H, and a third over C, D, J; i
S and G, and some edges involving C. In
opposed to four in our original ordering.
more expensive.

e\umber of nodes in the largest clique.in the
idthinduced width wi,« of an ordering < relative to a
idth of the graph Ty« induced by applying VE to K
tree-width of a graph K to be its minimal induced width
n

We define the width of an in
graph minus 1. We define

wx = min w(Tl).
The miflima @ I the graph K provides us a bound on the best performance we
can Hope for b i to a probabilistic model that factorizes over K. ‘

Finding Elimina Orderings %
: pute the minimal induced width of the graph, and the elimination ordering
achieving that width? Unfortunately, there is no easy way to answer this question.

The following decision problem is N'P-complete:

9.4.3.1

chordal graph

Theorem 9.8

Theorem 9.9

9.4. Complexity and Graph Structure: Variable Elimination . 31

Given a graph H and some bound K, determine whether there exists an elimination ordering
achieving an induced width < K.,

It follows directly that finding the optimal elimination ordering is also N'P-hard. Thus, we
cannot easily tell by looking at a graph how computationally expensive inference on it will be.
Note that this A'P-completeness result is distinct from the A/P-hardness of inference itself.
That is, even if some oracle gives us the best eliminatinn ordering, the induced width might still
be large, and the inference task using that ordering can still require exponential time.

However, as usual, A'"P-hardness is not the end of the story. There are several techniques
that one can use to find good elimination orderings. The first uses an important graph-theoretic
property of induced graphs, and the second uses heuristic ideas.

Chordal Graphs

Recall from definition 2.24 that an undirected graph is chordal if it contains no cycle of length
greater than three that has no “shortcut,” that is, every minimal loop in the graph is of length
three. As we now show, somewhat surprisingly, the class of induced graphs is equivalent to the
class of chordal graphs. We then show that this property can be used to provide one heuristic
for constructing an elimination ordering. ‘

Every induced graph is chordal.

r—X1 for k > 3,
inated. As in the
ed; hence, both edges
Xo— X, will be added at

Proor Assume by contradiction that we have such a cy:
and assume without loss of generality that X; is the firs
proof of theorem 9.6, no edge incident on X; is added after
X1—X5 and X;—X;. must exist at this point. Th e
the same time, contradicting our assumption.

Indeed, we can verify that the graph of

The converse of this theorem states
ordering. One way of showing that
which H itself is the induced graph.

Any chordal graph H admitdan e rdering that does not introduce any fill edges into

the graph.

in n on the number of nodes in the tree. Let M be a chordal
ed in theorem 4.12, there is a clique tree 7" for . Let Cy, be a
at is, it has only a single other clique as a neighbor. Let X; be
some variable that is t not in its neighbor. Let ' be the graph obtained by eliminating
X;. Because X; belongS only to the clique Cy, its neighbors are precisely C, — {X;}. Because
all of them are also in Cl, they are connected to each other. Hence, eliminating X; introduces
no fill edges. Because H' is also chordal, we can now apply the inductive hypothesis, proving
the result. [

clique in the tree

Example 9.2

maximum

cardinality

Example 9.3

312 Chapter 9. Variable Elimination

Algorithm 9.3 Maximum cardinality search for constructing an elimination ordering

Procedure Max-Cardinality (
H /7 An undirected graph over X

)

Initialize all nodes in X" as unmarked

fork=|Xx|...1
X « unmarked variable in X' with largest number of marked neighbors
(X)) — k
Mark X

return 7

(=< B FUNN OO

We can illustrate this construction on the graph of figure 9.1la. The maximal cligues in the induced
graph are shown in b, and a clique tree for this graph is shown in c. One can easily verify that each
sepset separates the two sides of the tree; for example, {G, S} separate {C, I, D} and {L,J,H}.
The elimination ordering C, D, I, H, G, S, L, J, an extension of the elimination in table 9.1 that
generated this induced graph, is one ordering that might arise from the construction of theorem 9.9.
For example, it first eliminates C, D, which are both in a leaf clique; it then eliminates T , which
is in a clique that is now a leaf, following the elimination g D. Indeed, it is not hard to see
that this ordering introduces no fill edges. By contrast, t g in table 9.2 is not consistent
with this construction, since it begins by elimin [, S, none of which are in a
leaf clique. Indeed, this elimination ordering intro edges, for example, the edge

H — D. n

An alternative method for constructing a
in a chordal graph is the Max-Cardinality
not use the clique tree as its startin
applied to a chordal graph, it cons
a time, starting from the leave
clique tree structure explicitl

ering that introduces no fill edges
pwn in algorithm 9.3. This method does
operates directly on the graph. When
idtion ordering that eliminates cliques one at

ordal graph of figure 9.11. Assume that the first node
must be one of S's neighbors, say J. The nodes that have
ighbors are now G and L, which are chosen subsequently. Now,
¢ largest number of marked neighbors (two) are H and I. Assume
¢ s selected are D and H, in any order. The last node to be selected
lting ordering in which nodes are marked is thus S,J,G,L,I,D,C, H.
limination ordering proceeds in reverse. Thus, we first eliminate H, then

selected is S. The seca
the largest number ¢

Impor

C, D, and so on. n now see that this ordering always eliminates a variable from a clique that
is a leaf cli ¢ time. For example, we first eliminate H from a leaf clique, then C, D, then
G from the clique {G, I, D}, which is now (following the elimination of C, D) a leaf [

As in this example, Max-Cardinality always produces an elimination ordering that is consistent
with the construction of theorem 9.9. As a consequence, it follows that Max-Cardinality, when

applied to a chordal graph, introduces no fill edges.

Theorem 9.10

triangulation

polytree

9.4.3.2

9.4. Complexity and Graph Structure: Variable Elimination 313

Let H be a chordal graph. Let 7 be the ranking obtained by running Max-Cardinality on H. Then
Sum-Product-VE (algorithm 9.1} eliminating variables in order of increasing , does not introduce

any fill edges.

The proof is left as an exercise (exercise 9.8).

The maximum cardinality search algorithm can also be used to construct an elimination
ordering for a nonchordal graph. However, it turns out that the orderings produced by this
method are generally not as good as those produced by various other algorithms, such as those
described in what follows.

To summarize, we have shown that, if we construct a chordal graph that contains the graph
Hg corresponding to our set of factors ®, we can use it as the basis for inference using ®. The
process of turning a graph H into a chordal graph is also called triangulation, since it ensures
that the largest unbroken cycle in the graph is a triangle. Thus, we can reformulate our goal of
finding an elimination ordering as that of triangulating a graph H so that the largest clique in
the resulting graph is as small as possible. Of course, this insight only reformulates the problem:
Inevitably, the problem of finding such a minimal triangulation is also A/P-hard. Nevertheless,
there are several graph-theoretic algorithms that address this precise problem and offer different
levels of performance guarantee; we discuss this task further in section 10.4.2.

Polytrees received a lot of attention in the early days of
widely known inference algorithm for any type of Bayesi

sing algorithms described
e case of polytree networks, since
edges in the graph. Moreover,
(where the size of the network is
mber of nodes; see exercise 9.9).

in subsequent chapters of this book, is particularly co
it consists of nodes passing messages directly t
the cost of this computation is linear in the
measured as the total sizes of the CPDs i

a polytree, any maximal clique is a

structure roughly follows the net e simply throw out families that do not correspond

by another clique.) .
Somewhat ironic g natuie of the polytree algorithm gave rise to a long-standing
tability boundary between polytrees and other networks,
piin polytrees and NP-hard in other networks. As we discuss in
rather, there is a continuum of complexity defined by the size of

Minimum Fill/Size/Weight Search

An alternative approach for finding elimination orderings is based on a very straightforward
intuition. Our goal is to construct an ordering that induces a “small” graph. While we cannot

314 Chapter 9. Variable Elimination

Algorithm 9.4 Greedy search for constructing an elimination ordering

Procedure Greedy-Ordering (
H // An undirected graph over X ,
$ I/ An evaluation metric
)
Initialize all nodes in X' as unmarked
fork=1...|x|
Select an unmarked variable X € X that minimizes s(H, X)

1
2
3
4 7(X) — k
5
6
7

Introduce edges in H between all neighbors of X
Mark X

return 7

find an ordering that achieves the global minimum, we can eliminate variables one at a time in
a greedy way, so that each step tends to lead to a small blowup in size.

The general algorithm is shown in algorithm 9.4. At each point, the algorithm evaluates each
of the remaining variables in the network based on its heuristic cost function. Some common
cost criteria that have been used for evaluating variables are:

* Min-weight:The cost of a vertex is the pr
neighbors.

* Min-fill: - The cost of a vertex is the numbe
due to its elimination.

* Weighted-min-fill: The cost of a v
be added to the graph due to i

ight cotint the”size or weight of the largest clique in M
d-min-fill count the number or weight of edges that
inating X It can be shown (exercise 9.10) that none of these
others.

L be done either deterministically (as shown in algorithm 9.4), or
stic’ variant, at each step we select some number of low-scoring
mong them using their score (where lower-scoring vertices are

after eliminating X. Min-
would be introduced inie

verti

selec robability). In the stochastic variants, we run multiple iterations of the

algori lect the ordering that leads to the most efficient elimination — the one

where the s sizes of the factors produced is smallest, B
Empiric s show that these heuristic algorithms perform surprisingly well in practice.-

Generally, Min-Fill and Weighted-Min-Fill tend to work better on more problems. Not surpris-
ingly, Weighted-Min-Fill usually has the most significant gains when there is some significant
variability in the sizes of the domains of the variables in the network. Box 9.C presents a case
study comparing these algorithms on a suite of standard benchmark networks.

9.5

conditioning

9.5.1

9.5. Conditioning % 315

.
Box 9.C — Case Study: Variable Elimination Orderings. Fishelson and Geiger (2003) performed
a comprehensive case study of different heuristics for computing an elimination ordering, testing
them on eight standard Bayesian network benchmarks, ranging from 24 nodes to more than 1,000.
For each network, they compared both to the besi elimination ordering known previously, obtained
by an expensive process of simulated annealing search, and to the network obtained by a state-
of-the-art Bayesian network package. They compared to stochastic versions of the four heurisiics
described in the fext, running each of them for 1 minute or 10 minutes, and selecting the best
network obtained in the different random runs. Maximum cardinality search was not used, since
it is known to perform quite poorly in practice.

The results, shown in figure 9.C, suggest several conclusions. First we see that running the
stochastic algorithms for longer improves the quality of the answer obtained, although usually not
by a huge amount. We also see that different heuristics can result in orderings whose computational
cost can vary in almost an order of magnitude. Overall, Min-Fill and Weighted-Min-Fill achieve
the best performance, but they are not universally better. The best answer obtained by the greedy
algorithms is generally very good; it is often significantly better than the answer obtained by a
deterministic state-of-the-art scheme, and it is usually quite close to the best-known ordering, even
when the latter is obtained using much more expensive techniques. Because the computational cost
of the heuristic ordering-selection algorithms is usually negligible relative to the running time of
the inference itself, we conclude that for large networks it is worth run several heuristic
algorithms in order to find the best ordering obtained by any of th

Conditioning %

conditioning. The conditioning
at observing the value of certain
ariable is not observed, we can

An alternative approach to inference is base
algorithm is based on the fact (illustrated i
variables can simplify the variable elimi
use a case analysis to enumerate its p
then aggregate the results for the di

operations, the conditionring a
ime-space trade-offs, which can be extremely

ated by variable elimination are too big to fit in

set of factors over X ® be the associated distribution. We assume that any observations
were already assimilated into ®, so that our goal is to compute Pg(Y") for some set of query
variables Y. For example, if we want to do inference in the Student network given the evidence
G = g, we would reduce the factors reduced to this context, giving rise to the network structure

shown in figure 4.6b.

