An Introduction to Probabilistic Graphical Models

Michael I. Jordan
Unwversity of California, Berkeley

June 30, 2003

Chapter 4

Probability Propagation and Factor
Graphs

In this chapter we describe an algorithm for probabilistic inference known as the sum-product, or
belief propagation, algorithm. The algorithm is closely related to the elimination algorithm, and
indeed we will derive it from the perspective of elimination. The algorithimn goes significantly beyond
the elimination algorithm, however, in that it can compute all single-node marginals (for certain
classes of graphs) rather than only a single marginal.

It is important to be clear that we are also taking a step backward in this chapter—while the
elimination algorithm is applicable to arbitrary graphs, the sum-product algorithm is designed to
work only in trees (or in the various “tree-like” graphs that we discuss in this chapter). Despite this
step backward, there are at least three reasons why the sum-product algorithm overall represents
significant progress: (1) Trees are important graphs. Indeed, a significant fraction of the classical
literature on graphical models was entirely restricted to trees, and many of these classical applica-
tions require the ability to compute all singleton marginals. Examples include the hidden Markov
model of Chapter 12 and the state-space model of Chapter 15. (2) The sum-product algorithm
provides new insights into the inference problem, insights which will eventually allow us to provide
a general solution to the exact inference problem (the junction tree algorithm of Chapter 17). The
sum-product algorithm essentially involves an efficient “calculus of intermediate factors,” which
recognizes that many of the same intermediate factors are used in different elimination orderings.
The junction tree algorithm extends this calculus to general graphs, by essentially combining the
key ideas of the sum-product algorithm and the elimination algorithm. (3) While our focus in the
current chapter is exact inference, the sum-product algorithm also provides the basis of a class of
approzimate inference algorithms for general graphs, as we discuss in Chapter 20.

Another goal of the current chapter is to introduce factor graphs, an alternative graphical rep-
resentation of probabilities that is of particular value in the context of the sum-product algorithm.
In particular, we will show that the factor graph approach provides an elegant way to handle vari-
ous general “tree-like” graphs, including “polytrees,” a class of directed graphical models in which
nodes have multiple parents.

Finally, we also broaden our agenda in the current chapter, moving beyond the problem of com-

3

4 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

R

(@) (b) (c)

Figure 4.1: (a) An undirected tree. (b) A directed tree. (¢) A polytree.

puting marginal and conditional probabilities to the problem of computing mazimum a posteriori
probabilities. We show that this problem can be solved via an algorithm that is closely related to
the sum-product algorithm.

The chapter is organized as follows. In Section 4.1 we begin with a discussion of probabilistic
inference on trees, treating both the directed case and the undirected case. Section ?7 introduces
factor graphs, discusses the relationships with directed and undirected graphs, and develops the
sum-product algorithm for factor graphs. We discuss polytrees in Section 4.2.4, and discuss algo-
rithms for computing maximum a posteriori probabilities in Section 4.3.

4.1 Probabilistic inference on trees

In this section we describe an inference algorithm for trees. Let us first clarify exactly what is meant
by a “tree.” In the undirected case, a tree is an undirected graph in which there is one and only
one path between any pair of nodes. An example of an undirected tree is shown in Figure 4.1(a).!
In the directed case, we define a tree to be any graph whose moralized graph is an undirected
tree. Figure 4.1(b) shows a directed tree. Note that directed trees have a single node that has no
parent—the root node—and that all other nodes have exactly one parent. Finally, note that the
graph in Figure 4.1(c) is not a directed tree; it has nodes with multiple parents, and the resulting
moralized graph has loops.

Any undirected tree can be converted into a directed tree by choosing a root node and orienting
all edges to point away from the root.

From the point of view of graphical model representation and inference there is little significant
difference between directed trees and undirected trees. A directed tree and the corresponding
undirected tree (the tree obtained by dropping the directionality of the edges) make exactly the
same set of conditional independence assertions. Morever, as we show below, the parameterizations

!Note that throughout the chapter we assume implicitly that our graphs are connected, and thus we have a single
tree rather than a forest. This is done without loss of generality—in the case of a forest we have a collection of
probabilistically independent trees, and it suffices to run an inference algorithm separately on each tree.

4.1. PROBABILISTIC INFERENCE ON TREES 5

are essentially the same, with the undirected parameterization being slightly more flexible by not
requiring potentials to be normalized (but, see Exercise 7?7, any undirected representation can be
readily converted to a directed one).

4.1.1 Parameterization and conditioning

Let us first consider the parameterization of probability distributions on undirected trees. The
cliques are single nodes and pairs of nodes, and thus the joint probability can be parameterized via
potential functions {¢(z;)} and {¢(z;,z;)}. In particular, we have:

p) = | TTvt) T v |, (4.1)

ey (i,j)e€

for a tree T (V,€) with nodes V and edges £.
For directed trees, the joint probability is formed by taking a product over a marginal proba-
bility, p(x,), at the root node r, and conditional probabilities, {p(z; | z;)}, at all other nodes:

p(x) =plx,) [] plosle), (4.2)

(3,5)€€

where (4, 7) is a directed edge such that ¢ is the (unique) parent of j (i.e., {¢} = ;). We can treat
such a parameterization as a special case of Eq. (4.1), and indeed it will be convenient to do so
throughout this chapter. We define:

"/J(:L‘r) = p(xr) (43)
Y(zi,25) = plzj|zi), (4.4)

for i the parent of j, and define all other singleton potentials, 1 (z;), for i # r, to be equal to one.
We thereby express the joint probability for a directed tree in the undirected form in Eq. (4.1),
with Z = 1.

Recall that we use “evidence potentials” to capture conditioning. Thus, if we are interested in
the conditional probability p(zr | Zg), for some subset £, we define evidence potentials d(z;, z;), for
1 € F, and multiply the joint probability by the product of these potentials. This simply reduces
to multiplying v (z;) by (x4, z;), for i € E. In particular, we define:

By o) Yilw)d(z, T;) i€ E
Pi (@) —{ bi(z:) i¢E, (4.5)

and substitute in Eq. (4.1) to obtain:

pelan) = o [TL 976 T i) |, (4.6

eV (i,9)€€

6 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

where ZE =3 (HieV Y () [j)ee 1,0(:1:1-,%-)). Note that the original Z vanishes.

In summary, the parameterization of unconditional distributions and conditional distributions
on trees is formally identical, involving a product of potential functions associated with each node
and each edge in the graph. We can thus proceed without making any special distinction between
the unconditional case and the conditional case.

Are there any special features of directed trees that we lose in working exclusively with the
undirected formalism? One feature of the parameterization for directed trees is that any summation
of the form ij p(xj|z;) is necessarily equal to one, and does not need to be performed explicitly.
Indeed, in the unconditional case, we can arrange things such that all sums are of this form, by
choosing an elimination ordering that begins at the leaves and proceeds backward to the root.
(This shows that the normalization factor Z is necessarily equal to one in the unconditional case).
When we condition, however, the resulting product of potentials is unnormalized (the normalization
factor Z¥ is no longer one), and we are brought closer to the general undirected case. It is still the
case that we can “prune” any subtree that contains only variables that are not conditioned on, by
again eliminating backwards. We view this as an implementation detail, however, assuming that
any implementation of an inference algorithm will be smart enough to prune such subtrees at the
outset. We then find ourselves in a situation in which the leaves of the tree are evidence nodes, and
all of the sums have to be performed explicitly. In this case, there is no essential difference between
the directed case and the undirected case, and in developing the general algorithm for inference on
trees, it is convenient to focus exclusively on the latter.

4.1.2 From elimination to message-passing

In this section and the following section, we derive the SUM-PRODUCT algorithm, a general algo-
rithm for probabilistic inference on trees. The algorithm involves a simple mathematical update
equation—a sum over a product of potentials—applied once for each outgoing edge at each node.
We derive this update equation from the point of view of the ELIMINATE algorithm. We subse-
quently prove that a more general algorithm based on this update equation finds all (singleton)
marginals simultaneously.

Let us begin by returning to ELIMINATE, but specializing to the case of a tree. Recall the
basic structure of ELIMINATE: (1) Choose an elimination ordering I in which the query node f
is the final node; (2) Place all potentials on an active list; (3) Eliminate a node ¢ by removing
all potentials referencing the node from the active list, taking the product, summing over z;, and
placing the resulting intermediate factor back on the active list. What are the special features of
this procedure when the graph is a tree?

To take advantage of the recursive structure of a tree, we need to specify an elimination ordering
I that respects this structure. In particular, we consider elimination orderings that arise from a
depth-first traversal of the tree. Treat f as a root and view the tree as a directed tree by directing
all edges of the tree to point away from f. We now counsider any elimination ordering in which a
node is eliminated only after all of its children in the directed version of the tree are eliminated.
It can be easily verified that such an elimination ordering proceeds inward from the leaves, and
generates elimination cliques of size at most two (showing that the tree-width of a tree is equal to

4.1. PROBABILISTIC INFERENCE ON TREES 7

O

1 to root

ol

(@) (b)

Figure 4.2: (a) A fragment of an undirected graph. Nodes ¢ and j are neighbors, with ¢ nearer to
the root than j. (b) The messages that are created when nodes k, [and j are eliminated.

one).

Let us now consider the elimination step. Consider nodes ¢ and j that are neighbors in the tree,
where i is closer to the root than j (see Figure 4.2(a)). We are interested in the intermediate factor
that is created when j is eliminated. This intermediate factor is a sum over a product of certain
potentials. Which potentials are these? Clearly 1(z;,z;) is one of these potentials, given that it
references z; and given that 4 has yet to be eliminated. Also, wE(:vj) will appear. We can also
exclude a number of possibilities. In particular, none of the potentials in the product can reference
any variable in the subtree below j, given that all of these variables have already been eliminated.
Moreover, none of these potentials can reference any other variable outside the subtree, due to the
assumption that the graph is a tree. That is, for a node £ in the subtree and a node [outside of
the subtree, there can be no potential 1(zy,x;) in the probability model. Thus, when eliminating
nodes in the subtree, we can never introduce any variable outside of the subtree into a summand
and thus into an intermediate factor.

We have shown that the intermediate factor created by the sum over z; is a function solely of
x;. Let us introduce the notation “m;;(x;)” to denote this term, where the first subscript denotes
the variable being eliminated and the second subscript denotes the (sole) remaining neighbor of the
variable (the “bucket” in the language of Section ??). Note that the latter index is superfluous in the
context of ELIMINATE—it is determined by the graph structure and the elimination ordering—but

8 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

it will be needed in the context of the more general SUM-PRODUCT algorithm.

We refer to the intermediate factor mj;(x;) as a “message” that j sends to i. As suggested by
Figure 4.2(b), we can think of this message as “flowing” along the edge linking j to i.

Let us now consider the mathematical operation that creates the message m;(z;) in more detail.
In particular, consider the potentials that are selected from the active list when we eliminate node
j—the potentials that reference z;. As we mentioned earlier, the potentials ¢ (z;,z;) and ¥ (z;)
are among the potentials selected. The other potentials that are selected are those created in
earlier elimination steps in which the neighbors of node j (other than i) are eliminated. As shown
in Figure 4.2(b), these steps can be viewed as creating messages my;(x;), messages that flow from
each neighbor k—where k € N'(j)\i—to j.

Thus, following the protocol of the ELIMINATE algorithm, to eliminate z; we take the product
over all potentials that reference z; and sum over z;:

myi(xi) = Y | 97 @)z, z) [mwg(a) | - (4.7)

Zj keN (5)\i

This is the intermediate factor (“message”) that j sends to i.

Finally, let us consider the final node f in the elimination ordering I. All other nodes have been
eliminated when we arrive at f, and thus messages ms(x) have been computed for each of the
neighbors e € N(f). These messages, and the potential 4% (z), are the only terms on the active
list at this point. Thus, again following the protocol of ELIMINATE, we write the marginal of z; as
the following product:

plag|ze) <P (xg) [meslay), (4.8)
eeN(f)

where the proportionality constant is obtained by summing the right-hand side with respect to .

Egs. (4.7) and (4.8) provide a concise mathematical summary of the ELIMINATE algorithm,
for the special case of a tree. Leaving behind the algorithmic details of ELIMINATE, we see that
probabilistic inference essentially involves solving a coupled system of equations in the variables
mj;(2;). To compute p(xs), we solve these equations in an order that corresponds to a depth-first
traversal of a directed tree in which f is the root.

4.1.3 The SumMm-ProbpuUCT algorithm

In this section we show that Eqgs. (4.7) and (4.8) suffice for obtaining not only a single marginal,
but also for obtaining all of the marginals in the tree. The (somewhat magical) fact is that we can
obtain all marginals by simply doubling the amount of work required to compute a single marginal.
In particular, as we will show, after having passed messages inward from the leaves of the tree to
an (arbitrary) root, we simply pass messages from the root back out to the leaves, again using
Eq. (4.7) at each step. The net effect is that a single message will flow in both directions along
each edge. Once all such messages have been computed, we invoke Eq. (4.8) independently at each
node; this yields the desired marginals.

4.1. PROBABILISTIC INFERENCE ON TREES 9

One way to understand why this algorithm works is to consider the naive approach of computing
all marginals by using a different elimination ordering for each marginal. Consider in particular
the tree fragment shown in Figure 4.3(a). To compute the marginal of X; using elimination, we
eliminate X, and X3, which, as we have seen, involves computing messages m4s(z2) and mgz(z2)
that are sent to Xo. We subsequently eliminate Xy, which creates a message mo;(z1) that is sent
from X5 to Xj.

Now suppose that we wish to compute the marginal at Xy using elimination. As shown in
Figure 4.3(b), we eliminate X4, X3, and X, passing messages m4z(z2), ms2(z2) and miz(z2) to
Xo. The message mia(z2) is new, but (crucially) mgo(z2) and msg(z2) are the same messages as
computed earlier. Similarly, if we wish to compute the marginal at X4, as shown in Figure 4.3(c),
we need a new message moy(z4), but we can reuse the messages msy(z2) and mio(z2). In general,
if we compute a message for each direction along each edge in the tree, as shown in Figure 4.3(d),
we can obtain all singleton marginals.

The idea that messages can be “reused” is important. In effect we can achieve the effect
of computing over all possible elimination orderings (a huge number) by computing all possible
messages (a small number). This is the key insight behind the SuM-PRODUCT algorithm.

The SUM-PRODUCT algorithm is based on Egs. (4.7), (4.8), and a “protocol” that determines
when any one of these equations can be invoked. The protocol is given as follows:

Message-Passing Protocol. A node can send a message to a neighboring node when (and only
when) it has received messages from all of its other neighbors.

There are two principal ways to implement algorithms that respect this protocol. The first
(and most direct) way is to interpret the protocol as the specification of a parallel algorithm. In
particular, let us view each node as a processor, and assume that the node can repeatedly poll
its incoming edges for the presence of messages. For a node of degree d, whenever messages have
arrived on any subset of d — 1 edges, the node computes a message for the remaining edge and
delivers the message along that edge.

An example is shown in Figure 4.4. We assume a synchronous parallel algorithm, and at each
step show the messages that are delivered along the edges. Note that messages start to flow in from
the leaves. Note also that when the algorithm terminates, it is the case that a pair of messages
have been computed for each edge, one for each direction. Finally, note that all incoming messages
are eventually computed for each node, and that Eq. (4.8) can therefore be invoked at each node
to compute the node marginal.

For this algorithm to be meaningful in general, we need to insure that all messages will eventually
be computed and delivered; that is, that the algorithm will never “block.” We provide a proof that
the protocol is non-blocking in Corollary 7?7 below.

We can also consider sequential implementations of the SuM-PrRoDUCT algorithm, in which
messages are computed according to a particular “schedule.” One such schedule (a schedule that is
widely used in practice) is a two-phase schedule based on depth-first traversal from an arbitrary root
node.? In the first phase, messages flow inward from the leaves toward the root (as in Section 4.1.2).

2The original graph may have been a directed tree, with a corresponding root node. The “root” that is designated
for the purposes of the SUM-PRODUCT algorithm is unrelated to this root node.

10 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(b)

(©) (d)

Figure 4.3: (a) The messages formed when computing the marginal of X;. (b) The messages formed
when computing the marginal of X5. (c) The messages formed when computing the marginal of
Xy4. (d) All of the messages needed to compute all singleton marginals.

4.1. PROBABILISTIC INFERENCE ON TREES 11

(a) (b)

(d)

Figure 4.4: Message-passing under a synchronous parallel algorithm. The solid arrows are the
messages passed at a given time step, and the dashed arrows are those passed on earlier time steps.

12 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

Sum-Probpuct(T, E)

EVIDENCE(F)

f = CrHOOSEROOT(V)

for e € N(f)
CoOLLECT(f, €e)

for e € N(f)
DISTRIBUTE(f, €)

foricV
COMPUTEMARGINAL(%)

EVIDENCE(F)
foric E
PP (w;) = ()0 (i, 7;)
fori¢ E
E _ .
'l/} (xl) - ¢($z) (<ULLE(T/ \(‘ULLE(T
CoLLECT(%,)
for k € N(j)\i K
CoLLECT(j, k)
SENDMESSAGE(7, %) '

SENDMESSAGE T

DISTRIBUTE(Z, j)
SENDMESSAGE(%, j)
for k € N(j)\i
DISTRIBUTE(j, k)

SENDMESSAGE(J, ©)
myi(ri) =Y (@5 @)z,) [mag(ay))
zj kEN (4)\i
COMPUTEMARGINAL(%)
plas) oc P (ws) T myile:)

FEN(4)

Figure 4.5: A sequential implementation of the SUM-PRODUCT algorithm for a tree 7 (V,€). The
algorithm works for any choice of root node, and thus we have left CHOOSEROOT unspecified. A
call to COLLECT causes messages to flow inward from the leaves to the root. A subsequent call to
DISTRIBUTE causes messages to flow outward from the root to the leaves. After these calls have
returned, the singleton marginals can be computed locally at each node.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 13

In the second phase—which is initiated once all incoming messages have been received by the root
node—messages flow outward from the root toward the leaves. In Figure 4.5, we show how such
a schedule can be implemented via a pair of recursive function calls. In Exercise 77, we ask the
reader to show that this schedule respects the Message-Passing Protocol, and to show that the
overall effect of the schedule is that a single message flows in each direction along each and every
edge.

4.1.4 Proof of correctness of the SUM-PRoODUCT algorithm?

[Section not yet written].

4.2 Factor graphs and the SumM-ProbDUCT algorithm

The graphical model representations that we have discussed thus far—directed and undirected
graphical models—aim at characterizing probability distributions in terms of conditional indepen-
dence statements. Fuactor graphs, an alternative graphical representation of probability distribu-
tions, aim at capturing factorizations. As we have discussed (see Section ??), while closely related,
conditional independence and factorization are not exactly the same concepts. Recall in particular
our discussion of the parameterization of the complete graph on three nodes. This graph makes
no conditional independence assertions, and the corresponding parameterization is simply the ar-
bitrary potential 9(x1,x2,x3). However, we may be interested in endowing the potentials with
algebraic structure, for example:

Y(x1, o, x3) = folw1,22) fo(22, 23) fe(21, 23), (4.9)

for given functions f,, f, and f.. Such a factorized potential defines a proper subset of the family of
probability distributions associated with the complete graph, a subset which has no interpretation
in terms of conditional independence. Factor graphs provide a convenient way to represent subsets
of this kind.

In the following section, we introduce the general factor graph representation, and discuss its
relationships to directed and undirected graphs. We then focus on the special case of factor trees
(factor graphs that are trees), and describe the variant of the SUM-PRODUCT algorithm that is
geared to factor trees.

4.2.1 Factor graphs

Given a set of variables {z,z2,...,2,}, we let C denote a set of subsets of {1,2,...,n}. Thus,
for example, given variables {x1,x9, 3, x4, x5}, we might have C = {{1,3},{3,4},{2,4,5},{1,3}}.
Note that C is a multiset—we allow the same subset of indices to appear multiple times. To avoid
ambiguity, we therefore index the members of C using an index set F; thus, C = {Cs : s € F}.

3This section can be skipped without loss of continuity.

14 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

To each index s € F, we associate a factor fs(zc,), a function on the subset of variables
indexed by Cs. In our example, letting F = {a, b, ¢,d} denote the indices, the factors are f,(z1,x3),
fo(ws, x4), fe(w2, x4, 75) and fq(zy,z3).

Note also that there is no assumption that the subsets C correspond to cliques of an underlying
graph. Indeed, at this point we do not have any graph structure in mind—C is just an arbitrary
collection of subsets of indices.

Given a collection of subsets and the associated factors, we define a multivariate function on
the variables {z1,z2,...,z,} by taking the product:

s
flay, @a, ..) 2 T folze,). (4.10)
s=1

Our goal will be to define a graphical representation of this function that will permit the efficient
evaluation of marginal functions—functions of a single variable obtained by summing over all other
variables.

Factorized functions in the form of Eq. (4.11) occur in many areas of mathematics, and the
methods that we describe in this section has numerous applications outside of probability theory.
Our interest, however, will be focused on factorized representations of probability distributions, and
indeed the factorized probability distributions associated with directed and undirected graphical
models provide examples of the general product-of-factors in Eq. (4.11).%

We now introduce a graphical representation of Eq. (4.11). This graphical representation—the
factor graph—differs from directed and undirected graphical models in that it includes explicit
nodes for the factors as well as the variables. We use round nodes to represent the variables and
square nodes to represent the factors.

Formally, a factor graph is a bipartite graph G(V, F, £), where the vertices V index the variables
and the vertices F index the factors. The edges £ are obtained as follows: each factor node s € F
is linked to all variable nodes in the subset Cs. These are the only edges in the graph.

An example of a factor graph is shown in Figure 4.6. This graph represents the factorized
function:

f(zy,xo, x5, 24, 75) = folz1,x3) fo(23, T4) fe(T2, T4, T5) fa(T1, T3). (4.11)

Note that fo(z1,z3) and fy(z1,z3) refer to the same set of variables. In an undirected graphical
model these factors would be collapsed into a single potential function, 1 (z1, z3). In a factor graph
these functions are allowed to maintain a separate identity.

It will prove useful to define neighborhood functions on the nodes of a factor graph. In particular,
let N(s) C V denote the set of neighbors of a factor node s € F, and let N'(i) C F denote the
set of neighbors of a variable node 7 € V. Note that N (s) refers to the indices of all variables
referenced by the factor f, and is identical to the subset Cs introduced earlier. On the other hand,
the neighborhood set N (%), for a variable node i, is the set of all factors that reference the variable
.

Directed and undirected graphical models can be readily converted to factor graphs. For ex-
ample, the directed graphical model shown in Figure 4.7(a) can be represented as a factor graph

“The normalization factor Z in the parameterization of undirected graphical models can be treated as a factor

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 15

Shk

fa f, fe fq

Figure 4.6: An example of a factor graph.

Xy Xs

X X4

(a) (b)

Figure 4.7: (a) A directed graphical model. (b) The corresponding factor graph. Note that there
are six factor nodes, one for each local conditional probability in the directed graph.

16 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

Xl Xl Xl

XZ X3 Xz fc X3 X2 X3
(a) (b) (c)

Figure 4.8: (a) An undirected graphical model provides no information about possible factoriza-
tions of the potential function associated with a given clique. (b) The factor graph corresponding
to the factorized potential ¢ (x1,x9,x3) = fo(z1, z2) fo(z2, x3) fe(x1,23). (¢) The factor graph cor-
responding to the non-factorized potential 9 (z1,z9,x3) = f(z1, T2, x3).

as shown in Figure 4.7(b).?

By representing each factor as a node in the graph, factor graphs provide a more fine-grained
representation of probability distributions than is provided by directed and undirected graphical
models. In particular, returning to the complete graph on three nodes shown in Figure 4.8(a),
factor graphs make it possible to display fine-grained assumptions about the parameterization:
Figure 4.8(b) shows the factor graph corresponding to the general potential 9 (x1,x9,x3), while
Figure 4.8(c) shows the factor graph corresponding to the factorized potential in Eq. (4.9).

It is worth noting that it is always possible to mimic the fine-grained representation of factor
graphs within the directed and undirected formalisms, so that formally factor graphs provide no
additional representational power. For example, in Figure 4.9(a) we show an undirected graph
that can represent the factorization in Eq. (4.9). In this graph, we have introduced three new
random variables, Z;, Z,, and Z3. These variables are indicator variables picking out particular
combinations of the underlying variables X, X5 and X3. Thus, for example, for binary X; and Xo,
Z, would take on four possible values, one for each pair of values of X; and X9, and the potential
function 1 (z1) would be set equal to the corresponding value of f,(z1,z2). (We ask the reader to
fill in the details of this construction in Exercise ?7).

Similarly, in Figure 4.9(b), we show a directed graph that mimics the factorization in Eq. (4.9).
In this graph, the three new variables, W1, Ws, and W3, are binary variables that are always set
equal to one. We set p(W; = 1|z, x2) to the corresponding value of f,(z,z2). (We again ask the
reader to supply the details in Exercise 77).

associated with the empty set—which is appropriate given that it is a constant.

5In general, in the directed case each factor is a local conditional probability, and the subsets Cs correspond to
“families” consisting of a node and its parents. Given that we do not assume that the subsets Cs correspond to
cliques of an underlying graph, we do not need to “moralize” in the factor graph formalism. This is consistent with
the fact that the factor graph does not attempt to represent conditional independencies.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 17

Xl Xl

()
/
Z,

(a) (b)

Figure 4.9: (a) An undirected graph that mimics the factorization shown in Figure 4.8(b) for
appropriate choices of the indicator variables Z;. (b) A directed graph that mimics the factorization
shown in Figure 4.8(b) for appropriate choices of the indicator variables W;.

X5 X3 X2 X3

W,

In general, by introducing additional variables in a directed or undirected graph, we can mimic
the factorization that is made explicit in the factor graph. However, this procedure is arguably
rather artificial, and the factor graph representation provides a natural complement to undirected
or directed graphs for situations in which a fine-grained representation of potentials is desired.

4.2.2 The SuMm-ProbpucT algorithm for factor trees

We now turn to the inference problem for factor graphs. As before, our goal is to compute all
singleton marginal probabilities under the factorized representation of the joint probability. In this
section we show how to do this for factor graphs that are trees.

A factor graph is defined to be a factor tree if the undirected graph obtained by ignoring the
distinction between variable nodes and factor nodes is an undirected tree. Restricting ourselves
to trees, we define a variant of the SUM-PRODUCT algorithm that provides all singleton marginal
probabilities for factor trees.

As in the earlier SUM-PRODUCT algorithm, we define messages that flow along the edges of
the graph. In the case of factor trees, there are two kinds of messages: messages v that flow from
variable nodes to factor nodes, and messages p that flow from factor nodes to variable nodes.

These messages take the following form. We first consider the messages that flow from variable
nodes to factor nodes. As depicted in Figure 4.10(a), the message v;s(x;) that flows between the
variable node ¢ and the factor node s is computed as follows:

teN (i)\s

where the product is taken over all incoming messages to variable node 7, other than the message
from the factor node s that is the recipient of the message.

18 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(a) (b)

Figure 4.10: (a) The computation of the message v;s(x;) that flows from factor node s to variable
node 4. (b) The computation of the message us;(z;) that flows from variable node i to factor node
s.

Similarly, as shown in Figure 4.10(b), a message us;(z;) flows between the factor node s and
the variable node i. This message is computed as follows:

pi(wi) = Y | filene) [vistes) | - (4.13)

TN (s)\i JEN (s)\i

Note that the product is taken over all incoming messages to factor node s, other than the message
from the variable node ¢ that is the recipient of the message.

Thus we have a coupled set of equations for a set of messages. As in our earlier SUM-PRODUCT
algorithm, a full specification of the algorithm requires a determination of when a given equation
can be invoked. The protocol turns out to be exactly the same as the earlier protocol:

Message-Passing Protocol. A node can send a message to a neighboring node when (and only
when) it has received messages from all of its other neighbors.

In the factor tree case, the protocol applies to both variable nodes and factor nodes.
Finally, once a message has arrived at each node from all of its neighbors, the marginal proba-
bility of a node is obtained as follows:

plai)oc [msi(wi)- (4.14)

SEN(4)
Given the definition of v;s(x;) in Eq. (4.12), this can also be written as follows:
p(xi) o vis(zi) psi(z4), (4.15)

for any s € N (i). That is, the marginal probability of node i can be obtained by taking the product
of the pair of messages flowing along any edge incident on node i.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 19

A sequential implementation of the SUM-PRODUCT algorithm for factor trees is provided in
Figure 4.11.

Consider the example shown in Figure 4.6(a). The factor tree representation of this model is
shown in Figure 4.12(b). Let us run through the steps of the SUM-PRODUCT algorithm. In the
first step, shown in Figure 4.12(c), the only nodes that are able to send messages are the leaf
nodes. These leaf nodes are factor nodes, and the product in Eq. (4.13) is a vacuous product,
which by convention we set equal to one. Moreover, the sum in Eq. (4.13) is a vacuous sum.
Thus, the message that flows in from a leaf node is simply the factor associated with that node:
:U*si(xi) = ¢E(Iz)v forie V.

The second stage in the process is also rather uninteresting. As shown in Figure 4.12(d), the
variable nodes X; and X3 are able to send messages in this stage. For each node, the product in
Eq. (4.12) is composed of only a single factor, and thus this factor is simply passed along the chain.

Now consider the third stage, shown in Figure 4.12(e). At the factor nodes along the backbone
of the chain, a sum is taken over the product of the incoming message and the factor residing at that
node. In the case of the message j142(72), this yields pa2(2) = >, YF (x1)p (21, v2), and, similarly,
pe2(T2) = o, ¥ (x3)h(xe,3). Note that these messages are the same as the corresponding
messages that would pass in a run of the SUM-PRODUCT algorithm for the undirected graph in
Figure 4.12(a). That is, we have: pgo(z2) = mi2(x2), and pea(x2) = msa(z2).

Finally, in Figure 4.12(f), Figure 4.12(g), and Figure 4.12(h), we show the remaining steps
of the algorithm. The reader can again verify a correspondence with the messages that would
be computed in Figure 4.12(a): pq1(z1) = moi(z1) and pe3(zs) = mos(zs). By the end of the
algorithm, a message has passed in both directions along every edge.

In general, if we start with a graph that is an undirected tree and convert to a factor graph,
then we find that there is a direct relationship between the “m messages” of the SUM-PRODUCT
algorithm for the undirected graph and the “u messages” of the SUM-PRODUCT algorithm for the
factor graph. Consider the graph fragment shown in Figure 4.13(a) and the corresponding factor
graph representation in Figure 4.13(b). We claim that m;(z;) in the undirected graph is equal to
tsi(x;) in the factor graph. Indeed, we have:

psi(r) = Y | fslawy)] visle)) (4.16)

TN (s)\i JEN(s)\i
= Z'L/J (@i, xj)vjs(x;) (4.17)
= Z'L/J (i,) H () (4.18)
teN(5)\s

T teN'(j)\s
where N'(j) denotes the neighborhood of j, omitting the singleton factor node associated with

PP (z;). We see that the expression for ug(z;) is formally identical to the update equation for
mﬂ(zz) in Eq. (47)

20 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

SuMm-Probuct(T, E)

EVIDENCE(FE)

f = CrOOSEROOT(V)

for s € N(f)
p-COLLECT(f, s)

for s € N(f)
v-DISTRIBUTE(f,)

foricV
COMPUTEMARGINAL(?%)

p-COLLECT(z,)
for j € N(s)\i
v-COLLECT(S, /)
p-SENDMESSAGE(S, 1)

v-COLLECT(s, 1)
for t € N(7)\s
pu-COLLECT(1, t)
v-SENDMESSAGE(1,)

p-DISTRIBUTE(s, 1)
p-SENDMESSAGE(S, 7)
for t € N(i)\s

v-DISTRIBUTE(%, t)

v-DISTRIBUTE(Z,)
v-SENDMESSAGE(1, S)
for j € N(s)\i

p-DISTRIBUTE(s, j)

p-SENDMESSAGE(S, 1)
psi(ri) = > (flene)] vis(e)
TN (s)\i JEN (s)\i
v-SENDMESSAGE(1,)
vis(mi) =[] i)
teN (i)\s
COMPUTEMARGINAL(%)
p(i) X Vis(wi) phsi (i)

Figure 4.11: A sequential implementation of the SuM-ProDuUCT algorithm for a factor tree
TV, F,E). The algorithm works for any choice of root node, and thus we have left CHOOSE-
RooT unspecified. The subroutine EVIDENCE(E) is presented in Figure 4.5.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 21

X1 fq X fe X3
1 T\ 1
X1 XZ X3 L L1
O O O E
fa 1:b fC
(a) (b)
Vg (Xy) Vae (X3)
T—0O—1 > -
LI LI LI LI
a0 4 H2(%,) E e (x) ¥
(c) (d)
udZ(Xz) p-eZ(Xz) VQd(XZ) VZE(XZ)
1= 7\ <%] e N
LI LI LI LI
i g E E Va (X5) E
(e) ()
Udl(xl) Iles(xs)

~0—0O—0= 0—O0—0
E g E Via (%) E E Vac (X3) E
(9) (h)

Figure 4.12: (a) A three-node undirected graphical model. (b) The factor tree representation.
(c)-(h) A run of the SUM-PRODUCT algorithm on the factor tree.

22 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

Ox

T Mg(X)
[] 1

(a) (b)

Figure 4.13: (a) A fragment of an undirected tree. (b) The corresponding fragment of a factor tree.

From this observation and an induction argument, it is not difficult to prove that the Sum-
ProbucTt algorithm for factor trees is correct for factor trees that are obtained from undirected
trees, by simply translating between the two versions of the SUM-PRODUCT algorithm. We leave this
as an exercise (Exercise 77). It is also straightforward to develop a standalone proof by induction
that the general SUM-PRODUCT algorithm for factor trees is correct, which we again leave as an
exercise.

If a graph is originally a tree (undirected or directed), there is little to be gained by translating
to the factor graph framework. The payoff for factor graphs arises when we consider various “tree-
like” graphs, to which we now turn.

4.2.3 Tree-like graphs

Consider the graph shown in Figure 4.14(a). Assuming that the three-node cluster in the cen-
ter of the graph is parameterized by a general non-factorized potential function, the probability
distribution associated with the graph is given by:

p(@) o< (1, 22) (3, 25)Y (24, w6) (22, T3, T4), (4.20)

where for simplicity we have neglected the singleton potentials. Although this graph is not a tree,
it is “nearly” a tree. In particular, we could replace the three variable X,, X3, and X4 with a
new “super-variable” Z, whose range is the Cartesian product of the ranges of the three individual

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 23

X X
(@) (b) ° © °

Figure 4.14: (a) An undirected graphical model in which the center cluster of nodes is assumed to
be parameterized as a non-factorized potential, ¥ (z2,z3,z4). (b) An equivalent undirected model
based on the “super-variable” Z. (c) An equivalent factor graph.

variables. By creating new potential functions, ¥ (z1, 2), ¥ (x5, 2), ¥(x¢, z), and ¥(z), we can mimic
the factorization in Eq. (4.20). Moreover, the corresponding undirected graphical model, shown in
Figure 4.14(b), is a tree.

We can also capture the probability distribution in Eq. (4.20) using a factor graph. In particular,
the graph translates directly to the factor graph shown in Figure 4.14(c). Note that the factor
node at the center of the graph has three neighbors—representing the dependency structure of the
potential 1 (z2, z3,24). Note also that the factor graph is a factor tree.

We see that the distribution represented by the tree-like undirected graph in Figure 4.14(a)
translates directly to a tree in the factor graph framework. There is no need to invent new variables
and new potential functions.

Finally, of most significance is that the SUM-PRODUCT algorithm for factor trees applies directly
to the graph in Figure 4.14(c). The fact that the original graph is not a tree is irrelevant—the
factor graph s a tree, and the algorithm is correct for general factor trees.

In general, if the variables in an undirected graphical model can be clustered into non-overlapping
cliques, and the parameterization of each clique is a general, non-factorized potential, then the cor-
responding factor graph is a tree, and the SUM-PRODUCT applies directly.

4.2.4 Polytrees

A polytree is a tree-like graph that is important enough to merit its own section. In this section we

discuss the SUM-PRODUCT algorithm for polytrees, again exploiting the factor graph framework.
As we have discussed, directed trees are essentially equivalent to undirected trees, providing

no additional representational capability and no new issues for inference. On the other hand, the

24 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

X1 X
X1 X
Xa
Xs Xa Xa
Xs
Xs
(@) (b)

Figure 4.15: (a) A polytree. (b) The factor graph representation of the polytree in (a). Note that
the factor graph is a factor tree.

directed graph shown in Figure 4.15(a) is a tree-like graph that does present new capabilities and
new issues. As we saw in Chapter 2, the presence of nodes with multiple parents in a directed graph
implies a conditional independence semantics that is not available in undirected graphs, including
the “explaining-away” semantics that we studied in Chapter 2. Not surprisingly, this semantics has
implications for inference, concretely via the conditional probability p(z;|z,,) that links a node
with its parents.

A polytree is a directed graph that reduces to an undirected tree if we convert each directed
edge to an undirected edge. Thus, polytrees have no loops in their underlying undirected graph.

One way to treat polytrees is via the “super-variable” approach. That is, we create a new
variable for each combination of a node and its parents (each family) and link the super-variables
(with undirected edges). It is easy to see that the resulting graph is a tree. This approach, however,
suffers from the inelegance alluded to in the previous section.

Alternatively, we can use factor graphs. In Figure 4.15(b), we show the factor graph corre-
sponding to the polytree in Figure 4.15(a). We see that the factor graph is a tree. Moreover, there
is a factor corresponding to each family, representing the conditional probability p(z; | z,).

The fact that the factor graph corresponding to a polytree is a tree implies that the Sum-
ProDUCT algorithm for factor graphs applies directly to polytrees.

Historically, polytrees were an important step along the way in the development of general
exact inference algorithms for graphical models. In 1983, Kim and Pearl described a general sum-
product-like algorithm for polytrees. As in the case of the SUM-PRODUCT algorithm for factor
graphs, this algorithm also involves two kinds of messages—“)\ messages” flowing from children to
parents, and “m messages” flowing from parents to children. The algorithm can be derived readily
from the SUM-PRODUCT algorithm for the corresponding factor graph. We present the algorithm
in Exercise 77, and ask the reader to provide the derivation.

4.3. MAXIMUM A POSTERIORI PROBABILITIES 25

4.3 Maximum a posteriori probabilities

In this section we discuss a new problem—that of computing mazimum a posteriori probabilities.
Whereas the marginalization problem that we have addressed up until now involves summing over
all configurations of sets of random variables, the maximum a posteriori (MAP) problem involves
maximizing over such configurations. The problem has two aspects—that of finding the maximal
probability and that of finding a configuration that achieves the maximal probability. We begin by
focusing on the former problem.5

Given a probability distribution p(z), where z = (z1,z2,...,2,), given a partition (E,F)
of the indices, and given a fixed configuration zg, we wish to compute the maximum a posteriori
probability max, . p(zp | Zg). Although we use the language of “maximum a posteriori probability”
to describe this problem, the conditioning turns out to play little significant role in the problem.
Indeed:

maxp(zp |Tp) = maxp(zp,Tp) (4.21)
Tp TR
= mgxp(:r:)(S(:vE,rZ‘E) (4.22)
2 maxp(z), (4.23)
T

where p”(z) is the unnormalized representation of conditional probability introduced in Sec-
tion 3.1.1. We see that without loss of generality we can study the unconditional case. That
is, we treat the general problem of maximizing a nonnegative, factorized function of n variables;
this includes as a special case the problem of maximizing such a function when some of the variables
are held fixed.

It is important to be clear that the MAP problem is quite distinct from the marginalization
problem. Naively, one might think that one could solve the MAP problem by first computing the
marginal probability for each variable, and then computing the assignment of each variable that
maximizes its individual marginal, but this is incorrect. Consider the pair of variables shown in
Figure 4.16. The marginal probability of X is maximized by choosing X = 1, and the marginal
probability of Y is maximized by choosing Y = 1. However, the joint probability of the configuration
(X = 1,Y = 1) is equal to zero! The maximizing assignment is (X = 1,Y = 2), which has
probability 0.36.

Although the MAP problem is distinct from the marginalization problem, its algorithmic so-
lution is quite similar. To see this, let us return to the example shown in Figure 4.17, a directed
graphical model with the following factorization:

p(x) = p(@1)p(w2 | 21)p(23 | 1)p(T4 | 72)p(25 | 23)p(T6 | T2, T5)- (4.24)

To solve the MAP problem we expand the maximization into component-wise maximizations, and
compute:

maxp(z) = max maxmax max maxmaxp(zi)p(ze|z1)p(zs|z1)p(zs |z2)p(x5 | 23)p(26 | 2, T5)
T T T2 T3 Ta T5 Ze

5There are generalizations of the MAP problem that involve finding a small set of configurations that have high
probability, and finding multiple configurations that have maximal probability when the maximum is not unique. In
the current section, we restrict ourselves to the simpler problem of finding a single maximum.

26 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

X 1 2 3
0|64 1 2 3
2 1100 4 1.36|.24
y 2 1100
p(x) p(y | x) p(y)

Figure 4.16: The marginal and conditional probabilities for a pair of variables (X,Y"). The maximiz-
ing values of the individual marginals are X = 1 and Y = 1, but the configuration (X =1,Y = 1)
has zero probability.

X4
X2
X
X, 6
X X

Figure 4.17: A directed graphical model.

4.3. MAXIMUM A POSTERIORI PROBABILITIES 27

MAP-ELIMINATE(G, F)
INITIALIZE(G)
EVIDENCE(E)
UPDATE(G)
MAXIMUM

INITIALIZE(G)
choose an ordering I
for each node X; in V
place p(z; | z5;) on the active list

EVIDENCE(E)
for each 7 in F
place d(x;, ;) on the active list

UPDATE(G)
for each 7 in I
find all potentials from the active list that reference z; and remove them from the active list
let ¢"*(zT,) denote the product of these potentials
let m"®(zg,) = maxy, ¢;"*(z1;)
place m"*(zg,) on the active list
MAXIMUM
max, p¥(z) = the scalar value on the active list

Figure 4.18: The MAP-ELIMINATE algorithm for solving the maximum a posteriori problem. Note
that after the final node has been eliminated in UPDATE, the active list contains a single scalar
value, which is the value returned as the maximum by the algorithm.

= maxp(z;) maxp(zrs | z1) max p(zs | z1) max p(z4 | z2) max p(xs | r3) max p(ze | x2, z5).
T T2 T3 T4 Ts 6

These steps should look familiar from our earlier example of marginalization in this graph. Con-
tinuing the computation, we perform the maximization with respect to zg, thereby defining an
“intermediate factor” that is a function of x9 and x5. Subsequent steps are identical to those of a
marginalization computation, with the “sum” operator replaced by the “max” operator.

More generally, all of the derivations that we have presented in this chapter and the previous
chapter go through if the “sum” operator is replaced everywhere by the “max” operator. In
particular, by making this substitution in ELIMINATE, we obtain a MAP version of ELIMINATE,
which we present in Figure 4.18.

The reason that the derivations go through when “sum” is replaced by “max” is that both the
“sum-product” pair and the “max-product” pair are examples of an algebraic structure known as a
commutative semiring. A commutative semiring is a set endowed with two operations—generically

28 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

referred to as “addition” and “multiplication”—that obey certain laws. In particular, addition and
multiplication are both required to be associative and commutative. Moreover, multiplication is
distributive over addition:

a-b+a-c=a-(b+c). (4.25)

This distributive law played a key role in our derivation of ELIMINATE, in which the “sum” op-
erator repeatedly migrates across the “product” operator. Also, the ability to group and reorder
intermediate factors was required in the derivation of the ELIMINATE algorithm. In fact, it can be
verified that the associative, commutative and distributive laws are all that are needed to derive
the ELIMINATE algorithm and the Sum-PRODUCT algorithm. (Note in particular that we do not
require division, an operation that is available in the more restrictive algebraic object known as a
ring.)
If we let the “max” operator play the role of addition, the fact that “max” distributes over
“product”:
max(a - b,a - ¢) = a - max(b, c) (4.26)

shows that “max-product” is a semiring (given the easy verification that “max” is associative and
commutative), and justifies the MAP-ELIMINATE algorithm in Figure 4.18.

A practical problem with the MAP-ELIMINATE algorithm shown in Figure 4.18 is that the
products of probabilities tend to underflow. This can be handled by transforming to the log scale,
making use of the fact that:

mgxpE(:v) = max log p” (z), (4.27)

which holds because the logarithm is a monotone function. Given that the logarithm of a product
becomes a sum of logarithms, we see that such an implementation essentially involves working with
a “max-sum” pair instead of a “max-product” pair. Fortunately, “max-sum” is also a semiring,
in which “max” plays the role of addition and “sum” plays the role of multiplication. Indeed, the
distributive law is easily verified:

max(a + b,a + ¢) = a + max(b, ¢, (4.28)

as are the associative and commutative laws. Thus we can implement M AP-ELIMINATE algorithm
by working with logarithms of potentials, and replacing “product” with “sum.”

There are many other commutative semirings, including semirings on polynomials and dis-
tributive lattices. We explore some of these commutative semirings in the exercises. The generic
ELIMINATE algorithm can be easily adapted to each of these commutative semirings.

In Section ?? we showed that in the case of trees, the ELIMINATE algorithm can be equivalently
expressed in terms of a coupled set of equations, or “messages,” a line of argument that led to the
SuM-PRODUCT algorithm for inference on trees. The same arguments apply to arbitrary commu-
tative semirings, and in particular we can obtain a “MAX-PRODUCT” version of the algorithm as
follows:

mi>(z;) = max)P () (i, z) H m ™ (25) (4.29)
! kEN ()\i

4.3. MAXIMUM A POSTERIORI PROBABILITIES 29

max p”(z) = max V¥ (z;) H mi(zi) | - (4.30)
: JENG)

Implementing a depth-first traversal of the tree, thereby passing messages from the leaves toward
an arbitrarily-defined root, we invoke Eq. (4.30) at the root and obtain the MAP solution.

Is there any value in considering a full message-passing algorithm in which we also send messages
from the root back toward the leaves? If the problem is simply that of finding the maximal value of
the MAP probability, max, p”(z), then the answer is no. Invoking Eq. (4.30) at multiple nodes in
the graph, we obtain exactly the same solution—in all cases we have maximized over all nodes in the
graph. However, if our goal is also that of obtaining a maximizing configuration—a configuration
z* such that z* € arg max, p®(z)—then we can make use of an appropriately defined outward
phase. We explore this issue in the following section.

4.3.1 Maximum a posteriori configurations

Let us now consider the problem of finding a configuration z* such that z* € arg max, p(z). This
problem can be solved by keeping track of the maximizing values of variables in the inward pass of
the MAX-PRroODUCT algorithm, and using these values as indices in an outward pass.

Throughout this section we assume that an arbitrary root node f has been chosen, and refer to
an “inward pass” in which messages flow from the leaves toward the root, and an “outward pass”
in which messages flow from the root toward the leaves.

Note that when the MAX-PRODUCT algorithm arrives at the root node at the end of the inward
pass, the final maximization in Eq. (4.30) provides us with a value of the root node that belongs
to a maximizing configuration. Thus, letting f denote the root, we compute:

T} € arg II:lcaX H mef (2 , (4.31)
! eeN(f)

and thereby obtain a value :v*} that necessarily belongs to a maximizing configuration. Moreover,
in principle we could perform an outward pass in which we evaluate Eq. (4.29) for each node from
the root to the leaves, and subsequently perform the maximization in Eq. (4.30) at each node. This
would yield values x; that belong to maximizing configurations. Unfortunately, however, there is
no guarantee that these values all belong to the same maximizing configuration. To find a single
maximizing configuration we have to work a bit harder.

Suppose that during the inward pass we maintain a record of the maximizing values of nodes
when we compute the messages mJ}**(z;). That is, whenever we send a message m;**(z;) from

Jt
node j to its parent node %, we also record the maximizing values in a table §;;(x;):

dji(x;) € arg max wE(:L‘J P(xi, ;) H myi () | - (4.32)
! kEN (j)\i

Thus, for each z;, the function d;;(x;) picks out a value of z; (there may be several) that achieves
the maximum.

30 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

Having defined the function §;;(x;) during the inward pass, we use §;(x;) to define a consistent
maximizing configuration during an outward pass. Thus, starting at the root f, we choose a
maximizing value z%. Given this value, which we pass to the children of f, we set z} = d, f(:v;‘c) for
each e € N(f). This procedure continues outward to the leaves.

The resulting algorithm is summarized in Figure 4.19. Note that the computation of the
m2*(z;) messages in the inward pass of this algorithm is identical to the MAP-ELIMINATE algo-

Je
rithm (for undirected trees).

4.4 Conclusions

In this chapter we have presented a basic treatment of algorithms for computing probabilities on
graphs. Restricting ourselves to trees, we presented the SUM-PRODUCT algorithm, an algorithm
for computing all singleton marginal probabilities. We also presented a SUM-PRODUCT algorithm
for factor trees, and showed how this algorithm allows us to compute marginal probabilities for
various tree-like graphs, including polytrees. Finally, we showed that the algebra underlying the
SUM-PRODUCT algorithm can be abstracted, yielding a general family of propagation algorithms
based on commutative semirings. In particular, we presented the MAX-PRODUCT algorithm, an
algorithm for computing maximum a posteriori probabilities.

Henceforth we will refer to all such propagation algorithms as probability propagation algorithms.
While we have restricted ourselves to trees in the current chapter, we will be considering probability
propagation algorithms on more general graphs in later chapters.

Thus far we have focused on the problems of representation and inference in graphical models.
We return to these problems in Chapters 16 and 17, providing a more general and more formal
treatment of topics such as conditional independence and probability propagation. In the inter-
vening chapters, however, we shift to a different line of inquiry. In particular, we now begin to
address the problem of interfacing graphical models to data, and we begin to develop methods for
evaluating and improving models on the basis of such data. We thus take up the statistical side of
the story.

4.5 Historical remarks and bibliography

4.5. HISTORICAL REMARKS AND BIBLIOGRAPHY 31

Max-Probuct(T, E)
EVIDENCE(E)
f = CrOOSEROOT(V)
for e € N(f)
COLLECT(f,e)
MAP = max,; (¥ (z5) [Teen) mef™(z))
= arg maxg, (Y7 (x7) [Toepr) mef™(zy))
for e € N(f)

DISTRIBUTE(f, €)

CoLLECT(4,7)
for k € N(j)\i
CoLLECT(j, k)
SENDMESSAGE(J, 1)

DISTRIBUTE(S, j)
SETVALUE(%, j)
for k € N(5)\i

DISTRIBUTE(J, k)

SENDMESSAGE(J, 7)
mi(z;) = max(9® (2;)9(2:, ;) H mi* (@
! keN(j
0ji(w:) € arg max(y” (z;)¢(zi, 2;) H mi(a
! kEN (j)\i

SETVALUE(%, j)
zy = 0ji(z7)

Figure 4.19: A sequential implementation of the MAX-ProODUCT algorithm for a tree 7(V,). The
algorithm works for any choice of root node, and thus we have left CHOOSEROOT unspecified. The
subroutine EVIDENCE(FE) is presented in Figure 4.5.

