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Chapter 4Probability Propagation and Fa
torGraphsIn this 
hapter we des
ribe an algorithm for probabilisti
 inferen
e known as the sum-produ
t, orbelief propagation, algorithm. The algorithm is 
losely related to the elimination algorithm, andindeed we will derive it from the perspe
tive of elimination. The algorithm goes signi�
antly beyondthe elimination algorithm, however, in that it 
an 
ompute all single-node marginals (for 
ertain
lasses of graphs) rather than only a single marginal.It is important to be 
lear that we are also taking a step ba
kward in this 
hapter|while theelimination algorithm is appli
able to arbitrary graphs, the sum-produ
t algorithm is designed towork only in trees (or in the various \tree-like" graphs that we dis
uss in this 
hapter). Despite thisstep ba
kward, there are at least three reasons why the sum-produ
t algorithm overall representssigni�
ant progress: (1) Trees are important graphs. Indeed, a signi�
ant fra
tion of the 
lassi
alliterature on graphi
al models was entirely restri
ted to trees, and many of these 
lassi
al appli
a-tions require the ability to 
ompute all singleton marginals. Examples in
lude the hidden Markovmodel of Chapter 12 and the state-spa
e model of Chapter 15. (2) The sum-produ
t algorithmprovides new insights into the inferen
e problem, insights whi
h will eventually allow us to providea general solution to the exa
t inferen
e problem (the jun
tion tree algorithm of Chapter 17). Thesum-produ
t algorithm essentially involves an eÆ
ient \
al
ulus of intermediate fa
tors," whi
hre
ognizes that many of the same intermediate fa
tors are used in di�erent elimination orderings.The jun
tion tree algorithm extends this 
al
ulus to general graphs, by essentially 
ombining thekey ideas of the sum-produ
t algorithm and the elimination algorithm. (3) While our fo
us in the
urrent 
hapter is exa
t inferen
e, the sum-produ
t algorithm also provides the basis of a 
lass ofapproximate inferen
e algorithms for general graphs, as we dis
uss in Chapter 20.Another goal of the 
urrent 
hapter is to introdu
e fa
tor graphs, an alternative graphi
al rep-resentation of probabilities that is of parti
ular value in the 
ontext of the sum-produ
t algorithm.In parti
ular, we will show that the fa
tor graph approa
h provides an elegant way to handle vari-ous general \tree-like" graphs, in
luding \polytrees," a 
lass of dire
ted graphi
al models in whi
hnodes have multiple parents.Finally, we also broaden our agenda in the 
urrent 
hapter, moving beyond the problem of 
om-3



4 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(a) (b) (c)Figure 4.1: (a) An undire
ted tree. (b) A dire
ted tree. (
) A polytree.puting marginal and 
onditional probabilities to the problem of 
omputing maximum a posterioriprobabilities. We show that this problem 
an be solved via an algorithm that is 
losely related tothe sum-produ
t algorithm.The 
hapter is organized as follows. In Se
tion 4.1 we begin with a dis
ussion of probabilisti
inferen
e on trees, treating both the dire
ted 
ase and the undire
ted 
ase. Se
tion ?? introdu
esfa
tor graphs, dis
usses the relationships with dire
ted and undire
ted graphs, and develops thesum-produ
t algorithm for fa
tor graphs. We dis
uss polytrees in Se
tion 4.2.4, and dis
uss algo-rithms for 
omputing maximum a posteriori probabilities in Se
tion 4.3.4.1 Probabilisti
 inferen
e on treesIn this se
tion we des
ribe an inferen
e algorithm for trees. Let us �rst 
larify exa
tly what is meantby a \tree." In the undire
ted 
ase, a tree is an undire
ted graph in whi
h there is one and onlyone path between any pair of nodes. An example of an undire
ted tree is shown in Figure 4.1(a).1In the dire
ted 
ase, we de�ne a tree to be any graph whose moralized graph is an undire
tedtree. Figure 4.1(b) shows a dire
ted tree. Note that dire
ted trees have a single node that has noparent|the root node|and that all other nodes have exa
tly one parent. Finally, note that thegraph in Figure 4.1(
) is not a dire
ted tree; it has nodes with multiple parents, and the resultingmoralized graph has loops.Any undire
ted tree 
an be 
onverted into a dire
ted tree by 
hoosing a root node and orientingall edges to point away from the root.From the point of view of graphi
al model representation and inferen
e there is little signi�
antdi�eren
e between dire
ted trees and undire
ted trees. A dire
ted tree and the 
orrespondingundire
ted tree (the tree obtained by dropping the dire
tionality of the edges) make exa
tly thesame set of 
onditional independen
e assertions. Morever, as we show below, the parameterizations1Note that throughout the 
hapter we assume impli
itly that our graphs are 
onne
ted, and thus we have a singletree rather than a forest. This is done without loss of generality|in the 
ase of a forest we have a 
olle
tion ofprobabilisti
ally independent trees, and it suÆ
es to run an inferen
e algorithm separately on ea
h tree.



4.1. PROBABILISTIC INFERENCE ON TREES 5are essentially the same, with the undire
ted parameterization being slightly more 
exible by notrequiring potentials to be normalized (but, see Exer
ise ??, any undire
ted representation 
an bereadily 
onverted to a dire
ted one).4.1.1 Parameterization and 
onditioningLet us �rst 
onsider the parameterization of probability distributions on undire
ted trees. The
liques are single nodes and pairs of nodes, and thus the joint probability 
an be parameterized viapotential fun
tions f (xi)g and f (xi; xj)g. In parti
ular, we have:p(x) = 1Z 0�Yi2V  (xi) Y(i;j)2E  (xi; xj)1A ; (4.1)for a tree T (V; E) with nodes V and edges E .For dire
ted trees, the joint probability is formed by taking a produ
t over a marginal proba-bility, p(xr), at the root node r, and 
onditional probabilities, fp(xj jxi)g, at all other nodes:p(x) = p(xr) Y(i;j)2E p(xj jxi); (4.2)where (i; j) is a dire
ted edge su
h that i is the (unique) parent of j (i.e., fig = �j). We 
an treatsu
h a parameterization as a spe
ial 
ase of Eq. (4.1), and indeed it will be 
onvenient to do sothroughout this 
hapter. We de�ne:  (xr) = p(xr) (4.3) (xi; xj) = p(xj jxi); (4.4)for i the parent of j, and de�ne all other singleton potentials,  (xi), for i 6= r, to be equal to one.We thereby express the joint probability for a dire
ted tree in the undire
ted form in Eq. (4.1),with Z = 1.Re
all that we use \eviden
e potentials" to 
apture 
onditioning. Thus, if we are interested inthe 
onditional probability p(xF j �xE), for some subset E, we de�ne eviden
e potentials Æ(xi; �xi), fori 2 E, and multiply the joint probability by the produ
t of these potentials. This simply redu
esto multiplying  (xi) by Æ(xi; �xi), for i 2 E. In parti
ular, we de�ne: Ei (xi) , �  i(xi)Æ(xi; �xi) i 2 E i(xi) i =2 E; (4.5)and substitute in Eq. (4.1) to obtain:p(x j �xE) = 1ZE 0�Yi2V  E(xi) Y(i;j)2E  (xi; xj)1A ; (4.6)



6 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSwhere ZE =Px �Qi2V  E(xi)Q(i;j)2E  (xi; xj)�. Note that the original Z vanishes.In summary, the parameterization of un
onditional distributions and 
onditional distributionson trees is formally identi
al, involving a produ
t of potential fun
tions asso
iated with ea
h nodeand ea
h edge in the graph. We 
an thus pro
eed without making any spe
ial distin
tion betweenthe un
onditional 
ase and the 
onditional 
ase.Are there any spe
ial features of dire
ted trees that we lose in working ex
lusively with theundire
ted formalism? One feature of the parameterization for dire
ted trees is that any summationof the formPxj p(xj jxi) is ne
essarily equal to one, and does not need to be performed expli
itly.Indeed, in the un
onditional 
ase, we 
an arrange things su
h that all sums are of this form, by
hoosing an elimination ordering that begins at the leaves and pro
eeds ba
kward to the root.(This shows that the normalization fa
tor Z is ne
essarily equal to one in the un
onditional 
ase).When we 
ondition, however, the resulting produ
t of potentials is unnormalized (the normalizationfa
tor ZE is no longer one), and we are brought 
loser to the general undire
ted 
ase. It is still the
ase that we 
an \prune" any subtree that 
ontains only variables that are not 
onditioned on, byagain eliminating ba
kwards. We view this as an implementation detail, however, assuming thatany implementation of an inferen
e algorithm will be smart enough to prune su
h subtrees at theoutset. We then �nd ourselves in a situation in whi
h the leaves of the tree are eviden
e nodes, andall of the sums have to be performed expli
itly. In this 
ase, there is no essential di�eren
e betweenthe dire
ted 
ase and the undire
ted 
ase, and in developing the general algorithm for inferen
e ontrees, it is 
onvenient to fo
us ex
lusively on the latter.4.1.2 From elimination to message-passingIn this se
tion and the following se
tion, we derive the Sum-Produ
t algorithm, a general algo-rithm for probabilisti
 inferen
e on trees. The algorithm involves a simple mathemati
al updateequation|a sum over a produ
t of potentials|applied on
e for ea
h outgoing edge at ea
h node.We derive this update equation from the point of view of the Eliminate algorithm. We subse-quently prove that a more general algorithm based on this update equation �nds all (singleton)marginals simultaneously.Let us begin by returning to Eliminate, but spe
ializing to the 
ase of a tree. Re
all thebasi
 stru
ture of Eliminate: (1) Choose an elimination ordering I in whi
h the query node fis the �nal node; (2) Pla
e all potentials on an a
tive list; (3) Eliminate a node i by removingall potentials referen
ing the node from the a
tive list, taking the produ
t, summing over xi, andpla
ing the resulting intermediate fa
tor ba
k on the a
tive list. What are the spe
ial features ofthis pro
edure when the graph is a tree?To take advantage of the re
ursive stru
ture of a tree, we need to spe
ify an elimination orderingI that respe
ts this stru
ture. In parti
ular, we 
onsider elimination orderings that arise from adepth-�rst traversal of the tree. Treat f as a root and view the tree as a dire
ted tree by dire
tingall edges of the tree to point away from f . We now 
onsider any elimination ordering in whi
h anode is eliminated only after all of its 
hildren in the dire
ted version of the tree are eliminated.It 
an be easily veri�ed that su
h an elimination ordering pro
eeds inward from the leaves, andgenerates elimination 
liques of size at most two (showing that the tree-width of a tree is equal to
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(a) (b)Figure 4.2: (a) A fragment of an undire
ted graph. Nodes i and j are neighbors, with i nearer tothe root than j. (b) The messages that are 
reated when nodes k, l and j are eliminated.one).Let us now 
onsider the elimination step. Consider nodes i and j that are neighbors in the tree,where i is 
loser to the root than j (see Figure 4.2(a)). We are interested in the intermediate fa
torthat is 
reated when j is eliminated. This intermediate fa
tor is a sum over a produ
t of 
ertainpotentials. Whi
h potentials are these? Clearly  (xi; xj) is one of these potentials, given that itreferen
es xj and given that i has yet to be eliminated. Also,  E(xj) will appear. We 
an alsoex
lude a number of possibilities. In parti
ular, none of the potentials in the produ
t 
an referen
eany variable in the subtree below j, given that all of these variables have already been eliminated.Moreover, none of these potentials 
an referen
e any other variable outside the subtree, due to theassumption that the graph is a tree. That is, for a node k in the subtree and a node l outside ofthe subtree, there 
an be no potential  (xk; xl) in the probability model. Thus, when eliminatingnodes in the subtree, we 
an never introdu
e any variable outside of the subtree into a summandand thus into an intermediate fa
tor.We have shown that the intermediate fa
tor 
reated by the sum over xj is a fun
tion solely ofxi. Let us introdu
e the notation \mji(xi)" to denote this term, where the �rst subs
ript denotesthe variable being eliminated and the se
ond subs
ript denotes the (sole) remaining neighbor of thevariable (the \bu
ket" in the language of Se
tion ??). Note that the latter index is super
uous in the
ontext of Eliminate|it is determined by the graph stru
ture and the elimination ordering|but



8 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSit will be needed in the 
ontext of the more general Sum-Produ
t algorithm.We refer to the intermediate fa
tor mji(xi) as a \message" that j sends to i. As suggested byFigure 4.2(b), we 
an think of this message as \
owing" along the edge linking j to i.Let us now 
onsider the mathemati
al operation that 
reates the messagemji(xi) in more detail.In parti
ular, 
onsider the potentials that are sele
ted from the a
tive list when we eliminate nodej|the potentials that referen
e xj . As we mentioned earlier, the potentials  (xi; xj) and  E(xj)are among the potentials sele
ted. The other potentials that are sele
ted are those 
reated inearlier elimination steps in whi
h the neighbors of node j (other than i) are eliminated. As shownin Figure 4.2(b), these steps 
an be viewed as 
reating messages mkj(xj), messages that 
ow fromea
h neighbor k|where k 2 N (j)ni|to j.Thus, following the proto
ol of the Eliminate algorithm, to eliminate xj we take the produ
tover all potentials that referen
e xj and sum over xj :mji(xi) =Xxj 0� E(xj) (xi; xj) Yk2N (j)nimkj(xj)1A : (4.7)This is the intermediate fa
tor (\message") that j sends to i.Finally, let us 
onsider the �nal node f in the elimination ordering I. All other nodes have beeneliminated when we arrive at f , and thus messages mef (xf ) have been 
omputed for ea
h of theneighbors e 2 N (f). These messages, and the potential  E(xf ), are the only terms on the a
tivelist at this point. Thus, again following the proto
ol of Eliminate, we write the marginal of xf asthe following produ
t: p(xf j �xE) /  E(xf ) Ye2N (f)mef (xf ); (4.8)where the proportionality 
onstant is obtained by summing the right-hand side with respe
t to xf .Eqs. (4.7) and (4.8) provide a 
on
ise mathemati
al summary of the Eliminate algorithm,for the spe
ial 
ase of a tree. Leaving behind the algorithmi
 details of Eliminate, we see thatprobabilisti
 inferen
e essentially involves solving a 
oupled system of equations in the variablesmji(xi). To 
ompute p(xf ), we solve these equations in an order that 
orresponds to a depth-�rsttraversal of a dire
ted tree in whi
h f is the root.4.1.3 The Sum-Produ
t algorithmIn this se
tion we show that Eqs. (4.7) and (4.8) suÆ
e for obtaining not only a single marginal,but also for obtaining all of the marginals in the tree. The (somewhat magi
al) fa
t is that we 
anobtain all marginals by simply doubling the amount of work required to 
ompute a single marginal.In parti
ular, as we will show, after having passed messages inward from the leaves of the tree toan (arbitrary) root, we simply pass messages from the root ba
k out to the leaves, again usingEq. (4.7) at ea
h step. The net e�e
t is that a single message will 
ow in both dire
tions alongea
h edge. On
e all su
h messages have been 
omputed, we invoke Eq. (4.8) independently at ea
hnode; this yields the desired marginals.



4.1. PROBABILISTIC INFERENCE ON TREES 9One way to understand why this algorithm works is to 
onsider the naive approa
h of 
omputingall marginals by using a di�erent elimination ordering for ea
h marginal. Consider in parti
ularthe tree fragment shown in Figure 4.3(a). To 
ompute the marginal of X1 using elimination, weeliminate X4 and X3, whi
h, as we have seen, involves 
omputing messages m42(x2) and m32(x2)that are sent to X2. We subsequently eliminate X2, whi
h 
reates a message m21(x1) that is sentfrom X2 to X1.Now suppose that we wish to 
ompute the marginal at X2 using elimination. As shown inFigure 4.3(b), we eliminate X4, X3, and X1, passing messages m42(x2), m32(x2) and m12(x2) toX2. The message m12(x2) is new, but (
ru
ially) m42(x2) and m32(x2) are the same messages as
omputed earlier. Similarly, if we wish to 
ompute the marginal at X4, as shown in Figure 4.3(
),we need a new message m24(x4), but we 
an reuse the messages m32(x2) and m12(x2). In general,if we 
ompute a message for ea
h dire
tion along ea
h edge in the tree, as shown in Figure 4.3(d),we 
an obtain all singleton marginals.The idea that messages 
an be \reused" is important. In e�e
t we 
an a
hieve the e�e
tof 
omputing over all possible elimination orderings (a huge number) by 
omputing all possiblemessages (a small number). This is the key insight behind the Sum-Produ
t algorithm.The Sum-Produ
t algorithm is based on Eqs. (4.7), (4.8), and a \proto
ol" that determineswhen any one of these equations 
an be invoked. The proto
ol is given as follows:Message-Passing Proto
ol. A node 
an send a message to a neighboring node when (and onlywhen) it has re
eived messages from all of its other neighbors.There are two prin
ipal ways to implement algorithms that respe
t this proto
ol. The �rst(and most dire
t) way is to interpret the proto
ol as the spe
i�
ation of a parallel algorithm. Inparti
ular, let us view ea
h node as a pro
essor, and assume that the node 
an repeatedly pollits in
oming edges for the presen
e of messages. For a node of degree d, whenever messages havearrived on any subset of d � 1 edges, the node 
omputes a message for the remaining edge anddelivers the message along that edge.An example is shown in Figure 4.4. We assume a syn
hronous parallel algorithm, and at ea
hstep show the messages that are delivered along the edges. Note that messages start to 
ow in fromthe leaves. Note also that when the algorithm terminates, it is the 
ase that a pair of messageshave been 
omputed for ea
h edge, one for ea
h dire
tion. Finally, note that all in
oming messagesare eventually 
omputed for ea
h node, and that Eq. (4.8) 
an therefore be invoked at ea
h nodeto 
ompute the node marginal.For this algorithm to be meaningful in general, we need to insure that all messages will eventuallybe 
omputed and delivered; that is, that the algorithm will never \blo
k." We provide a proof thatthe proto
ol is non-blo
king in Corollary ?? below.We 
an also 
onsider sequential implementations of the Sum-Produ
t algorithm, in whi
hmessages are 
omputed a

ording to a parti
ular \s
hedule." One su
h s
hedule (a s
hedule that iswidely used in pra
ti
e) is a two-phase s
hedule based on depth-�rst traversal from an arbitrary rootnode.2 In the �rst phase, messages 
ow inward from the leaves toward the root (as in Se
tion 4.1.2).2The original graph may have been a dire
ted tree, with a 
orresponding root node. The \root" that is designatedfor the purposes of the Sum-Produ
t algorithm is unrelated to this root node.
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Figure 4.3: (a) The messages formed when 
omputing the marginal of X1. (b) The messages formedwhen 
omputing the marginal of X2. (
) The messages formed when 
omputing the marginal ofX4. (d) All of the messages needed to 
ompute all singleton marginals.
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(a) (b)

(c) (d)Figure 4.4: Message-passing under a syn
hronous parallel algorithm. The solid arrows are themessages passed at a given time step, and the dashed arrows are those passed on earlier time steps.
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Sum-Produ
t(T , E)Eviden
e(E)f = ChooseRoot(V)for e 2 N (f)Colle
t(f; e)for e 2 N (f)Distribute(f; e)for i 2 VComputeMarginal(i)Eviden
e(E)for i 2 E E(xi) =  (xi)Æ(xi; �xi)for i =2 E E(xi) =  (xi)Colle
t(i; j)for k 2 N (j)niColle
t(j; k)SendMessage(j; i)Distribute(i; j)SendMessage(i; j)for k 2 N (j)niDistribute(j; k)SendMessage(j; i)mji(xi) =Xxj ( E(xj) (xi; xj) Yk2N (j)nimkj(xj))ComputeMarginal(i)p(xi) /  E(xi) Yj2N (i)mji(xi)

i

j

k

i

j

kFigure 4.5: A sequential implementation of the Sum-Produ
t algorithm for a tree T (V; E). Thealgorithm works for any 
hoi
e of root node, and thus we have left ChooseRoot unspe
i�ed. A
all to Colle
t 
auses messages to 
ow inward from the leaves to the root. A subsequent 
all toDistribute 
auses messages to 
ow outward from the root to the leaves. After these 
alls havereturned, the singleton marginals 
an be 
omputed lo
ally at ea
h node.



4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 13In the se
ond phase|whi
h is initiated on
e all in
oming messages have been re
eived by the rootnode|messages 
ow outward from the root toward the leaves. In Figure 4.5, we show how su
ha s
hedule 
an be implemented via a pair of re
ursive fun
tion 
alls. In Exer
ise ??, we ask thereader to show that this s
hedule respe
ts the Message-Passing Proto
ol, and to show that theoverall e�e
t of the s
hedule is that a single message 
ows in ea
h dire
tion along ea
h and everyedge.4.1.4 Proof of 
orre
tness of the Sum-Produ
t algorithm3[Se
tion not yet written℄.4.2 Fa
tor graphs and the Sum-Produ
t algorithmThe graphi
al model representations that we have dis
ussed thus far|dire
ted and undire
tedgraphi
al models|aim at 
hara
terizing probability distributions in terms of 
onditional indepen-den
e statements. Fa
tor graphs, an alternative graphi
al representation of probability distribu-tions, aim at 
apturing fa
torizations. As we have dis
ussed (see Se
tion ??), while 
losely related,
onditional independen
e and fa
torization are not exa
tly the same 
on
epts. Re
all in parti
ularour dis
ussion of the parameterization of the 
omplete graph on three nodes. This graph makesno 
onditional independen
e assertions, and the 
orresponding parameterization is simply the ar-bitrary potential  (x1; x2; x3). However, we may be interested in endowing the potentials withalgebrai
 stru
ture, for example: (x1; x2; x3) = fa(x1; x2)fb(x2; x3)f
(x1; x3); (4.9)for given fun
tions fa, fb and f
. Su
h a fa
torized potential de�nes a proper subset of the family ofprobability distributions asso
iated with the 
omplete graph, a subset whi
h has no interpretationin terms of 
onditional independen
e. Fa
tor graphs provide a 
onvenient way to represent subsetsof this kind.In the following se
tion, we introdu
e the general fa
tor graph representation, and dis
uss itsrelationships to dire
ted and undire
ted graphs. We then fo
us on the spe
ial 
ase of fa
tor trees(fa
tor graphs that are trees), and des
ribe the variant of the Sum-Produ
t algorithm that isgeared to fa
tor trees.4.2.1 Fa
tor graphsGiven a set of variables fx1; x2; : : : ; xng, we let C denote a set of subsets of f1; 2; : : : ; ng. Thus,for example, given variables fx1; x2; x3; x4; x5g, we might have C = ff1; 3g; f3; 4g; f2; 4; 5g; f1; 3gg.Note that C is a multiset|we allow the same subset of indi
es to appear multiple times. To avoidambiguity, we therefore index the members of C using an index set F ; thus, C = fCs : s 2 Fg.3This se
tion 
an be skipped without loss of 
ontinuity.



14 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSTo ea
h index s 2 F , we asso
iate a fa
tor fs(xCs), a fun
tion on the subset of variablesindexed by Cs. In our example, letting F = fa; b; 
; dg denote the indi
es, the fa
tors are fa(x1; x3),fb(x3; x4), f
(x2; x4; x5) and fd(x1; x3).Note also that there is no assumption that the subsets C 
orrespond to 
liques of an underlyinggraph. Indeed, at this point we do not have any graph stru
ture in mind|C is just an arbitrary
olle
tion of subsets of indi
es.Given a 
olle
tion of subsets and the asso
iated fa
tors, we de�ne a multivariate fun
tion onthe variables fx1; x2; : : : ; xng by taking the produ
t:f(x1; x2; : : : ; xn) , SYs=1 fs(xCs): (4.10)Our goal will be to de�ne a graphi
al representation of this fun
tion that will permit the eÆ
ientevaluation of marginal fun
tions|fun
tions of a single variable obtained by summing over all othervariables.Fa
torized fun
tions in the form of Eq. (4.11) o

ur in many areas of mathemati
s, and themethods that we des
ribe in this se
tion has numerous appli
ations outside of probability theory.Our interest, however, will be fo
used on fa
torized representations of probability distributions, andindeed the fa
torized probability distributions asso
iated with dire
ted and undire
ted graphi
almodels provide examples of the general produ
t-of-fa
tors in Eq. (4.11).4We now introdu
e a graphi
al representation of Eq. (4.11). This graphi
al representation|thefa
tor graph|di�ers from dire
ted and undire
ted graphi
al models in that it in
ludes expli
itnodes for the fa
tors as well as the variables. We use round nodes to represent the variables andsquare nodes to represent the fa
tors.Formally, a fa
tor graph is a bipartite graph G(V;F ; E), where the verti
es V index the variablesand the verti
es F index the fa
tors. The edges E are obtained as follows: ea
h fa
tor node s 2 Fis linked to all variable nodes in the subset Cs. These are the only edges in the graph.An example of a fa
tor graph is shown in Figure 4.6. This graph represents the fa
torizedfun
tion: f(x1; x2; x3; x4; x5) = fa(x1; x3)fb(x3; x4)f
(x2; x4; x5)fd(x1; x3): (4.11)Note that fa(x1; x3) and fd(x1; x3) refer to the same set of variables. In an undire
ted graphi
almodel these fa
tors would be 
ollapsed into a single potential fun
tion,  (x1; x3). In a fa
tor graphthese fun
tions are allowed to maintain a separate identity.It will prove useful to de�ne neighborhood fun
tions on the nodes of a fa
tor graph. In parti
ular,let N (s) � V denote the set of neighbors of a fa
tor node s 2 F , and let N (i) � F denote theset of neighbors of a variable node i 2 V. Note that N (s) refers to the indi
es of all variablesreferen
ed by the fa
tor fs, and is identi
al to the subset Cs introdu
ed earlier. On the other hand,the neighborhood set N (i), for a variable node i, is the set of all fa
tors that referen
e the variablexi. Dire
ted and undire
ted graphi
al models 
an be readily 
onverted to fa
tor graphs. For ex-ample, the dire
ted graphi
al model shown in Figure 4.7(a) 
an be represented as a fa
tor graph4The normalization fa
tor Z in the parameterization of undire
ted graphi
al models 
an be treated as a fa
tor
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1X 2X 3X X 4 X 5

af bf cf dfFigure 4.6: An example of a fa
tor graph.
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bf

cf

df
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(a) (b)Figure 4.7: (a) A dire
ted graphi
al model. (b) The 
orresponding fa
tor graph. Note that thereare six fa
tor nodes, one for ea
h lo
al 
onditional probability in the dire
ted graph.
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af bf

cf

1X

2X 3X

f

(a) (b) (c)

1X

2X 3X

1X

2X 3XFigure 4.8: (a) An undire
ted graphi
al model provides no information about possible fa
toriza-tions of the potential fun
tion asso
iated with a given 
lique. (b) The fa
tor graph 
orrespondingto the fa
torized potential  (x1; x2; x3) = fa(x1; x2)fb(x2; x3)f
(x1; x3). (
) The fa
tor graph 
or-responding to the non-fa
torized potential  (x1; x2; x3) = f(x1; x2; x3).as shown in Figure 4.7(b).5By representing ea
h fa
tor as a node in the graph, fa
tor graphs provide a more �ne-grainedrepresentation of probability distributions than is provided by dire
ted and undire
ted graphi
almodels. In parti
ular, returning to the 
omplete graph on three nodes shown in Figure 4.8(a),fa
tor graphs make it possible to display �ne-grained assumptions about the parameterization:Figure 4.8(b) shows the fa
tor graph 
orresponding to the general potential  (x1; x2; x3), whileFigure 4.8(
) shows the fa
tor graph 
orresponding to the fa
torized potential in Eq. (4.9).It is worth noting that it is always possible to mimi
 the �ne-grained representation of fa
torgraphs within the dire
ted and undire
ted formalisms, so that formally fa
tor graphs provide noadditional representational power. For example, in Figure 4.9(a) we show an undire
ted graphthat 
an represent the fa
torization in Eq. (4.9). In this graph, we have introdu
ed three newrandom variables, Z1, Z2, and Z3. These variables are indi
ator variables pi
king out parti
ular
ombinations of the underlying variables X1, X2 and X3. Thus, for example, for binary X1 and X2,Z1 would take on four possible values, one for ea
h pair of values of X1 and X2, and the potentialfun
tion  (z1) would be set equal to the 
orresponding value of fa(x1; x2). (We ask the reader to�ll in the details of this 
onstru
tion in Exer
ise ??).Similarly, in Figure 4.9(b), we show a dire
ted graph that mimi
s the fa
torization in Eq. (4.9).In this graph, the three new variables, W1, W2, and W3, are binary variables that are always setequal to one. We set p(W1 = 1 jx1; x2) to the 
orresponding value of fa(x1; x2). (We again ask thereader to supply the details in Exer
ise ??).asso
iated with the empty set|whi
h is appropriate given that it is a 
onstant.5In general, in the dire
ted 
ase ea
h fa
tor is a lo
al 
onditional probability, and the subsets Cs 
orrespond to\families" 
onsisting of a node and its parents. Given that we do not assume that the subsets Cs 
orrespond to
liques of an underlying graph, we do not need to \moralize" in the fa
tor graph formalism. This is 
onsistent withthe fa
t that the fa
tor graph does not attempt to represent 
onditional independen
ies.
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(a) (b)Figure 4.9: (a) An undire
ted graph that mimi
s the fa
torization shown in Figure 4.8(b) forappropriate 
hoi
es of the indi
ator variables Zi. (b) A dire
ted graph that mimi
s the fa
torizationshown in Figure 4.8(b) for appropriate 
hoi
es of the indi
ator variables Wi.In general, by introdu
ing additional variables in a dire
ted or undire
ted graph, we 
an mimi
the fa
torization that is made expli
it in the fa
tor graph. However, this pro
edure is arguablyrather arti�
ial, and the fa
tor graph representation provides a natural 
omplement to undire
tedor dire
ted graphs for situations in whi
h a �ne-grained representation of potentials is desired.4.2.2 The Sum-Produ
t algorithm for fa
tor treesWe now turn to the inferen
e problem for fa
tor graphs. As before, our goal is to 
ompute allsingleton marginal probabilities under the fa
torized representation of the joint probability. In thisse
tion we show how to do this for fa
tor graphs that are trees.A fa
tor graph is de�ned to be a fa
tor tree if the undire
ted graph obtained by ignoring thedistin
tion between variable nodes and fa
tor nodes is an undire
ted tree. Restri
ting ourselvesto trees, we de�ne a variant of the Sum-Produ
t algorithm that provides all singleton marginalprobabilities for fa
tor trees.As in the earlier Sum-Produ
t algorithm, we de�ne messages that 
ow along the edges ofthe graph. In the 
ase of fa
tor trees, there are two kinds of messages: messages � that 
ow fromvariable nodes to fa
tor nodes, and messages � that 
ow from fa
tor nodes to variable nodes.These messages take the following form. We �rst 
onsider the messages that 
ow from variablenodes to fa
tor nodes. As depi
ted in Figure 4.10(a), the message �is(xi) that 
ows between thevariable node i and the fa
tor node s is 
omputed as follows:�is(xi) = Yt2N (i)ns�ti(xi); (4.12)where the produ
t is taken over all in
oming messages to variable node i, other than the messagefrom the fa
tor node s that is the re
ipient of the message.
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(a) (b)

νis( )xi µsi( )xi

µ ti ( )xi

µui( )xi νks( )xk

νjs( )xj

Xi

Xk

Xj

fs

ft

fu

Xi fs

Figure 4.10: (a) The 
omputation of the message �is(xi) that 
ows from fa
tor node s to variablenode i. (b) The 
omputation of the message �si(xi) that 
ows from variable node i to fa
tor nodes. Similarly, as shown in Figure 4.10(b), a message �si(xi) 
ows between the fa
tor node s andthe variable node i. This message is 
omputed as follows:�si(xi) = XxN (s)ni0�fs(xN (s)) Yj2N (s)ni �js(xj)1A : (4.13)Note that the produ
t is taken over all in
oming messages to fa
tor node s, other than the messagefrom the variable node i that is the re
ipient of the message.Thus we have a 
oupled set of equations for a set of messages. As in our earlier Sum-Produ
talgorithm, a full spe
i�
ation of the algorithm requires a determination of when a given equation
an be invoked. The proto
ol turns out to be exa
tly the same as the earlier proto
ol:Message-Passing Proto
ol. A node 
an send a message to a neighboring node when (and onlywhen) it has re
eived messages from all of its other neighbors.In the fa
tor tree 
ase, the proto
ol applies to both variable nodes and fa
tor nodes.Finally, on
e a message has arrived at ea
h node from all of its neighbors, the marginal proba-bility of a node is obtained as follows: p(xi) / Ys2N (i)�si(xi): (4.14)Given the de�nition of �is(xi) in Eq. (4.12), this 
an also be written as follows:p(xi) / �is(xi)�si(xi); (4.15)for any s 2 N (i). That is, the marginal probability of node i 
an be obtained by taking the produ
tof the pair of messages 
owing along any edge in
ident on node i.
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t algorithm for fa
tor trees is provided inFigure 4.11.Consider the example shown in Figure 4.6(a). The fa
tor tree representation of this model isshown in Figure 4.12(b). Let us run through the steps of the Sum-Produ
t algorithm. In the�rst step, shown in Figure 4.12(
), the only nodes that are able to send messages are the leafnodes. These leaf nodes are fa
tor nodes, and the produ
t in Eq. (4.13) is a va
uous produ
t,whi
h by 
onvention we set equal to one. Moreover, the sum in Eq. (4.13) is a va
uous sum.Thus, the message that 
ows in from a leaf node is simply the fa
tor asso
iated with that node:�si(xi) =  E(xi), for i 2 V.The se
ond stage in the pro
ess is also rather uninteresting. As shown in Figure 4.12(d), thevariable nodes X1 and X3 are able to send messages in this stage. For ea
h node, the produ
t inEq. (4.12) is 
omposed of only a single fa
tor, and thus this fa
tor is simply passed along the 
hain.Now 
onsider the third stage, shown in Figure 4.12(e). At the fa
tor nodes along the ba
kboneof the 
hain, a sum is taken over the produ
t of the in
oming message and the fa
tor residing at thatnode. In the 
ase of the message �d2(x2), this yields �d2(x2) =Px1  E(x1) (x1; x2), and, similarly,�e2(x2) = Px3  E(x3) (x2; x3). Note that these messages are the same as the 
orrespondingmessages that would pass in a run of the Sum-Produ
t algorithm for the undire
ted graph inFigure 4.12(a). That is, we have: �d2(x2) = m12(x2), and �e2(x2) = m32(x2).Finally, in Figure 4.12(f), Figure 4.12(g), and Figure 4.12(h), we show the remaining stepsof the algorithm. The reader 
an again verify a 
orresponden
e with the messages that wouldbe 
omputed in Figure 4.12(a): �d1(x1) = m21(x1) and �e3(x3) = m23(x3). By the end of thealgorithm, a message has passed in both dire
tions along every edge.In general, if we start with a graph that is an undire
ted tree and 
onvert to a fa
tor graph,then we �nd that there is a dire
t relationship between the \m messages" of the Sum-Produ
talgorithm for the undire
ted graph and the \� messages" of the Sum-Produ
t algorithm for thefa
tor graph. Consider the graph fragment shown in Figure 4.13(a) and the 
orresponding fa
torgraph representation in Figure 4.13(b). We 
laim that mji(xi) in the undire
ted graph is equal to�si(xi) in the fa
tor graph. Indeed, we have:�si(xi) = XxN (s)ni0�fs(xN (s)) Yj2N (s)ni �js(xj)1A (4.16)= Xxj  (xi; xj)�js(xj) (4.17)= Xxj  (xi; xj) Yt2N (j)ns�tj(xj) (4.18)= Xxj 0� E(xj) (xi; xj) Yt2N 0(j)ns�tj(xj)1A ; (4.19)where N 0(j) denotes the neighborhood of j, omitting the singleton fa
tor node asso
iated with E(xj). We see that the expression for �si(xi) is formally identi
al to the update equation formji(xi) in Eq. (4.7).
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t(T , E)Eviden
e(E)f = ChooseRoot(V)for s 2 N (f)�-Colle
t(f; s)for s 2 N (f)�-Distribute(f; s)for i 2 VComputeMarginal(i)�-Colle
t(i; s)for j 2 N (s)ni�-Colle
t(s; j)�-SendMessage(s; i)�-Colle
t(s; i)for t 2 N (i)ns�-Colle
t(i; t)�-SendMessage(i; s)�-Distribute(s; i)�-SendMessage(s; i)for t 2 N (i)ns�-Distribute(i; t)�-Distribute(i; s)�-SendMessage(i; s)for j 2 N (s)ni�-Distribute(s; j)�-SendMessage(s; i)�si(xi) = XxN (s)ni(fs(xN (s)) Yj2N (s)ni �js(xj))�-SendMessage(i; s)�is(xi) = Yt2N (i)ns�ti(xi)ComputeMarginal(i)p(xi) / �is(xi)�si(xi)Figure 4.11: A sequential implementation of the Sum-Produ
t algorithm for a fa
tor treeT (V;F ; E). The algorithm works for any 
hoi
e of root node, and thus we have left Choose-Root unspe
i�ed. The subroutine Eviden
e(E) is presented in Figure 4.5.
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Figure 4.12: (a) A three-node undire
ted graphi
al model. (b) The fa
tor tree representation.(
)-(h) A run of the Sum-Produ
t algorithm on the fa
tor tree.
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Figure 4.13: (a) A fragment of an undire
ted tree. (b) The 
orresponding fragment of a fa
tor tree.From this observation and an indu
tion argument, it is not diÆ
ult to prove that the Sum-Produ
t algorithm for fa
tor trees is 
orre
t for fa
tor trees that are obtained from undire
tedtrees, by simply translating between the two versions of the Sum-Produ
t algorithm. We leave thisas an exer
ise (Exer
ise ??). It is also straightforward to develop a standalone proof by indu
tionthat the general Sum-Produ
t algorithm for fa
tor trees is 
orre
t, whi
h we again leave as anexer
ise.If a graph is originally a tree (undire
ted or dire
ted), there is little to be gained by translatingto the fa
tor graph framework. The payo� for fa
tor graphs arises when we 
onsider various \tree-like" graphs, to whi
h we now turn.4.2.3 Tree-like graphsConsider the graph shown in Figure 4.14(a). Assuming that the three-node 
luster in the 
en-ter of the graph is parameterized by a general non-fa
torized potential fun
tion, the probabilitydistribution asso
iated with the graph is given by:p(x) /  (x1; x2) (x3; x5) (x4; x6) (x2; x3; x4); (4.20)where for simpli
ity we have negle
ted the singleton potentials. Although this graph is not a tree,it is \nearly" a tree. In parti
ular, we 
ould repla
e the three variable X2, X3, and X4 with anew \super-variable" Z, whose range is the Cartesian produ
t of the ranges of the three individual
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(a)
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X 5 X6

(b) (c)

1X
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3X X 4

X 5 X6

Z

1X

2X

3X X 4

X 5 X6Figure 4.14: (a) An undire
ted graphi
al model in whi
h the 
enter 
luster of nodes is assumed tobe parameterized as a non-fa
torized potential,  (x2; x3; x4). (b) An equivalent undire
ted modelbased on the \super-variable" Z. (
) An equivalent fa
tor graph.variables. By 
reating new potential fun
tions,  (x1; z),  (x5; z),  (x6; z), and  (z), we 
an mimi
the fa
torization in Eq. (4.20). Moreover, the 
orresponding undire
ted graphi
al model, shown inFigure 4.14(b), is a tree.We 
an also 
apture the probability distribution in Eq. (4.20) using a fa
tor graph. In parti
ular,the graph translates dire
tly to the fa
tor graph shown in Figure 4.14(
). Note that the fa
tornode at the 
enter of the graph has three neighbors|representing the dependen
y stru
ture of thepotential  (x2; x3; x4). Note also that the fa
tor graph is a fa
tor tree.We see that the distribution represented by the tree-like undire
ted graph in Figure 4.14(a)translates dire
tly to a tree in the fa
tor graph framework. There is no need to invent new variablesand new potential fun
tions.Finally, of most signi�
an
e is that the Sum-Produ
t algorithm for fa
tor trees applies dire
tlyto the graph in Figure 4.14(
). The fa
t that the original graph is not a tree is irrelevant|thefa
tor graph is a tree, and the algorithm is 
orre
t for general fa
tor trees.In general, if the variables in an undire
ted graphi
al model 
an be 
lustered into non-overlapping
liques, and the parameterization of ea
h 
lique is a general, non-fa
torized potential, then the 
or-responding fa
tor graph is a tree, and the Sum-Produ
t applies dire
tly.4.2.4 PolytreesA polytree is a tree-like graph that is important enough to merit its own se
tion. In this se
tion wedis
uss the Sum-Produ
t algorithm for polytrees, again exploiting the fa
tor graph framework.As we have dis
ussed, dire
ted trees are essentially equivalent to undire
ted trees, providingno additional representational 
apability and no new issues for inferen
e. On the other hand, the
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(a) (b)

1X 2X

3X X 4

X 5

1X 2X

3X

X 4

X 5Figure 4.15: (a) A polytree. (b) The fa
tor graph representation of the polytree in (a). Note thatthe fa
tor graph is a fa
tor tree.dire
ted graph shown in Figure 4.15(a) is a tree-like graph that does present new 
apabilities andnew issues. As we saw in Chapter 2, the presen
e of nodes with multiple parents in a dire
ted graphimplies a 
onditional independen
e semanti
s that is not available in undire
ted graphs, in
ludingthe \explaining-away" semanti
s that we studied in Chapter 2. Not surprisingly, this semanti
s hasimpli
ations for inferen
e, 
on
retely via the 
onditional probability p(xi jx�i) that links a nodewith its parents.A polytree is a dire
ted graph that redu
es to an undire
ted tree if we 
onvert ea
h dire
tededge to an undire
ted edge. Thus, polytrees have no loops in their underlying undire
ted graph.One way to treat polytrees is via the \super-variable" approa
h. That is, we 
reate a newvariable for ea
h 
ombination of a node and its parents (ea
h family) and link the super-variables(with undire
ted edges). It is easy to see that the resulting graph is a tree. This approa
h, however,su�ers from the inelegan
e alluded to in the previous se
tion.Alternatively, we 
an use fa
tor graphs. In Figure 4.15(b), we show the fa
tor graph 
orre-sponding to the polytree in Figure 4.15(a). We see that the fa
tor graph is a tree. Moreover, thereis a fa
tor 
orresponding to ea
h family, representing the 
onditional probability p(xi jx�i).The fa
t that the fa
tor graph 
orresponding to a polytree is a tree implies that the Sum-Produ
t algorithm for fa
tor graphs applies dire
tly to polytrees.Histori
ally, polytrees were an important step along the way in the development of generalexa
t inferen
e algorithms for graphi
al models. In 1983, Kim and Pearl des
ribed a general sum-produ
t-like algorithm for polytrees. As in the 
ase of the Sum-Produ
t algorithm for fa
torgraphs, this algorithm also involves two kinds of messages|\� messages" 
owing from 
hildren toparents, and \� messages" 
owing from parents to 
hildren. The algorithm 
an be derived readilyfrom the Sum-Produ
t algorithm for the 
orresponding fa
tor graph. We present the algorithmin Exer
ise ??, and ask the reader to provide the derivation.



4.3. MAXIMUM A POSTERIORI PROBABILITIES 254.3 Maximum a posteriori probabilitiesIn this se
tion we dis
uss a new problem|that of 
omputing maximum a posteriori probabilities.Whereas the marginalization problem that we have addressed up until now involves summing overall 
on�gurations of sets of random variables, the maximum a posteriori (MAP) problem involvesmaximizing over su
h 
on�gurations. The problem has two aspe
ts|that of �nding the maximalprobability and that of �nding a 
on�guration that a
hieves the maximal probability. We begin byfo
using on the former problem.6Given a probability distribution p(x), where x = (x1; x2; : : : ; xn), given a partition (E;F )of the indi
es, and given a �xed 
on�guration �xE , we wish to 
ompute the maximum a posterioriprobability maxxF p(xF j �xE). Although we use the language of \maximum a posteriori probability"to des
ribe this problem, the 
onditioning turns out to play little signi�
ant role in the problem.Indeed: maxxF p(xF j �xE) = maxxF p(xF ; �xE) (4.21)= maxx p(x)Æ(xE ; �xE) (4.22), maxx pE(x); (4.23)where pE(x) is the unnormalized representation of 
onditional probability introdu
ed in Se
-tion 3.1.1. We see that without loss of generality we 
an study the un
onditional 
ase. Thatis, we treat the general problem of maximizing a nonnegative, fa
torized fun
tion of n variables;this in
ludes as a spe
ial 
ase the problem of maximizing su
h a fun
tion when some of the variablesare held �xed.It is important to be 
lear that the MAP problem is quite distin
t from the marginalizationproblem. Naively, one might think that one 
ould solve the MAP problem by �rst 
omputing themarginal probability for ea
h variable, and then 
omputing the assignment of ea
h variable thatmaximizes its individual marginal, but this is in
orre
t. Consider the pair of variables shown inFigure 4.16. The marginal probability of X is maximized by 
hoosing X = 1, and the marginalprobability of Y is maximized by 
hoosing Y = 1. However, the joint probability of the 
on�guration(X = 1; Y = 1) is equal to zero! The maximizing assignment is (X = 1; Y = 2), whi
h hasprobability 0.36.Although the MAP problem is distin
t from the marginalization problem, its algorithmi
 so-lution is quite similar. To see this, let us return to the example shown in Figure 4.17, a dire
tedgraphi
al model with the following fa
torization:p(x) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5): (4.24)To solve the MAP problem we expand the maximization into 
omponent-wise maximizations, and
ompute:maxx p(x) = maxx1 maxx2 maxx3 maxx4 maxx5 maxx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5)6There are generalizations of the MAP problem that involve �nding a small set of 
on�gurations that have highprobability, and �nding multiple 
on�gurations that have maximal probability when the maximum is not unique. Inthe 
urrent se
tion, we restri
t ourselves to the simpler problem of �nding a single maximum.
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onditional probabilities for a pair of variables (X;Y ). The maximiz-ing values of the individual marginals are X = 1 and Y = 1, but the 
on�guration (X = 1; Y = 1)has zero probability.
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Figure 4.17: A dire
ted graphi
al model.
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e(E)Update(G)MaximumInitialize(G)
hoose an ordering Ifor ea
h node Xi in Vpla
e p(xi jx�i) on the a
tive listEviden
e(E)for ea
h i in Epla
e Æ(xi; �xi) on the a
tive listUpdate(G)for ea
h i in I�nd all potentials from the a
tive list that referen
e xi and remove them from the a
tive listlet �maxi (xTi) denote the produ
t of these potentialslet mmaxi (xSi) = maxxi �maxi (xTi)pla
e mmaxi (xSi) on the a
tive listMaximummaxx pE(x) = the s
alar value on the a
tive listFigure 4.18: TheMAP-Eliminate algorithm for solving the maximum a posteriori problem. Notethat after the �nal node has been eliminated in Update, the a
tive list 
ontains a single s
alarvalue, whi
h is the value returned as the maximum by the algorithm.= maxx1 p(x1)maxx2 p(x2 jx1)maxx3 p(x3 jx1)maxx4 p(x4 jx2)maxx5 p(x5 jx3)maxx6 p(x6 jx2; x5):These steps should look familiar from our earlier example of marginalization in this graph. Con-tinuing the 
omputation, we perform the maximization with respe
t to x6, thereby de�ning an\intermediate fa
tor" that is a fun
tion of x2 and x5. Subsequent steps are identi
al to those of amarginalization 
omputation, with the \sum" operator repla
ed by the \max" operator.More generally, all of the derivations that we have presented in this 
hapter and the previous
hapter go through if the \sum" operator is repla
ed everywhere by the \max" operator. Inparti
ular, by making this substitution in Eliminate, we obtain a MAP version of Eliminate,whi
h we present in Figure 4.18.The reason that the derivations go through when \sum" is repla
ed by \max" is that both the\sum-produ
t" pair and the \max-produ
t" pair are examples of an algebrai
 stru
ture known as a
ommutative semiring. A 
ommutative semiring is a set endowed with two operations|generi
ally
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ation"|that obey 
ertain laws. In parti
ular, addition andmultipli
ation are both required to be asso
iative and 
ommutative. Moreover, multipli
ation isdistributive over addition: a � b+ a � 
 = a � (b+ 
): (4.25)This distributive law played a key role in our derivation of Eliminate, in whi
h the \sum" op-erator repeatedly migrates a
ross the \produ
t" operator. Also, the ability to group and reorderintermediate fa
tors was required in the derivation of the Eliminate algorithm. In fa
t, it 
an beveri�ed that the asso
iative, 
ommutative and distributive laws are all that are needed to derivethe Eliminate algorithm and the Sum-Produ
t algorithm. (Note in parti
ular that we do notrequire division, an operation that is available in the more restri
tive algebrai
 obje
t known as aring.)If we let the \max" operator play the role of addition, the fa
t that \max" distributes over\produ
t": max(a � b; a � 
) = a �max(b; 
) (4.26)shows that \max-produ
t" is a semiring (given the easy veri�
ation that \max" is asso
iative and
ommutative), and justi�es the MAP-Eliminate algorithm in Figure 4.18.A pra
ti
al problem with the MAP-Eliminate algorithm shown in Figure 4.18 is that theprodu
ts of probabilities tend to under
ow. This 
an be handled by transforming to the log s
ale,making use of the fa
t that: maxx pE(x) = maxx log pE(x); (4.27)whi
h holds be
ause the logarithm is a monotone fun
tion. Given that the logarithm of a produ
tbe
omes a sum of logarithms, we see that su
h an implementation essentially involves working witha \max-sum" pair instead of a \max-produ
t" pair. Fortunately, \max-sum" is also a semiring,in whi
h \max" plays the role of addition and \sum" plays the role of multipli
ation. Indeed, thedistributive law is easily veri�ed:max(a+ b; a+ 
) = a+max(b; 
); (4.28)as are the asso
iative and 
ommutative laws. Thus we 
an implementMAP-Eliminate algorithmby working with logarithms of potentials, and repla
ing \produ
t" with \sum."There are many other 
ommutative semirings, in
luding semirings on polynomials and dis-tributive latti
es. We explore some of these 
ommutative semirings in the exer
ises. The generi
Eliminate algorithm 
an be easily adapted to ea
h of these 
ommutative semirings.In Se
tion ?? we showed that in the 
ase of trees, the Eliminate algorithm 
an be equivalentlyexpressed in terms of a 
oupled set of equations, or \messages," a line of argument that led to theSum-Produ
t algorithm for inferen
e on trees. The same arguments apply to arbitrary 
ommu-tative semirings, and in parti
ular we 
an obtain a \Max-Produ
t" version of the algorithm asfollows: mmaxji (xi) = maxxj 0� E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj)1A (4.29)



4.3. MAXIMUM A POSTERIORI PROBABILITIES 29maxx pE(x) = maxxi 0� E(xi) Yj2N (i)mmaxji (xi)1A : (4.30)Implementing a depth-�rst traversal of the tree, thereby passing messages from the leaves towardan arbitrarily-de�ned root, we invoke Eq. (4.30) at the root and obtain the MAP solution.Is there any value in 
onsidering a full message-passing algorithm in whi
h we also send messagesfrom the root ba
k toward the leaves? If the problem is simply that of �nding the maximal value ofthe MAP probability, maxx pE(x), then the answer is no. Invoking Eq. (4.30) at multiple nodes inthe graph, we obtain exa
tly the same solution|in all 
ases we have maximized over all nodes in thegraph. However, if our goal is also that of obtaining a maximizing 
on�guration|a 
on�gurationx� su
h that x� 2 arg maxx pE(x)|then we 
an make use of an appropriately de�ned outwardphase. We explore this issue in the following se
tion.4.3.1 Maximum a posteriori 
on�gurationsLet us now 
onsider the problem of �nding a 
on�guration x� su
h that x� 2 arg maxx pE(x). Thisproblem 
an be solved by keeping tra
k of the maximizing values of variables in the inward pass ofthe Max-Produ
t algorithm, and using these values as indi
es in an outward pass.Throughout this se
tion we assume that an arbitrary root node f has been 
hosen, and refer toan \inward pass" in whi
h messages 
ow from the leaves toward the root, and an \outward pass"in whi
h messages 
ow from the root toward the leaves.Note that when theMax-Produ
t algorithm arrives at the root node at the end of the inwardpass, the �nal maximization in Eq. (4.30) provides us with a value of the root node that belongsto a maximizing 
on�guration. Thus, letting f denote the root, we 
ompute:x�f 2 arg maxxf 0� E(xf ) Ye2N (f)mmaxef (xf )1A ; (4.31)and thereby obtain a value x�f that ne
essarily belongs to a maximizing 
on�guration. Moreover,in prin
iple we 
ould perform an outward pass in whi
h we evaluate Eq. (4.29) for ea
h node fromthe root to the leaves, and subsequently perform the maximization in Eq. (4.30) at ea
h node. Thiswould yield values x�i that belong to maximizing 
on�gurations. Unfortunately, however, there isno guarantee that these values all belong to the same maximizing 
on�guration. To �nd a singlemaximizing 
on�guration we have to work a bit harder.Suppose that during the inward pass we maintain a re
ord of the maximizing values of nodeswhen we 
ompute the messages mmaxji (xi). That is, whenever we send a message mmaxji (xi) fromnode j to its parent node i, we also re
ord the maximizing values in a table Æji(xi):Æji(xi) 2 arg maxxj 0� E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj)1A : (4.32)Thus, for ea
h xi, the fun
tion Æji(xi) pi
ks out a value of xj (there may be several) that a
hievesthe maximum.



30 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSHaving de�ned the fun
tion Æji(xi) during the inward pass, we use Æji(xi) to de�ne a 
onsistentmaximizing 
on�guration during an outward pass. Thus, starting at the root f , we 
hoose amaximizing value x�f . Given this value, whi
h we pass to the 
hildren of f , we set x�e = Æef (x�f ) forea
h e 2 N (f). This pro
edure 
ontinues outward to the leaves.The resulting algorithm is summarized in Figure 4.19. Note that the 
omputation of themmaxji (xi) messages in the inward pass of this algorithm is identi
al to the MAP-Eliminate algo-rithm (for undire
ted trees).4.4 Con
lusionsIn this 
hapter we have presented a basi
 treatment of algorithms for 
omputing probabilities ongraphs. Restri
ting ourselves to trees, we presented the Sum-Produ
t algorithm, an algorithmfor 
omputing all singleton marginal probabilities. We also presented a Sum-Produ
t algorithmfor fa
tor trees, and showed how this algorithm allows us to 
ompute marginal probabilities forvarious tree-like graphs, in
luding polytrees. Finally, we showed that the algebra underlying theSum-Produ
t algorithm 
an be abstra
ted, yielding a general family of propagation algorithmsbased on 
ommutative semirings. In parti
ular, we presented the Max-Produ
t algorithm, analgorithm for 
omputing maximum a posteriori probabilities.Hen
eforth we will refer to all su
h propagation algorithms as probability propagation algorithms.While we have restri
ted ourselves to trees in the 
urrent 
hapter, we will be 
onsidering probabilitypropagation algorithms on more general graphs in later 
hapters.Thus far we have fo
used on the problems of representation and inferen
e in graphi
al models.We return to these problems in Chapters 16 and 17, providing a more general and more formaltreatment of topi
s su
h as 
onditional independen
e and probability propagation. In the inter-vening 
hapters, however, we shift to a di�erent line of inquiry. In parti
ular, we now begin toaddress the problem of interfa
ing graphi
al models to data, and we begin to develop methods forevaluating and improving models on the basis of su
h data. We thus take up the statisti
al side ofthe story.4.5 Histori
al remarks and bibliography
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Max-Produ
t(T , E)Eviden
e(E)f = ChooseRoot(V)for e 2 N (f)Colle
t(f; e)MAP = maxxf ( E(xf )Qe2N (f)mmaxef (xf ))x�f = arg maxxf ( E(xf )Qe2N (f)mmaxef (xf ))for e 2 N (f)Distribute(f; e)Colle
t(i; j)for k 2 N (j)niColle
t(j; k)SendMessage(j; i)Distribute(i; j)SetValue(i; j)for k 2 N (j)niDistribute(j; k)SendMessage(j; i)mmaxji (xi) = maxxj ( E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj))Æji(xi) 2 arg maxxj ( E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj))SetValue(i; j)x�j = Æji(x�i )Figure 4.19: A sequential implementation of the Max-Produ
t algorithm for a tree T (V; E). Thealgorithm works for any 
hoi
e of root node, and thus we have left ChooseRoot unspe
i�ed. Thesubroutine Eviden
e(E) is presented in Figure 4.5.


