opert

message

10.1

Exact Inference: Clique Trees

In the previous chapter, we showed how we can exploit the structure of a graphical model
to perform exact inference effectively. The fundamental insight in this process is that the
factorization of the distribution allows us to perform local operations on the factors defining
the distribution, rather than simply generate the entire joint distribution. We implemented this
insight in the context of the wariable elimination algorithm, which sums out variables one at a
time, multiplying the factors necessary for that operation. ,

In this chapter, we present an alternative implementation of the same insight. As in the case
of variable elimination, the algorithm uses manipulation of factors assits basic computational
step. However, the algorithm uses a more global data structure fo g these operations,
with surprising computational benefits.

Throughout this chapter, we will assume that we are d
set of variables X', where each factor ¢; has a scope X ;. Thi
unnormalized measure

Pyp(x) = I #:(x). 10.1)

¢: €D

factors ® over a
ors defines a (usually)

the CPDs, and the measure Pcp
ith“evidence E = e, the factors are
. For a Gibbs distribution (with or without
d Py is the unnormalized Gibbs measure.
ions that one can perform on a normalized distri-
ed measure. In particular, we can marginalize
Py on a subset of iablé g out the others. We can also consider a conditional
Z) (which, in fact, is the same as Py (X | Y)).

is a normalized distribution. For a Bay
the CPDs restricted to e, and Py (X
evidence), the factors are the (restricte

It is important to note that a

Variable Eli

Recall that the basic n of the variable elimination algorithm is the manipulation of
factors. Each step in the computation creates a factor v; by multiplying existing factors. A
variable is then eliminated in ¥; to generate a new factor 7;, which is then used to create
another factor. In this section, we present another view of this computation. We consider a
factor 9); to be a computational data structure, which takes ‘messages” 7; generated by other
factors 1;, and generates a message 7; that is used by another factor ;.

10.1.1

Definition 10.1

cluster graph
family

preservation

sepset

. Example 10.1

N

10.1.2

346 Chaptér 10. Clique Trees

Figure 10.1 Cluster tree for the VE execution in table 9.1

Cluster Graphs

We begin by defining a cluster graph — a data structure that provides a graphical flowchart of
the factor-manipulation process. Each node in the cluster graph is a cluster, which is associated
with a subset of variables; the graph contains undirected edges that connect clusters whose
scopes have some non-empty intersection. We note that this definition is more general than the
data structures we use in this chapter, but this generality will be important in the next chapter,
where we significantly extend the algorithms of this chapter.

A cluster graph U for a set of factors ® over X' is an
associated with a subset C; C X. A cluster graph must

An execution of variable elimination de
10; used in the computation, which is
draw an edge between two clusters C; 3

. is\ease, we have seven factors 1, . . ,1/)7, whose
e T1 (D) generated from 1,[)1(0 D), partlczpates in the

computation of o.
is generated from

e flow of messages between clusters in the execution of the wariable
of the factors in the initial set of factors ® is also associated with a
the cluster ¢ p(D, C) (corresponding to the CPD P(D | C)) is associated

ster o (H, G, J) (corresponding to the CPD P(H | G, J)) is associated with
[

Clique Trees

The cluster graph associated with an execution of variable elimination is guaranteed to have
certain properties that turn out to be very important.

upstream clique

downstream
clique

Definition 10.2

running
intersection

property

Example 10.2

Theorem 10.1

10.1. Variable Elimination and Clique Trees) 347

First, recall that the variable elimination algorithm uses each intermediate factor 7; at most
once: when ¢; is used in Sum-Product-Eliminate-Var to create 1);, it is removed from the set of
factors ®, and thus cannot be used again. Hence, the cluster graph induced by an execution of
variable elimination is necessarily a tree.

We note that although a cluster graph is defined to be an undirected graph, an execution of
variable elimination does define a direction for the edges, as induced by the flow of messages
between the clusters. The directed graph induced by the messages is a directed tree, with all
the messages flowing toward a single cluster where the final result is computed. This cluster is
called the root of the directed tree. Using standard conventions in computer science, we assume
that the root of the tree is “up,” so that messages sent toward the root are sent upward. If C; is
on the path from Cj to the root we say that C; is upstream from C;, and C; is downstream
from C';. We note that, for reasons that will become clear later on, the directions of the edges
and the root are not part of the definition of a cluster graph,

The cluster tree defined by variable elimination satisfies an important structural constraint:

Let T be a cluster tree over a set of factors ®. We denote by Vr the vertices of T and by & its
edges. We say that T has the running intersection property if, whenever there is a variable X such
that X € C; and X € C;, then X is also in every cluster in the (unique) path in T between C;

and C;. n

Note that the running intersection property implies that S; ; = C,

tree of figure 10.1.
n the path between
u

We can easily check that the running intersection proper s
For example, G is present in C; and in C,, so it is also prese
them: C 3 and C5.

ster trees induced by variable
c moment it is introduced (by

Intuitively, the running intersection property mugtthold for

elimination because a variable appears in eve
multiplying in a factor that mentions it) until
holds in general.

Let T be a cluster tree induced by a 1] ion algorithm over some set of factors ®. Then
T satisfies the running intersectio

i ntain X. Let Cx be the cluster where X is
eliminated. (if X is elassume that it is eliminated in the last cluster.) We will
: ster on the path between C and C'x, and analogously

utation at C'x must take place later in the algorithm’s execu-
tion than the computation at @ When X is eliminated in C x, all of the factors involving X are
multiplied into C'x; of the summation does not have X in its domain. Hence, after
this elimination, ® no longer has any factors containing X, so no factor generated afterward
will contain X in its domain.

By assumption, X is in the domain of the factor in C. We also know that X is not eliminated
in C. Therefore, the message computed in C must have X in its domain. By definition, the
recipient of X's message, which is C’s upstream neighbor in the tree, multiplies in the message

Proposition 10.1

Definition 10.3
clique tree

clique

Theorem 10.2

10.2

348

from C. Hence, it will also have X in its scope. The same argument applies to show that all
cliques upstream from C will have X in their scope, until X is eliminated, which happens only
in Cx. Thus, X must appear in all cliques between C and C'x, as required. n

A very similar proof can be used to show the following result:

Let T be a cluster tree induced by a variable elimination algorithm over some set of factors ®. Let
C; and C; be two neighboring clusters, such that C; passes the message 7; to C. Then the scope

of the message 7; is precisely C; N C;.

The: proof is left as an exercise (exercise 10.1).
It turns out that a cluster tree that satisfies the running intersection property is an extremely

useful data structure for exact inference in graphical models. We therefore define:

Let @ be a set of factors over X. A cluster tree over ® that satisfies the running intersection property
is called a clique tree (sometimes also called a junction tree or a join tree). In the case of a clique

tree, the clusters are also called cliques. a

Note that we have already defined one notion of a clique tree in definition 4.17. This double
definition is not an overload of terminology, because the two definitions are actually equivalent:
It follows from the results of this chapter that 7 is a clique tree for ¢ (in the sense of defini-

tion 10.3) if and only if it is a clique tree for a chord containing Mg (in the sense of
i clique-tree data structure admits

the independence statement,
. Let 7 be a cluster tree over ®,
; set of factors. For any sepset S ;,
let W, ;) be the set of all variables of clusters in the C; side of the tree, and
W .(;,i) be the set of all variables i 0 sters in the C; side of the tree.

We first show that the running intersection
which is at the heart of our first definition o

T satisfies the running infer; if ‘and only if, for every sepset S; ;, we have that

The proof is left as

To conclude th
for a tree 7 implies that each node in 7" corresponds to a

taining H, and that each maximal clique in 7' is represented in
ur ability to use any clique tree satisfying the running intersection

In the previous section, we started out with an execution of the variable elimination algorithm,
and showed that it induces a clique tree. In this section, we go in the opposite direction. We
assume that we are given a clique tree as a starting point, and we will show how this data
structure can be used to perform variable elimination. As we will see, the clique tree is a very

Chapter 10. Clique Trees

10.2.1

10.2.1.1

10.2. Message Passing: Sum Product) 349

GélG)
PUILS)

Figure 10.2 Simplified clique tree 7 for the Extended Student network

useful and versatile data structure. For one, the same clique tree can be used as the basis for
many different executions of variable elimination. More importantly, the clique tree provides a
data structure for caching computations, allowing multiple executions of variable elimination to
be performed much more efficiently than simply performing each one separately.

Consider some set of factors ® over X, and assume that we are given a clique tree 7 over &,
as defined in definition 4.17. In particular, 7 is guaranteed to satisfy the family preservation and
running intersection properties. As we now show, we can use the clique tree in several different
ways to perform exact inference in graphical models.

Variable Elimination in a Clique Tree

One way of using a clique tree is simply as guidance for the opeg variable elimination.

The factors ¢ are computed in the cliques, and message
takes the incoming messages (factors), multiplies them, s
sends an outgoing message to another clique. As we will s que-tree data structure
dictates the operations that are performed on factors i i

these operations. In particular, if clique C” requiresga
its computation until C performs its computation a

, then C’ must wait with
appropriate message to C'.

An Example

Student network. Note that it is different
from the clique tree of figure maximal cliques (C'g and C+) are absent. Nev-
ertheless, it is straightforwar] satisfies both the family preservation and the
running intersectio gurealso specifies the assignment o of the initial factors
ases (for example, the CPD P(I)), we have more than

Figure 10.2 shows one possible clique

et of initial potentials associated with the different cliques. The
initial potential 1; (C @i puted by multiplying the initial factors assigned to the clique C;.
For example, ¥5(J, L, G, S) = ¢ (L, G) - 6,(J, L, 5).

Now, assume that our task is to compute the probability P(J). We want to do the variable
elimination process so that JJ is not eliminated. Thus, we select as our root clique some clique
that contains J, for example, C's. We then execute the following steps:

ready clique

Chapter 10. Clique irees

JJIv

,5,5(G.J):
Zyv(Cy)

(a)

8,,3(G.I):
Zo¥(C) X 8,

2u5(Cs) X 8, 5

05_,3(G.S):
Zws(Cs) X 8,5

O55(GJ):
2 v(Cy)

(b)

5,.,2D):
Zewi(Cy

0,5,3(G.I):
2ou(C) X 8,

Figure 10.3 Two different message propagations ent cliques in the Student clique
tree: (a) C is the root; (b) C3 is the root. ;

L In C;: We eliminate C by performin, D). The resulting factor has scope D. We
send it as a message d;_,2(D . .

. In Cy: We define 5>(G,

D (G,1,D). We then eliminate D to get a
~.3(GYT), which is sent to Cs3.

3(G,I) - ¥3(G, S, I) and eliminate I to get a factor

ctor over G,J, S, L that encodes the joint distribution P(G, J, L, S): all
the CPDs have begn’multiplied in, and all the other variables have been eliminated. If we now
i), we simply sum out G, L, and S.

We note that the operations in the elimination process could also have been done in another
order. The only constraint is that a clique get all of its incoming miessages from its downstream
neighbors before it sends its outgoing message toward its upstream neighbor. We say that a
clique is ready when it has received all of its incoming messages. Thus, for example, C is ready

10.2.1.2

message passing

initial potential

10.2. Message Passing: Sum Product 351

at the very start of the algorithm, and the computation associated with it can be performed at
any point in the execution. However, C is ready only after it receives its message from
C1. Thus, C1,C4,C5,C3,Cs is a legal execution ordering for a tree rooted at C's5, whereas
C2,C,1,C4,C3,Cs5 is not. Overall, the set of messages transmitted throughout the execution
of the algorithm is shown in figure 10.3a.

As we mentioned, the choice of root clique is not fully determined. To derive P(J), we could
have chosen C as the root. Let us see how the algorithm would have changed in that case:
L. In Cq: The computation and message are unchanged.
2. In Cy: The computation and message are unchanged.
3. In C3: The computation and message are unchanged.

4. In Cs: We define 35(G, J, S, L) = §3_5(G, S) - s (G, J,S,L) and eliminate S and L. We
send out the resulting factor as 5_,4(G, J) to Cl.

‘ 5 In C4: We define ,64(H, G, J) = (55._,4(G, S) . ’l,b4(H, G, J)

We can now extract P(J) by eliminating H and G from 84(H, G, J).

In a similar way, we can apply exactly the same process to computing the distribution over
any other variable. For example, if we want to compute the probability P(G), we could choose
any of the cliques where it appears. If we use C, for example, the computation in C; and C,
is identical. The computation in C} is the same as in the first of o 9 executions: a message
is computed and sent to Cs. In C'5, we compute s (G,J,S,L)
and we eliminate G and L to produce a message J5_,5 S),
and used in the operation:

B3(G, 8, I) = b2 .3(G,I) - 853(G, S) - ¥3(G, S

Overall, the set of messages transmitted througho
figure 10.3b.

n of the algorithm is shown in

Clique-Tree Message Passing

We can now specify a general vari
ree with the cliques C'y, ..., Ck. We begin

ique, resulting in our initial potentials. We then
ssages between neighboring cliques, sending all

use the clique-tree data str
be the algorithm in abstract terms; box 10.A provides

messages toward
some importan

Recall that e igned to some clique a(¢). We define the initial potential
of C; to be:
¥;(Cj) =
¢ : od)=j

Because each factor is assigned to exactly one clique, we have that

H¢=H¢j-

sum-product
message passing

beliefs

Example 10.3

Chapter 10. Clique Trees

Figure 10.4 An abstract clique tree that is not chain-structured

Let C be the selected root clique. We now perform sum-product variable elimination over
the cliques, starting from the leaves of the clique tree and moving inward. More precisely, for
each clique C;, we define Nb; to be the set of indexes of cliques that are neighbors of C;. Let
pr(t) be the upstream neighbor of 4 (the one on the path to the root clique 7). Each clique
C;, except for the root, performs a message passing computation and sends a message to its
upstream neighbor C,,_(;). '

The message from C; to another clique C; is computed using the following sum-product
message passing computation:

Gimg= Y - |} 10.2)

Ci~8;,; k€(Nb;—{5})

its other neighbors with its initial
cli .then sums out all variables
e resulting factor as a message to

In words, the clique C; multiplies all incoming me
clique potential, resulting in a factor 1 whose scope i
except those in the sepset between C; and
C;.

This message passing process proceeds up
root clique has received all messages, 4
is a factor called the beliefs, denoted

ﬁc}(cr) = Z H¢

X-C, ¢

inating at the root clique. When the
ith its own initial potential. The result
ents, as we show,

The complete algorithy

Consider y Jigure 10.4, and assume that we have selected Cg as our root
es denotes one possible ordering of the operations, with C'y being
essage. However, multiple other orderings are legitimate, for example,
any ordering that respects the ordering constraints {2 <3),(8 <
= 6)} is a legal ordering for the message passing process. n

We can use this algorithm to compute the marginal probability of any set of query nodes
Y which is fully contained in some clique. We select one such clique C, to be the root, and
perform the clique-tree message passing toward that root. We then extract By (Y) from the
final potential at C,. by summing out the other variables C.-Y.

10.2.1.3

Proposition 10.2

10.2. Message Passing: Sum Product 353

Algorithm 10.1 Upward pass of variable elimination in clique tree

Procedure CTree-SP-Upward (
®, // Set of factors
7T, Il Clique tree over ®
@, [/ Iitial assignment of factors to cliques
C. 1] Some selected root clique
) _ g
Initialize-Cliques
while C, is not ready
Let C; be a ready clique
Oimspn (i) (Sip,(5)) = SP-Message(i, pr.(i))
Br — - kENbe,. O —ar
return j,

SO R W N

Procedure Initialize-Cliques (

)
1 for each clique C;

¢i(cz’) ~— Hqu : ald; = ¢

Procedure SP-Message (
i, /I sending clique
j /I receiving clique
)
1 1;[](07.) A Q/)Z . HkE(Nbi—{j}) 6]9—»1'
2 7(Si5) — Xo,—s,, ¥(C:)
3 return 7(S; ;)

Correctness

to a clique tree that satisfies the family preser-

We now prove that this algori
i omputes the desired expressions over the messages

vation and running sectia
and the cliques.

eliminated only when a message is sent from C; to a
s and X ¢ C;. We first prove the following result:

Assume that X is eliminaiedWhen a message is sent from C; to C;. Then X does not appear
anywhere in the tree on the C; side of the edge (i-j).

Proor The proof is a simple consequence of the running intersection property. Assume by
contradiction that X appears in some other clique C, that is on the C; side of the tree. Then
C; is on the path from C; to C}. But we know that X appears in both C; and C}, but not
in C, violating the running intersection property.]

Theorem 10.3

354 Chapter 10. Clique Trees

Based on this result, we can provide a semantic interpretation for the messages used in the
clique tree. Let (i-j) be some edge in the clique tree. We use F<(i—j) to denote the set of
factors in the cliques on the C;-side of the edge and V<(i—j) to denote the set of variables
that appear on the C;-side but are not in the sepset. For example, in the clique tree of
figure 10.2, we have that F_ 3,5y = {P(C),P(D | C),P(G | I, D), P(I),P(S | I)} and
V@3-5) = {C, D, I}. Intuitively, the message passed between the cliques C; and C; is the
product of all the factors in F_(;_,;), marginalized over the variables in the sepset (that is,
summing out all the others).

Let 6;—,; be a message from C; to C;. Then:
) A
6-i(Sis)= >, I ¢
V<(img) PEF <)

Proor The proof proceeds by induction on the length of the path from the leaves. For the
base case, the clique C; is a leaf in the tree. In this case, the result follows from a simple

examination of the operations executed at the clique.
Now, consider a clique C; that is not a leaf, and consider the expression

oIl # 1(10.3)

Vati—i) $EF<(img)

Let i1,...,%, be the neighboring cliques of C; other It follows immediately from

proposition 10.2 that V_(;_,;) is the disjoint n of
variables Y'; eliminated at C; itself. Similarly,)
and the factors F; from which 1; was computed. Th 0.3) is equal to

Yi Vit Vam—n \$EF<

As we just showed, for each &

) B2 Il o) > T ¢} - 105)

Viim—i) \PEF<(im —1)

Using the i esis and the definition of 1);, this expression is equal to
D i 10.6)
Y;

which is precisely the operation used to compute the message 0ije n

This theorem is closely related to theorem 10.2, which tells us that a sepset divides the graph
into conditionally independent pieces. It is this conditional independence property that allows

Corollary 10.1

10.2.2

10.2. Message Passing: Sum Product 355

the message over the sepset to summarize completely the information in one side of the clique
tree that is necessary for the computation in the other.
Based on this analysis, we can show that:

Let C; be the root clique in a clique tree, and assume that (3, is computed as in the algorithm of
algorithm 10.1. Then

ﬂr(C'r) = Z P<I>(X)
X-C,

As we discussed earlier, this algorithm applies both to Bayesian network and Markov network
inference. For a Bayesian netwotk B, if ® consists of the CPDs in B, reduced with some evidence
e, then B.(C.) = Pg(C,,e). For a Markov network H, if ® consists of the compatibility
functions defining the network, then 8,(C,) = Py (Cr). In both cases, we can obtain the
probability over the variables in C, as usual, by normalizing the resulting factor to sum to 1. In
the Markov network, we can also obtain the value of the partition function simply by summing
up al of the entries in the potential of the root clique B-(C,).

Clique Tree Calibration

We have shown that we can use the same clique tree to compute the piobability of any variable

in X. In many applications, we often wish to estimate the pro
variables. For example, in a medical-diagnosis setting allyfv the probability of
several possible diseases. Furthermore, as we will see, w gsian networks from
partially observed data, we always want the probability distrib of the unobserved
variables in the domain (and their parents). (

Therefore, let us consider the task of computing th istribution over every random
variable in the network. The most naive approach is ce separately for each variable.
Letting c be the cost of a single execution of e, the total cost of this algorithm
is nc. An approach that is slightly less naive i once for every clique, making
it the root. The total cost of this varia number of cliques. However, it
turns out that we can do substantial either of these approaches.

Let us revisit our clique tree of fig nsider the three different executions of the
where C's is the root, one where C} is the root,

ecutions. The message sent from Cy4 to Cj is the same
s. In the second of the two executions, there simply is
e“message goes the other way, from Cs to Cjy.

eighboring cliques C; and C; in some clique tree. It follows
from theorem 10.3 that the falue of the message sent from C; to C; does not depend on
specific choice of ro © As long as the root clique is on the C,-side, exactly the same
message is sent from C; to C;. The same argument applies if the root is on the C;-side. Thus,
in all executions of the clique tree algorithm, whenever a message is sent between two cliques, it
is necessarily the same. Thus, for any given clique tree, each edge has two messages associated
with it: one for each direction of the edge. If we have a total of ¢ cliques, there are ¢ — 1 edges
in the tree; therefore, we have 2(c — 1) messages to compute.

Definition 10.4

ready clique

dynamic
programming
sum-product

belief
propagation

upward pass

downward pass

356 Chapter 10. Cligue Trees

85_,3(G,S):
2 1ws(Cs) X 64,5

0,5(GJ):
Yy wi(Cy)

@

8,53G.1)
ZD W(C) X 8y,

63—)2((;:1): 65-—)3(G'S):
Zsws(C3) X 8543 2 us(Cs) X G5

8152(D):
Zewi(Cy

it

ZIV’J(C:!) X 8;43

O 5(GJ):
Y Hu(Cy)

(®

We can compute both messages for each edge efollowing simple asynchronous algorithm,
Recall that a clique can transmit a Upstreafn toward the root when it has all of the
messages from its downstream nei neralize this concept as follows
Let T be a clique tree. We is ready fo transmit to a neighbor C; when C; has
messages from all of its neigh [
When C; is ready tg t can compute the message d;_,;(S; ;) by multiplying its -
initial potentjal withl ming messages except the one from C, and then eliminate the
variable, , this algorithm uses yet another layer of dynamic pragramming
to avo e message multiple times.
Alg s the full procedure, often called sum-product belief propagatzon As

s defined asynchronously, with each clique sending a message as soon
ight wonder why this process is guaranteed to terminate, that is, why
clique that is ready to transmit to some. other clique. In fact, the message
passing process performed by the algorithm is equivalent to a much more systematic process
that consists of an upward pass and a downward pass. In the upward pass, we first pick a
root and send all messages toward the root. When this process is complete, the root has all
messages. Therefore, it can now send the appropriate message to all of its children. This

message
scheduling

Example 10.4

beliefs

Corollary 10.2

10.2. Message Passing: Sum Product 357

Algorithm 10.2 Calibration using sum-product message passing in a clique tree
Procedure CTree-SP-Calibrate (
®, /I Set of factors
7 /I Clique tree over ®

Initialize-Cliques

while exist ¢, j such that ¢ is ready to transmit to j
0;— (8 ;) < SP-Message(s, 7).

for each clique i
Bi = ;- HkGNbi Ok—si

return {5;}

= B B e I R R

algorithm continues until the leaves of the tree are reached, at which point no more messages
need to be sent. This second phase is called the downward pass. The asynchronous algorithm
is equivalent to this systematic algorithm, except that the oot is simply the first clique that
happens to obtain messages from all of its neighbors. In an actual implementation, we might
want to schedule this process more explicitly. (At the very least, the algorithm would check in
line 2 that a message is not computed more than once.)

Figure 10.3a shows the upward pass of the clique tree algofithm w root. Figure 10.5a
shows a possible first step in a downward pass, where C's s a age toits child C'3, based
on the message from C 4 and its initial potential. As soon as a 9 t receives a message,

ren. Figure 10.5b shows C'3
n

it has all of the information it needs to send a message,
sending the downward message to Cs.

At the end of this process, we compute th j gliques in the tree by multiplying
the initial potential with each of the incomi ile key is to note that the messages
used in the computation of 3; are preci that would have been used in a

standard upward pass of the algorith s the Toot. Thus, we conclude:
Assume that, for each clique i, (3; as in the algorithm of algorithm 10.2. Then
Bi(Ci)=) Pe(X)
X—

t ompute the message to a neighboring clique C; based
not its modified potential ;. The latter already integrates
information from j. If the age were computed based on this latter potential, we would be
double-counting the ssigned to C; (multiplying them twice into the joint).

When this process concludes, each clique contains the marginal (unnormalized) probability
over the variables in its scope. As we discussed, we can compute the marginal probability
over a particular variable X by selecting a clique whose scope contains X, and eliminating the
redundant variables in the clique. A key point is that the result of this process does not depend
on the clique we selected. That is, if X appears in two cliques, they must agree on its marginal.

Note that it
on its initial

Definition 10.5
calibrated

beliefs

stride

358 o Chapter 10. Clique Trees

Two adjacent cliques C; and C'; are said to be calibrated if
> BCy= Y Bi(CH).

A clique tree T is calibrated if all pairs of adjacent cliques are calibrated. For a calibrated clique
tree, we use the term clique beliefs for 5;,(C;) and sepset beliefs for

pii(Sis) = Y. Bi(C)= Y Bi(Cy). 10.7)

Ci—Si; C;—S.; n

The main advantage of the clique tree algorithm is that it computes the posterior
probability of all variables in a graphical model using only twice the computation of
the upward pass in the same tree. Letting c once again be the execution cost of message
passing in a clique tree to one root, the cost of this algorithm is 2c. By comparison, recall that

 the cost of doing a separate computation for each variable is nc and a separate computation

for each root clique is K¢, where K is the number of cliques. In most cases, the savings are
considerable, making the clique tree algorithm the algorithm of choice in situations where we
want to compute the posterior of multiple query variables.

ipulation of factors can be sur-

prisingly subtle. In particular, different design de to orders-of-magnitude
differences in performance, as well as difference e accuracy of the results. We row

here are equally applicable to the algorithr he other chapters in the book, including
the wriable elimination algorithm of and approximate sum-product message
passing algorithms of chapters 10 a of the MAP algorithms of chapter 13.

The first key decision is the re
nment to the variables. One standard technique

en them into a single array in computer memory. For
and its stride, or step size in the factor. For example,
s A, B, and C, with cardinalities 2, 2, and 3, respectwely,
ry by the array

), p(a’ ,bl,cl),¢(a1,b2,cl),...,¢(a2,b2,c3)}.

_ le A is 1, for B is 2 and for C is 4. If we add a fourth wariable, D, its stride
would be 12, since wgWould need to step over twelve entries before reaching the next assignment
ng each wriable’s stride, we can easily go from a wariable assignment to a

corresponding index into the factor array

Jor storing mulhdzmenszonal
each wariable, we also s
given a factor ¢(A,
we can repr

index = Z assignment[i] - phi.stride]i]

i

factor product

10.2. Message Passing: Sum Product - 359

Algorithm 10.A.1 — Efficient implementation of a factor product operation.

Procedure Factor-Product (
phil over scope X4,
phi2 over scope X,
I Factors represented as a flat array with strides for the vari-

| ables
1 je—0ke0
2 for [=0,...,|X; U X,
3 assignment(l] « 0
4 fori=0,...,|Val(X;UX53)| -1
5 psifi] «+- philfj] - phi2[k]
6 forl——-O,...,]XlUXz[
7 assignment(l] « assignment[l] + 1
8 if assignment[l] = card|l] then
9 J < j—(card[l] - 1)-phil.stride[l]
10 k — k — (card[l] — 1) - phi2.stridel]
n else
2 Jj«— j+phit.stride[l]
13 k — k+ phi2.stride]l]
14 break
15 return (psi)

and vice versa

assignment(i] = | index/phi.strideli]|

the key design decisions is indexing the ries in each factor for the operations that we

wish to perform. (In fact when g
discovers that 90 percent of the

algorithm 10.A.1 he product between two arbitrary factors. Here we

ope[¢). The inner loop (over 1) advances to the next
d'¢alculates indexes into each other factor array on the fly. It
the equation for computing index shown earlier. Similar on-

the-fly index calculations can pplied for other factor operations. We leave these as an exercise

(exercise 10.3).

For iterative algorithms or multiple queries, where the same operation (on different data) is
performed a large number of times, it may be beneficial to cache these index mappings for later
use. Note, however, that the index mappings require the same amount of storage as the factors
themselves, that is, are exponential in the number of variables. Thus, this design choice offers a
direct trade-off between memory usage and speed, especially in view of the fact that the index

implementation of index computations, one often .

log-space

factor
marginalization

360 -vndpler LU, utiyue 1ives

computations require approximately the same amount of work as the factor operation iiself. Since
performance of main memory is orders of magnitudes faster than secondary storage (disk), when
memory limitations are an issue, it is better not to cache index mappings for blarge problems. One
exception is template models, where savings can be made by reusing the same indexes for different
instantiations of the factor templates.

An additional trick in reducing the computational burden is to preallocate and reuse memory
for factor storage. Allocating memory is a relatively expensive procedure, and one does not want
to waste time on this task inside a tight loop. To illustrate this point, we consider the example of

variable elimination for computing (A, D) as

"/)(A’ D) = Z¢1(A, B)¢2(B7C)¢3(C’ D) = Z¢1(A’ B)Zd’Z(BaC)d)S(C’ D)
B C

'B,C

Here we need to compute three intermediate factors: T1 (B,C, D) = ¢2(B,C)¢3(C, D); (B, D) =
S omi(B,C,D); and 73(4, B, D) = ¢1(4, B)72(B, D). Notice that, once 12(B, D) has been
calculated, we no longer need the wlues in 71(B,C, D). By initially allocating memory large
enough to hold the larger of 1(B,C, D) and 73(A, B, D), we can use the same memory for
both. Because every operation in a variable elimination or message passing algorithm requires the
computation of one or more intermediate factors, some of which are much larger than the desired
end product, the savings in both time (preallocation) and memory (reusage) can be significant.

We now turn our attention to numerical considerations. Operations such as factor product
ipvolve multiplying many small numbers together, which can Jead to underflow problems due to
finite precision arithmetic. The problem can be alleviatedfsoniewha by renormalizing the factor
after each operation (so that the maximum en : w s ghe); this operation leaves the
results to most queries unchanged (see exercise 9.3/ if each emptry in the factor is computed
as the product of many terms, underflow can still
the computation in log-space, replacing muli 0
for greater machine precision to be utilized
sum entries, cannot be performed in log-spe
performing the marginalization, 1
to probability-space incurs a sig

additions; this transformation allows
inalization, which requires that we
s exponentiating each entry in the factor,
the result Since moving from log-space

-

sformation ensures that the resulting factor has a maximum

v 3

@ abeats to operating in log-space. First, one may incur a petﬁ;rmance
ltip on is no slower than floating point addition, but the transformation
as required for marginalization, can take a significant proportion of the total
veat does not apply to algorithms such as max-product, where maximization
log-space; indeed, these algorithms are almost always implemented as max-
sum. More og-space operations require care in handling nonpositive factors (that is, factors -
with some zero entries). ’

Finally, at a higher level, as with any software implementation, there is aluays a trade-off between
speed, memory consumption, and reusability of the code. For example, softuare specialized for the
case of pairwise potentials over a grid will almost certainly outperform code written for general

10.2.3

Proposition 10.3

10.2. Message Passing: Sum Product 361

graphs with arbitrary potentials. However, the small performance hit in using well designed general
purpose code often outweighs the development effort required to reimplement algorithms for each
specialized application. However, as always, it is also important not to try to optimize code too
early. It is more beneficial to write and profile the code, on real examples, to determine what
operations are causing bottlenecks. This allows the development effort to be targeted to areas that
can yield the most gain.

A Calibrated Clique Tree as a Distribution

A calibrated clique tree is more than simply a data structure that stores the results of probabilistic
inference for all of the cliques in the tree. As we now show, it can also be viewed as an alternative
representation of the measure Ps.

At calibration, we have that:

Bi = - H Ok i (10.8)

keEND;

We also have that:

pi3(Si;) = Ai(C:)
C,—S;,;
= '(/Ji . H (sk—»i
Ci_si,j kENb,,,
= Pi- 64 H O
C;—8;; k€(Nb;—{j})
= 0 Z P; i
Ci—8:;
= by, 10.9)

where the fourth equality holds beca le in the scope of §;_,; is involved in the

summation.

We can now show the follgwing impe :
At convergence of (Q on algorithm, we have that:

Py(X) =

{10.10)

Proor Using equation (10.8), the numerator in the right-hand side of equation (10.10) can be

rewritten as:

H ¥:(C5) H Ok—i-

i€V kEND;

362 Lnapter 1U. Llique 1rees

reparameteriza-
tion

clique tree
invariant

Example 10.5

Assignment maxc Assignment maxa
a® [50 [d° 600, 000 O]l [dl 300, 100
a® | B0 | & 300,030 | Assignment | maxac | B0 | 0| dt | 1,300,000
a® | bt | d° || 5,000,500 o[d 600, 200 O |ct|d 300, 100
a® | bt | &t 1,000 0 | d? 1,300,130 O |t | 130
al | b0 | d° 200 bt | d° 5,100,510 |l |d° 510
at |80 | d* || 1,000,100 bt | dt 201,000 bt |l | dt 100, 500
| bt | d° 100,010 bt |ct|d° | 5,100,000
at | bt | d 200, 000 bt et | d 100, 500
ﬂl(A,BaD) ,u'l,Z(BaD)_ ,BZ(BaC;D)

Figure 10.6 The clique and sepset beliefs for the Misconception example.

Using equation (10.9), the denominator can be rewritten as:
H 61—-»_7 6_7 —i
(i—j)eér
Each message d;_,; appears exactly once in the numerator and exactly once in the denominator,
so that all messages cancel. The remaining expression is simply:

H ¥;(C;) = Pas.

i€EVT

Thus, via equation (10.10), the clique and sepsets
unnormalized measure. This property is calledgihe

<

'A—B—C—D, with an appropriate set of
ree cligues Cy = {A, B}, C2 = {B,C},
we have that $1(A, B) = Ps(A, B) and

become clear later on in this chapter.
Another intuition for this result can be

Consider a clique tree obtained fro
factors ®. Our clique tree in thi
and C3 = {C,D}. When
ﬂ2(B,C) = P@(B,C)
have that

P3(A,B,C) s (

and

IBZ(B’O)
,Bl(A’ B) ZC ﬂz(B,C)
181 (A’ B)ﬂ2(Ba C)
ZC ,32(3’0))

>
>
&

Q
!

B, C), we can obtain P3(B) by marginalizing B2(B, C). Thus, we can write: -

Definition 10.6

clique tree
measure

Example 10.6

Theorem 10.4

10.2. Message Passing: Sum Product 363

In fact, when the two cliques are calibrated, they must agree on the marginal of B. Thus, the
expression in the denominator can equivalently be repldceq’ by, 5:(A, B). n

Based on this analysis, we now formally define the distribution represented by a clique tree:

We define the measure induced by a calibrated tree T to be:
; i(C

Or = [i-yees #4,3(Siz)
where
Hij = Z Bi(Ci) = Z B;(C;).

Ci—Si; C;—Si,; =

Consider, for example, the Markov network of example 3.8, whose joint distribution is shown in
figure 4.2. One clique tree for this network consists of the two cliques {A, B, D} and {B, C, D},
with the sepset { B, D}. The final potentials and sepset for this example are shown in figure 10.6.
It is straightforward to confirm that the clique tree is indeed calibrated. One can also verify that
this clique tree provides a reparameterization of the original distribution. For example, consider the
entry Pg(al, 80, ¢, d0) = 100. According to equation (10.10), the clique tree measure is:

Bu(al,0%,d)B(8°, ¢, d°) 200 - 300, 100

= — =1
p1,2(b0, d°) 600, 200 00

as required. [

entialg) derived from clique tree
% and the final beliefs are the
e for any calibrated clique tree.

daled p
asure is

Our analysis so far shows that for a set of calib
inference, we have two properties: the clique tree
marginals of Pg. As we now show, these two

Let T be a clique tree over ®, and let
Py(X) « Q7 if and only if. for each i ¢
be the root. Define the descendant cliques
tream from C; relative to C,; the nondescendant
1 an C). Let X be the variables in the scope of
the nondescendant eligues. oW nédiately from theorem 10.2 that

From this, we o tandard chain-rule argument, that:

13<I>(X) = P<I>(Cr (Ci l Si,p,.(i))'

iF#r

We can rewrite equation (10,11} as a similar product, using the same root:

QT(X) = 6,(Cr) - T[] B:(Ci | Sipriy)-
it

10.3

10.3.1

364 Chapter 10. Cligue Trees

The “if” direction now follows from direct substitution of 3; for each Py (Cy).

To prove the “only if” direction, we note that each of the terms §;(C; | Sipe()) s a
conditional distribution; hence, if we marginalize out the variables not in C, in the distribution
Q7 each of these conditional distributions marginalizes to 1, and so we are left with Q1 (C,) =
Br(C~). It now follows that if Py o Q7, then Ps(C,) o Qr(C,) = Br(C}). Because this

argument applies to any choice of root clique, we have proved that this equality holds for every
L]

clique.
Thus, we can view the clique tree as an alternative representation of the joint measure,
one that directly reveals the clique marginals. As we will see, this view turns out to be very

useful, both in the next section and in chapter 11.

Message Passing: Belief Update

The previous section showed one approach to message passing in clique trees, based on the
same ideas of variable elimination that we discussed in chapter 9. In this section, we present a
related approach, but one that is based on very different intuitions. We begin by describing an
alternative message passing scheme that is different from but mathematically equivalent to that
of the previous section. We then show how this new approach can be viewed as operations on
the reparameterization of the distribution in terms of the clique and sepset beliefs {3;(C;) }scy,
and {p;;(Si)} i~j)ee,- Each message passing step ge this representation while

leaving it a reparameterization of Plg.

Message Passing with Division

P-Calibrate (algorithm.10.2). There,
e, without loss of generality, that the first
from C; to C; is passed when C; has

Consider again the message passing proces
two messages are passed along each link
message is passed from C; to C;.
received messages from all of its o

At this point, C; has all o

{10.12)

al is not used in computing the message to C: this potential

As we

alrea ation (message) passed from C; if we used it when computing
the is Information would be double-counted. Thus, the message from C; to
C;is ay that omits the information obtained from C;: we multiply the initial
potential with all e messages except for the message from C;, and then marginalize over
the sepset (10.2)).

A different approach to computing the same expression is to multiply in all of the messages,
and then divide the resulting factor by d;_,;. To make this notion precise, we must define a

factor-division operation:

Definition 10.7

factor division

Example 10.7

sum-product-
divide

beliefs

10.3. Message Passing: Belief Update . 365

al| b 05 a' | b |0.625
all b2 02 all 21025
all 08
a2 bl 0 a2 bl 0
> a0 | B
a2 b0 2| bH|0
al 06
a1 b 03 a1 p]os
a | b2 045 al B210.75

Figure 10.7 An example of factor division

Let X andY be disjoint sets of variables, and let ¢, (X, Y) and ¢5(Y') be two factors. We define
the division % to be a factor 1 of scope X,Y defined as follows:

¢1 (X ’ Y)
YX,Y) = ——2,
(X %) $2(Y)
where we define 0/0 = 0. : [
Note that, as in the case of other factor operations, di is done component by
component. Figure 10.7 shows an example. Also note that not well defined if

the denominator is zero and the numerator is not.
We now see that we can compute the expression
as in equation (10.12), and then dividing by the re

2.ci-s,, P

n (10:2) by computing the beliefs

(10.13)

(5,,;_,_,,' =

Ci to Cy and from Cs to Cs. The message
wiriable elimination message (CTree-SP-Calibrate),
we pass a return c Y2(B,C)d32(C). Alternatively, we can compute
B2(B,C) = §; . s C), and then send a message

Thus, the two approac re equialent. : N

Based on this insight, we can define the sum-product-divide message passing scheme, where
each clique C; maintains its fully updated current beliefs Bs, which are defined as in equa-
tion (10.8). Each sepset also maintains its beliefs pi,j defined as the'product of the messages
in both directions, as in equation (10.9). We now show that the entire message passing process

belief-update

Example 10.8

366 Chapter 10. Cliqué Trees

RN

can be executed in an equivalent way in terms of the clique and sepset beliefs, without having
to remember the initial potentials 1; or to compute explicitly the messages J;_,.

The message passing process follows the lines of example 10.7. Each clique C; initializes
B; as v; and then updates it by multiplying with message updates received from its neighbors.
Each sepset S; ; maintains p; ; as the previous message passed along the edge (i-7), regardless
of the direction. This message is used to ensure that we do not double-count: Whenever a new o
message is passed along the edge, it is divided by the old message, eliminating the previous
message from the update to the clique. Somewhat surprisingly, as we will show, the message
passing operation is correct regardless of the clique that sent the last message on the edge.

Intuitively, once the message is passed, its information is incorporated into both cliques; thus,
each needs to divide by it when passing a message to the other. We can view this algorithm
as maintaining a set of belief over the cliques in the tree. The message passing operation
takes the beliefs of one clique and uses them to update the beliefs of a neighbor. Thus, we
call this algorithm belief-update message passing; it is also known as the Lauritzen-Spiegelhalter

algorithm.

Continuing with example 10.7, assume that C initially passes an uninformed message to Cs:
ooz =Yg Yo(B,C). This message multiplies the beliefs about C'3, so that, at this point:

B5(C, D) = 93(C, D) > _ %2(B,C).

B f

This message is also stored in the sepset as {12 3.4 Now, @3 sends a message to C':

03-2(C) = 3" B3(C, D). This message is divi al update for C is: N
03-2(C) _ 2Lphs(C.D)]
12,3(C) p2,3(C) '

>_p ¥3(C, D)z s(o
p2,3(C) .

Z 1»[)3 (Ca
D

This expression is precisely th
does not first send an rm

,HZ(B’C) = ¢2(Ba C) ' Z%(A,B) . Z¢3(Ca -D)
A D

as required.

10.3. Message Passing: Belief Update) 367

Algorithm 10.3 Calibration using belief propagation in clique tree
Procedure CTree-BU-Calibrate (
®, /] Set of factors
T I Clique tree over ®

)
Initialize-CTree
while exists an uninformed clique.in 7°
Select (i-j) € 7
BU-Message(t, 7)
return {5;}

[S I R SR CR

Procedure Initialize-CTree (

)
for each clique C;

Bi — H¢ : a(¢)=i¢
for each edge (i-7) € &7
Mij— 1

B> w N -

Procedure BU-Message (
i, /I sending clique
j /I receiving clique
)
Tij Zci—s,-,j B
/I marginalize the clique over the sepset
Bj « B;- 2—:‘
Hig < Oiy

W N

The precise algorithm is showngi 3. Note that, as written, the message passing
i select any pair of cliques C; and C; between

m. For example, if C; (for some reason) passes the
e process of dividing out by the stored message reduces
1, so that it has no influence. Furthermore, if C; passes
tial information (that is, without taking into consideration all
of its incoming messages then resends a more updated message later on, the effect is
identical to simply se the updated message once. Moreover, at convergence, regardless
of the message passing steps used, we necessarily have a calibrated clique tree. This property
follows from the fact that, in order for all message updates to have no effect, we need to have

same message
the message al
a message to C;

10.3.2

Theorem 10.5

Corollary 10.3

368 Chapter 10. Clique Trees

Oij = li,j = Oj— for all 4, j, and so:

> Bi=mi= D b

Ci=5y,; Cj=Si;

Thus, at convergence, each pair of neighboring cliques %, j must agree on the variables in sepset,
and the message y;; is precisely the sepset marginal. These properties also follow from the
equivalence between belief-update message passing and sum-product message passing, which

we show next.

Equivalence of Sum-Product and Belief Update Messages

So far, although we used sum-product message propagation to motivate the definition of the
belief update steps, we have not shown a direct connection between them. We now show a
simple and elegant equivalence between the two types of message passing operations. From
this result, it immediately follows that belief-update message passing is guaranteed to converge
to the correct marginals. :
Our proof is based on equation (10.8) and equation (10.9), which provide a mapping between
the sum-product and belief-update representations. We consider corresponding runs of the two
algorithms in which an identical sequence of message passing steps is executed. We show that
these two properties hold as an invariant between the data structures maintained by the two
algorithms. The invariant holds initially, and it is mai roughout the corresponding

runs.

nd messages {0;—;,0;—;
and messages {11; ; : (i-j) € Er},
ir of neighboring cliques Cy, C),
let {0;_,;,0;; * (z—j) € E7} be the se uct messages following an application of
SP-Message(%, j), and {8, : C; € € &1}, be the set of belief-update beliefs
following an application of BU-Me h. Then, equation (10.8) and equation (10.9) also hold
Jor the new beliefs 6;_, ;, B, 1 :

Consider a set of sum-product initial potentials {7,[)z
(i—4) € Ert und a set of belief- update belzefs

The proof uses simple alge i ion, and it is left as an exercise (exercise 10.4).

This equ1valence implie

on 10.3 relied only on equation (10.8) and equation (10.9). Because
Id in every step of the belief-update message passing algorithm, we have
ariant also holds continuously. "

This equivalence also allows us to define a message schedule that guarantees convergence to
the correct clique marginals in two passes: We simply follow the same upward-downward-pass
schedule used in CTree-SP-Calibrate, using any (arbitrarily chosen) root clique C,..

10.3.3

10.3.3.1

incremental
update

10.3. Message Passing: Belief Update . 369

Answering Queries

As we have seen, a calibrated clique tree contains the answer to multiple queries at once: the
posterior probability of any set of variables that are present together in a single clique. A
particular type of query that turns out to be important in this setting is the computation of
the posterior for families of variables in a probabilistic network: a node and its parents in the
context of Bayesian networks, or a clique in a Markov network. The family preservation property
for cluster graphs (and hence for clique trees) implies that a family must be a subset of some
cluster in the cluster graph. : :
In addition to these queries, which we get immediately as a by-product of calibration, we can
also use a clique tree for other queries. We describe the algorithm for these queries in terms
of a.calibrated clique tree that satisfies the clique tree invariant. Due to the equivalence of
sum-product and belief-update message passing, we can obtain such a clique tree using either

method.

Incremental Updates

Consider a situation where, at some point in time, we have a certain set of observations, which
we use to condition our distribution and reach conclusions. At some later time, we obtain
additional evidence, and want to update our conclusions accordingly. This type of situation,
where we want to perform incremental update is very common in a_wide variety of settings. For
example, in a medical setting, we often perform diagnosis on the
initial diagnosis helps us decide which tests to perform,
into our diagnosis.

The most naive approach to dealing with this task is sim
(for example, the CPDs) on all of the evidence, and
beginning, starting from these factors. A somewha
view of the clique tree as representing the distributie

Assume that our initial distribution Py (pri
of factors @, as in equation (10.1). Given so
zeroing out the entries in the unnorm
Z = z. We can accomplish this e
the indicator function I{Z = 2}. Mo
is defined by a set of factors t

Py(x) =] .
¢

on the initial factors
ibration process from the

ormation) is represented via a set
2, we can obtain Py (X, Z = z) by

Let Py(X) = Py(X, 2= 2).
Now, assume that we have a clique tree (calibrated or not) that represents this distribution
using the clique tree invariant. That is;
- _ (O
PQ)(X) =Q7= HZEVT 181(‘;,) .
Iiojeer #4,5(Siz)

370 Chapter 10. Cligue Trees

We can represent the distribution P} (X) as

ey, Bi(C)
i—j)eer Hii(Si)

Py(X)=1{Z =2} I

Thus, we obtain a representation of Pj in the clique tree simply by multiplying in the new
factor I{Z = z} into some clique C; containing the variable Z.

If the clique tree is calibrated before this new factor is introduced, then the clique C; has
already assimilated all of the other information in the graph. Thus, the clique C; itself is now
fully informed, and no additional message passing is required in order to obtain Pé, (C;). Other
cliques, however, still need to be updated with the new information. To obtain P 5(C;) for
another clique C, we need only transmit messages from C; to C, via the intervening cliques
on the path between them. (See exercise 10.10.) As a consequence, the entire tree can be
recalibrated to account for the new evidence using a single pass. Note that retracting evidence

' is not as simple: Once we multiply parts of the distribution by zero, these parts are lost, and

' they cannot be recovered. Thus, if we want to reserve the ability to retract evidence, we must

10.3.3.2

Example 10.9

- Consider a query P(Y | e) where the variables

store the beliefs prior to the conditioning step (see exeicise 10.12).

Interestingly, the same incremental-update approach applies to other forms of updating the
distribution. In particular, we can multiply the distribytion with a factor that is not an indicator
function for some variable, an operation that is useful in various applications. The same analysis

holds unchanged.

Queries Outside a Clique
together in a single clique.
One naive approach is to construct a clique treggwhe orce one of the cliques to contain Y

(see exercise 10.13). However, this approach fg
negating many of its advantages. An alterrfa
a calibrated clique tree.

Consider the simple clique tree g

to compute the probability . entire clique tree is callbrated, 50 is any (connected)
subtree T'. Letting T"

132 (Bv C)IBB (C’ D)
p2,3(C)

Y Ru(B|O)Bs(C, D),
(¢

s Vh“’i i

10.3.3.3

dynamic
programming

10.3. Message Passing: Belief Update 3n

where the last equality follows from calibration. Each of these probability expressions corresponds
to a set of clique beliefs divided by a message. We can now perform variable elimination, using
these factors in the usual way. n

Algorithm 10.4 Out-of-clique inference in clique tree

Procedure CTree-Query (
T, 1 Clique tree over ®
{Bi},{pi;}, I Calibrated clique and sepset beliefs for 7

Y /A query

Let 7" be a subtree of 7 such that Y C Scope[7”]
Select a clique 7 € V7 to be the root

d— 3,

for each : € Vi,

¢— L
Hi,pr(i)

®— oU{g}
Z — Scope[T'| - Y
Let < be some ordering over Z
return Sum-Product-Variable-Elimination(®, Z, <)

O oo bW —

bitrary subset Y
esponiding to conditional
e resulting set of factors.
mple variable elimination
re clique tree, but only over a
e our query. In cases where we

More generally, we can compute the joint probability
by using the beliefs in a calibrated clique tree to define fac
probabilities in Py, and then performing variable elig
The precise algorithm is shown in algorithm 10.4. ‘B
arise because we do not have to perform inference @
portion of the tree that contains the variable;

Multiple Queries

Now, assume that we want to
variables are not together in
every pair of variab

ensure that our
pair of variable

variables (see e .
A somewhat less naive appg@ach is simply to run the variable elimination algorithm of algo-

rithm 104 (3) times, each pair of variables X, Y. However, because pairs of variables,
on average, are fairly far from each other in the clique tree, this approach requires fairly sub-
stantial running time (see exercise 10.15). An even better approach can be obtained by using
dynamic programming.

Consider a calibrated clique tree 7 over ®, and assume we want to. compute the probability
Py(X,Y) for every pair of variables X, Y. We execute this process by gradually constructing a

ple, we might wish to compute Py(X,Y) for
early, the approach of constructing a clique tree to

que, there must be some clique that contains all of the

10.4

10.4.1

372 Chapter 10. Clique Trees

table for each C';, C; that contains Py(Cy,C ;). We construct the table for ¢, j in order of the

distance between C; and C; in the tree.
The base case is when i, 7 are neighboring cliques. In this case, we simply extract Py(C;)

from its clique beliefs, and compute
B;(C5)

P10 = e ey

From these, we can compute P3(C;,C;).
Now, consider a pair of cliques C;, C; that are not neighbors, and let C; be the neighbor of

C; that is one step closer in the cligue tree to C;. By construction, we have already computed
P3(C;,C}) and Pg(C), C;). The key now, is to observe that
Py = (Ci LCy|Cy).
Thus, we can compute
Py(C;,C;) = Z Py(Ci,C1)Pa(Cj | CW),
1—Cj

where Py (C; | C}) can be easily computed from the marginal Py(C;,C).
The cost of this computation is significantly lower than that of running variable elimination

in the clique tree ('2‘) times (see exercise 10.15).

Constructing a Clique Tree

So far, we have assumed that a clique tree i ow do we construct a clique tree for
d graph Hg? There are two basic

approaches, the first based on variable elimina he second on direct graph manipulation.

execution of a variable eli i ithm can be associated with a cluster graph: A cluster
generated during the execution of the algorithm, and an
7 when 7; is used (directly) in the computation of v; (or
jon 10.11, this cluster graph is a tree, and it satisfies the running
is a clique tree.

9.6, each factor in an execution of variable elimination with the
t of a clique in the induced graph Zy <. Furthermore, every maximal
e computation. Based on this result, we can conclude that, in the clique
iable elimination using the ordering <, each clique is also a clique in the

C; corresponds to
undirected edge cq

induced graph 73, <, and each clique in Zs < is a clique in 7. This equivalence is the reason

for the use of term cligue in this context.
In the context of clique tree inference, it is standard to reduce the tree to contain only clusters

that are (maximal) cliques in Zg, <. Specifically, we eliminate from the tree a cluster C; which
is a strict subset of some other cluster C;:

