much data there are for training, there al-
ways exist cases that the training data can-
not cover. How to deal with the long tail
problem poses a significant challenge to
deep learning. By resorting to deep learn-
ing alone, this problem would be hard to
solve.

Language data is by nature symbol
data, which is different from vector data
(real-valued vectors) that deep learning
normally utilizes. Currently, symbol data
in language are converted to vector data
and then are input into neural networks,
and the output from neural networks is
further converted to symbol data. In fact,
a large amount of knowledge for natu-
ral language processing is in the form
of symbols, including linguistic knowl-
edge (e.g. grammar), lexical knowledge
(e.g. WordNet) and world knowledge
(e.g. Wikipedia). Currently, deep learn-
ing methods have not yet made effec-
tive use of the knowledge. Symbol repre-
sentations are easy to interpret and ma-
nipulate and, on the other hand, vec-
tor representations are robust to ambigu-
ity and noise. How to combine symbol
data and vector data and how to leverage
the strengths of both data types remain
an open question for natural language
processing.

There are complex tasks in natural lan-
guage processing, which may not be eas-
ily realized with deep learning alone. For
example, multi-turn dialogue amounts to
a very complicated process. It involves

MULTIDISCIPLINARY

Special Topic: Machine Learning

language understanding, language gener-
ation, dialogue management, knowledge
base access and inference. Dialogue man-
agement can be formalized as a sequen-
tial decision process and reinforcement
learning can play a critical role. Obvi-
ously, combination of deep learning and
reinforcement learning could be poten-
tially useful for the task, which is beyond
deep learning itself.

In summary, there are still a number
of open challenges with regard to deep
learning for natural language process-
ing. Deep learning, when combined
with other technologies (reinforce-
ment learning, inference, knowledge),
may further push the frontier of the
field.
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Learning causality and causality-related learning: some recent

progress

Kun Zhang'*, Bernhard Schélkopf?, Peter Spirtes' and Clark Glymour’

INTRODUCTION

Causality is a fundamental notion in sci-
ence, and plays an important role in ex-
planation, prediction, decision making
and control. Recently, with the rapid

accumulation of huge volumes of data, it
is even more desirable to abstract causal
knowledge from data. Furthermore, such
data are usually time series measured
over a relatively long time period or ag-
gregated data from multiple data sets

collected in different environments or
under different experimental conditions,
leading to the issue of data heterogene-
ity. Causality also provides a way to
understand and tackle data heterogene-
ity, while traditional machine learning
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typically assumes that the given data fol-
low a fixed distribution.

A traditional way to discover causal
relations is to use interventions or ran-
domized experiments, which are in many
cases too expensive, too time-consuming,
or even impossible. Therefore, revealing
causal information by analyzing purely
observational data, known as causal dis-
covery, has drawn much attention [1].
Past decades have seen a series of cross-
disciplinary advances in algorithms for
identifying causal relations and effect
sizes from observational data or mixed ex-
perimental and observational data. These
developments promise to enable better
use of appropriate ‘big data’. They have
already been applied in genomics, ecol-
ogy, epidemiology, space physics, clin-
ical medicine, neuroscience and many
other domains, often with experimen-
tal or quasi-experimental validation of
their predictions. Causal discovery will
be a main focus of this perspective.
In traditional causality research, algo-
rithms for identification of causal effects,
or inferences about the effects of inter-
ventions, when the causal relations are
completely or partially known, address
a different class of problems; see [2]
and references therein. Moreover, causal
models provide compact descriptions of
the properties of data distributions, and
it has recently been demonstrated that
causal knowledge can facilitate various
machine learning tasks, including semi-
supervised learning and domain adapta-
tion (or transfer learning).

LEARNING CAUSAL RELATIONS

It is well known in statistics that ‘causa-
tion implies correlation, but correlation
does not imply causation’. Perhaps it is
fairer to say that correlation does not
directly imply causation—in fact, it has
been shown that under various sets of
assumptions, the underlying causal struc-
ture over a set of random variables can
be recovered from their observed data, as
least to some extent [1]. Since the 1990s,
conditional independence relationships
in the data have been exploited to recover
the underlying causal structure. Typical
(conditional independence) constraint-

based algorithms include PC and fast
causal inference (FCI) [1]. PC assumes
that there is no confounder (unobserved
direct common cause of two measured
variables), and its discovered causal
information is asymptotically correct.
FCI gives asymptotically correct results
even in the presence of confounders.
Such approaches are widely applicable
because they can handle various types of
data distributions and causal relations,
given reliable conditional indepen-
dence testing methods. However, they
do not necessarily provide complete
causal information because they output
(independence) equivalence classes,
i.e. a set of causal structures satisfying
the same conditional independences.
The PC and FCI algorithms produce
these
equivalence classes. In cases without
confounders, there also exist score-based

graphical

representations  of

algorithms that aim to find the causal
structure by optimizing a properly
defined score function. Among them,
the greedy equivalence search (GES)
[2] is a well-known two-phase procedure
that directly searches over the space
of equivalence classes. A parallelized
modification (FGES) is able to search for
causal relations in very high-dimensional
data sets. Such algorithms have been
implemented in the Tetrad package
(http://www.phil.cmu.edu/tetrad/).
Recently it has been shown that
algorithms based on properly defined
functional causal models (FCMs) are
able to distinguish between different di-
rected acyclic graphs (DAGs) in the same
equivalence class. This benefit is owing
to additional assumptions on the data
distribution apart from conditional inde-
pendence relations. An FCM represents
the effect variable Y as a function of the
direct causes X and some noise term
E, ie. Y = f(X, E), where E is indepen-
dent of X. Thanks to the constrained
functional classes, the causal direction
between X and Y is identifiable because
the independence condition between
the noise and cause holds only for the
true causal direction and is violated for
the wrong direction (for details one
may see [3]). Typical FCMs include
the linear, non-Gaussian, acyclic model
(LINGAM) [4], in which Y = aX + E

with linear coefficient g, the nonlinear ad-
ditive noise model (ANM) [5], in which
Y = f(X) + E, and the post-nonlinear
(PNL) causal model [6], which further
considers possible nonlinear sensor or
measurement distortion f, in the causal
process: Y =f(f1(X) + E).

The identifiability of the causal direc-
tion is a crucial issue in functional causal
discovery. The conditions for identifiabil-
ity of causal directions for the PNL causal
model entail those for LINGAM and
ANM, because they are special cases of
the PNL causal model. Under a smooth-
ness assumption on the involved func-
tions and a positivity assumption on the
densities of X and E, there are only five
specific situations where the causal di-
rection is not identifiable if data were
generated according to the PNL causal
model [6]. Accordingly, one way to esti-
mate the causal structure from observed
data based on the FCM is to first fit
the model on given data and then test
for independence between the estimated
noise term and the hypothetical cause.
So far functional causal discovery has
been mainly concerned with cases with-
out confounders or feedbacks, with sev-
eral exceptions [7,8].

In practice, for reliable causal discov-
ery one needs to address specific chal-
lenges that are often posed in the causal
process or the sampling process to gen-
erate the observed data. Below are some
particular issues that have recently been
considered:

(i) Deterministic case. In a particular
deterministic case where Y = f(X)
without noise, it is impossible to
make use of the independence
between noise and the cause to
find the causal direction. However,
one may exploit a certain type of
independence between the transfor-
mation f and the distribution of the
cause X to characterize the causal
asymmetry and determine the causal
direction [9].

(i) Nonstationary/heterogeneous data.
Itis commonplace to encounter non-
stationary or heterogeneous data,
in which the underlying generat-
ing process changes over time or
across data sets. Interestingly, if the
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(iii)

(iv)

(v)

qualitative causal structure is fixed
and the mechanisms or parameters
associated with the causal structure
may change across data sets or over
time (the mechanisms may change
such that some causal links in the
structure vanish over some time pe-
riods or domains), causal discovery
may benefit from distribution shift
because causal modeling and distri-
bution shift are heavily coupled. This,
in particular, inspires a framework
for causal mechanism change de-
tection, causal skeleton estimation,
causal direction identification and
nonstationary driving force estima-
tion [10].

Measurement error. Measurement
error in the observed values of the
variables can greatly change the out-
put of various causal discovery meth-
ods. Given the ubiquity of measure-
ment error caused by instruments or
proxies used in the measuring pro-
cess, this problem has received much
attention, and sufficient conditions
under which the causal model for
the underlying measurement-error-
free variables can be partially or com-
pletely identified in the presence of
measurement error with unknown
variance have been established [11].
This will hopefully inspire a set of
causal discovery methods dealing
with measurement error.

Selection bias. Selection bias is
an important issue in statistical
inference, which arises when the
probability of including a data point
in the sample depends on some
attributes of the point. Selection
bias, if not corrected, often distorts
the results of statistical analysis and
causal discovery and inference. In
the presence of outcome-dependent
selection bias, with FCM-based
causal discovery it is possible to
identify the correct causal direction
and estimate the properties of
the causal mechanism [12]. More
general situations with selection bias
remain to be studied.

Subsampled or temporally aggre-
gated time series. In many times
series, data are subsampled or
temporally aggregated due to the

measuring device or sampling proce-
dure, or for the purposes of efficient
collection and storage. It has been
shown that under suitable assump-
tions, the true causal relations are
identifiable from both subsampled
and temporally aggregated data;
interested readers may refer to [13]
and references therein.

CAUSALITY-RELATED MACHINE
LEARNING

Learning under data heterogeneity has
been becoming important because of the
potential distribution shift in the data and
the expense or neglect of labeling proce-
dures. Typical learning problems in this
category include semi-supervised learn-
ing, domain adaptation or transfer learn-
ing, and learning with positive and unla-
beled examples. To solve such problems,
one has to gain information about the un-
derlying process behind the given data.

The distinction between causal and
‘anticausal’ learning was discussed
in [14], together with a causal view
of semi-supervised learning. In this
learning setting, an important issue is to
determine whether unlabeled data points
are useful to improve the prediction
model. It has been noticed that if the
features are causes of the target (or
label) with no confounder between
them, then unlabeled data points are not
helpful. In domain adaptation or transfer
learning, it is essential to determine
what knowledge to transfer from source
domains to the target and how to do
the transfer. Causal modeling has been
shown to provide a nice tool to address
this issue [ 14-16]. Causal diagrams have
been used to establish conditions that
allow transportation of results across
domains [15]. Even when such condi-
tions do not hold, it is still possible to
leverage causal knowledge together with
some technical conditions for domain
adaptation [16]; the basic idea is that if
there is no confounder between them,
P(cause)and P (effect | cause) are
reflections of true causal processes and
change independently, allowing separate
parameterization of the changes in a
simple form.

Modern causality research has bene-
fited a great deal from the advances in
machine learning techniques, which pro-
vide an essential tool to extract infor-
mation from data. On the other hand,
causal information describes properties
of the process behind the observed data,
and is able to facilitate the solution of a
number of learning problems involving
distribution shift or concerning the re-
lationship between different modules of
the joint distribution. Open problems in
this research area include the develop-
ment of computationally efficient causal
discovery methods that apply to more
general situations and the characteriza-
tion of what information of the underly-
ing causal process is useful and the op-
timal ways to use it in various machine
learning settings.
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