STAT 992: Foundation Models for
Biomedical Data

Ben Lengerich
Lecture 02: A Brief Introduction to Deep Learning

January 26, 2026

Today

What is Machine Learning?
Three Types of Machine Learning

Some Necessary Jargon
The building blocks of Deep Learning Architectures

1. Perceptron
2. Logistic Regression
3. Multilayer Perceptron

5. Training Deep Models

1. Backpropagation
2. Automated Differentiation

N

Ben Lengerich © University of Wisconsin-Madison 2025

1. What is Machine Learning?

What is Machine Learning?

The Traditional Programming Paradigm

Inputs (observations)

7N

Programmer —» Program —> Computer —> Qutputs

[k |

Ben Lengerich © University of Wisconsin-Madison 2025

What is Machine Learning?

The Traditional Programming Paradigm

Inputs (observations)

7N

Programmer —» Program —> Computer —> Qutputs

[k |

Machine Learning

Inputs —
Computer —> Program

Outputs —

Ben Lengerich © University of Wisconsin-Madison 2025

The Connection Between Fields

Machine Learning

Ben Lengerich © University of Wisconsin-Madison 2025

Not all Al Systems involve Machine Learning

Deep Blue used custom VLSI chips to
execute the alpha-beta search
algorithm in parallel, an example of
GOFAI

(Good Old-Fashioned Artificial
Intelligence).

2016/02/10/kasparov-deep-blue/.

Ben Lengerich © University of Wisconsin-Madison 2025

Machine Learning

Deep Lea

A,

A Brief History of Al

|
1950 1960 1970 1980 1990 2000 2010 2020
Perceptrons KNNs Decision Trees Decision Trees Neural Nets Boosted Trees DNNs LLMs
Neural Nets Bayes Nets Random Forests GBT+RF ???
SVMs SVMs
15t Coming 2nd Coming
3" Coming 4t Coming
of NNs of NNs

Courtesy of Rich Caruana

Ben Lengerich © University of Wisconsin-Madison 2025

The Al Revolution: Matrix Multiplications

] NVIDIA Corporation = NASDAQ:NVDA

17411 uso +161.55 (+1,27910%) 2
Friday, 4:00 PM GMT-4 - Disclaimer

1 Day 5 Days 1 Month Ytd 1Year 5 Years Max

CPU vs GPU: Architecture

150

GPU

50
Core Core

Feb Aug Feb Aug Feb Aug Feb Aug Feb Aug
L1 Cache L1 Cache 2021 2022 2023 2024 2025

Open 1781 Mkt Cap 4.25T Prev close 18017

Core Core High 17815 P/E ratio 48.99 52W high 184.48
Low 17315 Volume 243M 52W low 86.62

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache L3 Cache

DRAM DRAM

mob/idev

https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud

Ben Lengerich © University of Wisconsin-Madison 2025

https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud

2. Three Types of Machine Learning

3 Broad Categories of ML

> Labeled data

Supervised Learning > Direct feedback

> Predict outcome/future

> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

3 Broad Categories of ML

> Labeled data
Supervised Learning > Direct feedback

> Predict outcome/future

Ben Lengerich © University of Wisconsin-Madison 2025

Supervised Learning

A
Ex: Regression
/
® &
7
® ® 7 ®
® ®~
target y 7
(dependent variable,) R ®
output) Q ®
® ®
N >

feature (input, observation)

Source: Raschka and Mirjalili (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Supervised Learning

Ex: Classification

A
What are the S / «—— linear decision boundary
class labels (y's)? o o e /l @
© o /| o
/
X5 S e © / D D S
e / & d
/
© © / @ S D D
eoe [/ @D
o,/ ® o © i
X4

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Unsupervised Learning

> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Unsupervised Learning

Ex: Representation Learning / Dimensionality Reduction with PCA

PC2 PC1

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Unsupervised Learning

Ex: Representation Learning / Dimensionality Reduction with Autoencoders

=mmd Encoder Decoder

Source: https://3.bp.blogspot.com/-OUd11VBJNAM/ T
VsFacR_YhBI/AAAAAAAABO/ZKFKANR]3x0/s1600/
cannot%2Bresist.jpg

latent representation/
feature embedding

Fun fact: PCA = linear Autoencoder

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Unsupervised Learning

Ex: Clustering A
//.-\\
;70 e o™\
e © ¢ o)
lg @ @ @ .'
\ o/
\@ e /
XZ _.//

/."‘\
= / @ "\
/...} /e © ® _\

) O} O}
\e .. | o © ®e)
\.s.// \.... /
\
\:.—/./
>.
X

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Reinforcement Learning

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Reinforcement Learning

9

CH,

N

Environment

Si+1
o, 2]

Figure 5: Representation of the basic reinforcement learning paradigm with a simple molecular example. (1) Given a
benzene ring (state S; at iteration t) and some reward value R, at iteration t, (2) the agent selects an action A, that adds
a methyl group to the benzene ring. (3) The environment considers this information for producing the next state (S;,,)

and reward (R,). This cycle repeats until the episode is terminated.

Source: Sebastian Raschka and Benjamin Kaufman (2020)
Machine learning and Al-based approaches for bioactive ligand discovery and GPCR-ligand recognition

Ben Lengerich © University of Wisconsin-Madison 2025

Reinforcement Learning

select rect(pl, p2) or build supply(p3) or ..

% StarCratft |l Binary

StarCraft || API

,,,,,,,,, Agent
resour
Observations available a n -1/0/+1
build queue
Non-spatial Screen Minimap
features features features Reward

Vinyals, Oriol, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani et al. "Starcraft II: A new challenge for
reinforcement learning." arXiv preprint arXiv:1708.04782 (2017).

Ben Lengerich © University of Wisconsin-Madison 2025

The 3 Broad Categories of ML

> Labeled data

Supervised Learning > Direct feedback

> Predict outcome/future

> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ben Lengerich © University of Wisconsin-Madison 2025

Semi-Supervised Learning

* Mix between supervised and unsupervised learning

e Some training examples contain outputs, but some don’t

A @ Class 1 B
4 A Class?2 A
@® Unlabeled ;
®: A ® A
s | A ¢ 00 0 g%,
. i A A A .‘ :0 F A A @
X1 ¢ ® : A X1 o ¢ ‘@ A
“EAA A ..“."AA.A
oo o i, A A oo 0% .0 A°A0A
o * AA *®® o o AA
& E A o © ",' .A ® o
X2 > X2 ”

lllustration of semi-supervised learning incorporating unlabeled examples. (A) A decision boundary derived from
the labeled training examples only. (B) A decision boundary based on both labeled and unlabeled examples.

Ben Lengerich © University of Wisconsin-Madison 2025

Self-Supervised Learning

* A process of deriving and using label information directly from the
data itself rather than having humans annotating it

(class label)

Neighbo
} p?)lgitionr

’ ﬂ& } 5 |nput
Randomly Randomly ledtures
sampled sampled
patch neighbor

Predict
neighbor
position

Self-supervised leaming via context prediction. (A) A random patch is sampled (red square) along with 9 neighboring patches. (B) Given the
random patch and a random neighbor patch, the task is to predict the position of the neighboring patch relative to the center patch (red square).

Ben Lengerich © University of Wisconsin-Madison 2025

3. Some Necessary Jargon

Machine Learning Jargon

* Training a model = fitting a model = parameterizing a model = learning from
data

* Training example, synonymous to training record, training instance, training
sample (in some contexts, sample refers to a collection of training examples)

* Feature, synonymous to observation, predictor, variable, independent
variable, input, attribute, covariate

* Target, synonymous to outcome, ground truth, output, response variable,
dependent variable, (class) label (in classification)

* Output / Prediction, use this to distinguish from targets; here, means output
from the model

Ben Lengerich © University of Wisconsin-Madison 2025

Machine Learning Jargon

* Supervised learning
* Learning function to map input x (features) to output y (targets)

e Structured data
» Databases, spreadsheets/csv files, etc

* Unstructured data
* Features like image pixels, audio signals, text sentences

Ben Lengerich © University of Wisconsin-Madison 2025

Structured vs Unstructured Data

A

Feature vector of the 1st training example

Index Sepal length Sepal width Petal length Petal width

Class label

Species

0.2)@is—setos@

1 (5.1 3.5 1.4
2 4.9 3 1.4
3 47 3.2 1.3
150 5.9 3 5.1

Ben Lengerich © University of Wisconsin-Madison 2025

0.2 Iris-setosa

0.2 Iris-setosa

1.8 lris-virginica

Data Representation

Feature vector

Ben Lengerich © University of Wisconsin-Madison 2025

Data Representation

_ — X{ X{l] xQ[,I] ses x}E’ll]
X1
T 2] ,[2]1 ... [2]
X2 X = | *2 X = [*1 *2 Xm
X = . . .
Feature vector Feature Matrix / Design Matrix Feature Matrix / Design Matrix

Ben Lengerich © University of Wisconsin-Madison 2025

Data Representation (structured data)

Sepal

length width

Sepal

Petal
length

Petal
width

Petal

Setosa
2 4.9 3.0 1.4 0.2 Setosa
50 6.4 3.5 4.5 1.2 Versicolor
150 | 5.9 3.0 5.0 1.8 Virginica

Ben Lengerich © University of Wisconsin-Madison 2025

Data Representation (unstructured data; images)

Convolutional Neural Networks

Image batch dimensions: torch.size([128, 1, 28, 28]) <+—— "NCHW" representation (more on that later)
Image label dimensions: torch.Size([128])
print(images[0].size())

torch.Size([1l, 28, 28])

images|[0]

tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000], 01
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, : |

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 10 4
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000], 15 4

[0.0000, 0.0000, 0.0000, 0.0000, 0.5020, 0.9529, 0.9529, 0.9529,

0.9529, 0.9529, 0.9529, 0.8706, 0.2157, 0.2157, 0.2157, 0.5176, 20
0.9804, 0.9922, 0.9922, 0.8392, 0.0235, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000]
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 25 1
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.6627, 0.9922, 0.9922, 0.9922, 0.0314, 0.0000, 0.0000, 0.0000, 0 5 o 15 20 5
0.0000, 0.0000, 0.0000, 0.0000]
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4980, 0.5529,
0.8471, 0.9922, 0.9922, 0.5961, 0.0157, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000]
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0667, 0.0745, 0.5412, 0.9725, 0.9922,

A AnaA A AAAaA A rAanE A AEAn A AAAN A AnAA A AnAA A AAAn

University of Wisconsin-Madison

4. The building blocks of Deep Learning

McCulloch & Pitt’s neuron model (1943)

Inputs McCulloch & Pitts
(1943)
X Linear Hard

Combiner Limiter

:> Output
J_ B
?

Threshold

2% "%
Warren McCulloch Walter Pitts

Ben Lengerich © University of Wisconsin-Madison 2025

Rosenblatt’s Perceptron

|
Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para.

Cornell Aeronautical Laboratory.

Continuous
Wi /"J{‘/ Weighting

W

P——o

n
net = Eﬂ Wi X; 5 :W Activation
(threshold)
X, function

Perceptrony B ¥

[
A ‘ . ‘
-y
T {
P 'g-g |
L5l 4

Generalizes MP neurons a bit...

Source: http:/Awww.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4/Rosen-2.jpg

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Learning Algorithm

e Assume binary classification task

* Perceptron finds decision boundary is classes are separable

® class0
49 m class1 -...l. -
"I.- LR
2 LT »
o i L
o on™ 4 *®
0 Y, o . o .
® o e []
24 ® .J o .u@
® . 2o .
_ ® s ¢ ®
) 3 [animated GIF]
M

Iteration 0

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

Perceptron Learning Algorithm (pseudocode)

Let
D = ((xU, 1), (x 4B, (M y)) € (R™ x {0,1})"

1. Initialize w :== 0™ (assume weight incl. bias)

2. For every training epoch:
1. Forevery (x[i],y[i]) eD:
1. pl = O'(x[i]TW) «<—— Only-Oor1
2 err = (y[i] — y[i]) «—— Only-1,0,0r1

3 w=w+err x xli

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Geometric Intuition

Decision boundary Weight vector is perpendicular

to the boundary. Why?

Remember,

- 0, wix <0
Y= 1, wlix >0

w'x = ||w|| - [|x]] - cos(6)

——

So this needs to be 0 at the boundary,
and it is zero at 90°

Ben Lengerich © University of Wisconsin-Madison 2025

Perceptron Geometric Intuition: Learning

input vector for an example with label 1

This is the new weight vector
CORRECT SIDE

WRONG SIDE

For this weight vector, we make a wrong prediction;
hence, we update

Ben Lengerich © University of Wisconsin-Madison 2025

Beyond Rosenblatt’s Perceptron

[
Perceptrons generalize MP Neurons _ Classic Rosenblatt
—>
Continuous Activation P threshold function Perceptron
- 521 Weighting / function \
. ; sigmoid — DL “Perceptron” /
Oft »() sigmoid unit
el :E‘OWI' Xi o = G(net) = l_mr
l+e
(Logistic) Sigmoid
* Many activation functions:
* Threshold function (perceptron, 1950+)) ReLU (Rectiied Linear Unit
e Sigmoid function (before 2000) e R ! MU<Z>={SI herwise

s
+{ ReLU(z) = max(0, z)
N

* RelLU function (popular since CNNs)
* Many variants of RelU, e.g. leaky RelLU, GelU

—————————————

Ben Lengerich © University of Wisconsin-Madison 2025

Sigmoid unit: Logistic regression gives an optimizer

* For binary classes y € {0, 1}

"logistic sigmoid" O'(Z) = 1+ o>
€

B0 \

L2 Wy > wizi+b— a=0(z) —> "output"

Wm
Lm

Ben Lengerich © University of Wisconsin-Madison 2025

Sigmoid unit: Logistic regression gives an optimizer

— "logistic sigmoid" o(2) =] +16_z
* Given the output: By
A W
h(X) — J(WTX _|_ b) -’17:2 sz=zi:w.'x.-+b—b a=o(z) — ‘output

* We compute the probability as

) h(x) ify=1
PO =91 b ify=o

|

P(ylx) = a¥(1 — a)(*-¥)

Recall Bernoulli distribution...

Ben Lengerich © University of Wisconsin-Madison 2025

Sigmoid unit: Logistic regression gives an optimizer

e Given the probability:
P(ylx) = a¥(1 —)1V

 Under MLE estimation, we would like to maximize the multi-sample

likelihood: o
Py, ..yttt xlml) = T P (v 1)
n y(i) R 1_y(i)
= H (J(z(i))) (1 — O‘(Z(?’)))
i=1
| q]
Likelihood

Ben Lengerich © University of Wisconsin-Madison 2025

Sigmoid unit: Logistic regression gives an optimizer

y(i) (7)

. n 1—
P(y[‘ﬂ?___?y[ﬂ”X[l}j___:X[ﬂ]):H(a(z(i))) (1_0(,2@)) '

1=1
\ J
|

Likelihood

* We are going to optimize via gradient descent, so let’s apply the
logarithm to separate components:

[((w) = log L(w)

=2 _ [yW g (0(z7)) + (1 - y") log (1 — o (=1))]

=1]
Y

Log-Likelihood

Ben Lengerich © University of Wisconsin-Madison 2025

Sigmoid unit: Logistic regression gives an optimizer

0L 0Lda 0z
Ow; Oa dz Ow,

Ben Lengerich © University of Wisconsin-Madison 2025

Logistic Regression: Gradient Descent learning Rule

Stochastic gradient descent:
1. Initialize w:=0€ R™, b :=0
2. For every training epoch:
A. Forevery (x!! ylily e D
@ 9 =0o(x"Tw+b)
b) Vol = _(y[i] _ g[i])x[i]

Vol = —(y" —g19) Note
€ w:=w-+ n X (—Vwﬁ) a—Y & —(y[i] — g[i])
bim b+ x (VL)
—_—
learning rate T

negative gradient

Ben Lengerich © University of Wisconsin-Madison 2025

Beyond Rosenblatt’s Perceptron

[
Perceptrons generalize MP Neurons _ Classic Rosenblatt
—>
Continuous Activation P threshold function Perceptron
- 521 Weighting / function \
. ; sigmoid — DL “Perceptron” /
Oft »() sigmoid unit
el :E‘OWI' Xi o = G(net) = l_mr \
l+e
*n Gradient Descent
(Logistic) Sigmoid
* Many activation functions:
* Threshold function (perceptron, 1950+)) ReLU (Rectiied Linear Unit
e Sigmoid function (before 2000) e R ! MU<Z>={SI herwise

s
+{ ReLU(z) = max(0, z)
N

* RelLU function (popular since CNNs)
* Many variants of RelU, e.g. leaky RelLU, GelU

—————————————

Ben Lengerich © University of Wisconsin-Madison 2025

Can a Perceptron represent XOR?

— Continuous Activation
x ' H i
! A/PU{‘/Wﬂght'ng / function
XOR "2 : ’
- +
+ 4
>
” _JC @
+ o ¥ -
. net —Eﬂ“’: X 0 = G(ner) = l-m’l
l+e
.!’n
* No

* If there were, then there would be constants w; and w, such that:
* When x; = x,, then a(wyx; + wyx,) < 6
* When x; # x,,thenao(wyx; + wyx,) = 6
e letx; =1,x, =0 e Letx; =1,x, =1:
* Eq.(1): a(wy) =86 * Eq.(3):0(wy+w,) <6
e letx; =0,x, =1

. Eq. (2): (W) = 6 Eq. (1) + Eq. (2) contradicts Eq. (3)

Ben Lengerich © University of Wisconsin-Madison 2025

An XOR Logic Gate

| .
_1_1

g O »O

— }a . I.
nes E‘O“Jx.' 0 = O(net) = e

l+e

n

Multi-layer Perceptron?

https://byjus.com/jee/basic-logic-
gates/

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Perceptron

 Computation Graph with Multiple Fully-Connected Layers

T Y1 Y2Ys
01 l
T9 02 > ﬁ(Y’ 0)

use softmax if this is a multi-class
problem with mutually exclusive classes

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Perceptrons Can Solve XOR

m ClassO0
A Class1

m ClassO0
A Class1

Decision boundaries of two different multilayer perceptrons on simulated data
NN-SVG ~ solving the XOR problem

O \
Q
Q

https://alexlenail.me/NN-SVG/index.html

Ben Lengerich © University of Wisconsin-Madison 2025

Multi-Layer Perceptrons (MLPs)

aka Multi-layer Neural Networks
Inputs

Output

0.6

“Probability
of
beingAlive”

Dependent

Independent Weights HiddenL wejghts variable

variables aver
Prediction

Ben Lengerich © University of Wisconsin-Madison 2025

“Combined Logistic Models”

Output
Age P
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights HiddenL wejghts va :;ﬂ ble
variables ayer
Prediction

Ben Lengerich © University of Wisconsin-Madison 2025

“Combined Logistic Models”

Inputs
Output
Age
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights HiddenL. yyejghts mrﬂab!e
variables aver
Prediction

Ben Lengerich © University of Wisconsin-Madison 2025

“Combined Logistic Models”

Inputs

\ Output
S
7.\ — 0.6
9-.{ “Probability
of
/ beingAlive”

. _ Dependent
Independent Weights HiddenL vweijghts variable
variables aver
Prediction

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer Neural Networks Can Solve XOR

m ClassO0
A Class1

m ClassO0
A Class1

Decision boundaries of two different multilayer perceptrons on simulated data
NN-SVG ~ solving the XOR problem

O \
Q
Q

https://alexlenail.me/NN-SVG/index.html

Ben Lengerich © University of Wisconsin-Madison 2025

A new problem: Training

* How can we train a multilayer model?
* No targets / ground truth for the hidden nodes

 Solution: Backpropagation

* Independently formulated many times
* http://people.idsia.ch/~juergen/who-invented-backpropagation.html

 Rumelhart and Hinton (1986) showed that it really works

* Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323(6088), 533.
In late 1985, I actually had a deal with Dave Rumelhart that I would write

a short paper about backpropagation, which was his idea, and he would write
a short paper about autoencoders, which was my idea. It was always better
to have someone who didn’t come up with the idea write the paper because
he could say more clearly what was important.

So I wrote the short paper about backpropagation, which was the Nature
paper that came out in 1986, but Dave still hasn’t written the short paper

about autoencoders. I'm still waiting.
What he did da wac tell Nave Zincer ahant the idea of autnencoders and

— Geoffrey Hinton in Talking Nets - An Oral History of Neural Networks, pg. 380

Ben Lengerich © University of Wisconsin-Madison 2025

http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

5. Training Deep Models

Backpropagation

* Neural networks are function compositions that can be represented as
computation graphs:

VOl

variables Outputs

Intermediate
computations

* By applying the chain rule, and working in reverse order, we get:

dfn L afn ale L afﬂ afi.i afi.l
Z 8_}%‘,1 Ox N Z Z dfig Ox N

11€ET(N) i1 Eﬂ'(n) io€Em(i1)

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: RelLU

— Suppose we have the following activation function:

a(x, w, b) =relu(w -x +b)

z ifz>0
81 relu(z) —{ 0 otherwise

6_

for example,
activation a 4 |

-100 -75 -50 -25 00 25 50 75
for example, net input z

RelLU = Rectified Linear Unit

(prob. the most commonly used activation function in DL)

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: RelLU

alx, w, b) =relu(w -x + b)
—

Uy J
Y
"4
b
X a= relu(v)]
:}}}{ u = wx
W

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: RelLU

{a = reIu(v)J

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: RelLU

{a = reIu(v)J

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: RelLU

P[a = relu(v)]

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Single-path

E(y, 01 (w1 y :131))

Y
ol l
0 v L(y,0) =1
.7'10]_ — A1 » O — l
8a1 0o
Owy day

ol Ol 0do 0Oay

8—w1:80.8a1.8—w1

(univariate chain rule)

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Fully-Connected Layer

aagl)
8w{51%
Bagl)

5w£2

Ben Lengerich © University of Wisconsin-Madison 2025

Computation graphs: Weight-Sharing

L(y,03|01(w1 - 1), 02 (w1 - 21)])

01(21) = a1
80,1
ow,. @1 do

Y
-~ 9y O j
- \ do y L(y,0)=1

w o3(a1,az) =o

1 -~
8&2

6—101 02(21) = Q2

Upper path

ol _ 0l 9o Oam Ol 9o Oay o .
w: 9o Oai Ow, do Oay 0w, (multivariable chain rule)

Lower path

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch: Automated Differentiation

PyTorch Usage: Step 1 (Definition)

Backward will be inferred
automatically if we use the nn.Module

def _ init__ (self, num features, num classes): class!
super (MultilayerPerceptron, self). init ()

class MultilayerPerceptron(torch.nn.Module): «

lst hidden layer _

self.linear 1 = torch.nn.Linear(num_ feat, num hl) Define model parameters

2nd hidden layer that will be instantiated
self.linear 2 = torch.nn.Linear(num _hl, num h2) when created an object of
this class

Output layer
self.linear out = torch.nn.Linear(num h2, num classes)

def forward(self, x):
out = self.linear_1(x) Define how and it what

out = F.relu(out) order the model parameters

out = self.linear 2(out) :
out = F.relu(out) should be used in the

logits = self.linear out(out) forward pPass
probas = F.log softmax(logits, dim=1)
return logits, probas AL

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 2 (Creation)

torch.manual seed(random_ seed)
model = MultilayerPerceptron(num_features=num_features,I Instantiate model

num_classes=num_classes) (creates the model parameters)

model = model.to(device)

optimizer = torch.optim.SGD(model.parameters(),

lr=learning rate) I Define an optimization method

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

Run for a specified number of
epochs
: lterate over minibatches
for epoch in range(num epochs): .
model.train() / N epOCh
for batch idx, (features, targets) in enumerate(train loader):
If your model is on the
GPU, data should also

features = features.view(-1, 28*28).to(device) +——

targets = targets.to(device) <
be
FORWARD AND BACK PROP on the GP U
logits, probas = model(features)
cost = F.cross _entropy(probas, targets)
optimizer.zero grad()
cost.backward() y = model(x) calls .__call__ and then .forward(), where some
extra stuff is done in _call_;
UPDATE MODEL PARAMETERS don't run y = model.forward(x) directly
optimizer.step()
model.eval()
with torch.no_grad(): Gradients at each leaf node are accumulated under the .grad attribute, not just stored. This is why we

compute accurac
P Y have to zero them before each backward pass

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()
for batch_idx, (features, targets) in enumerate(train_ loader):

features = features.view(-1, 28*28).to(device)
targets = targets.to(device)

FORWARD AND BACK PROP

logits, probas = model(features) <«——— This willrun the forward() method

loss = F.cross_entropy(logits, targets)<«——— Define aloss function to optimize
optimizer.zero_grad() «——— Set the gradient to zero

(could be non-zero from a previous forward pass)
loss.backward()

Compute the gradients, the backward is
UPDATE MODEL PARAMETERS ; " "
L automatically constructed by "autograd” based on
optimizer.step()

the forward() method and the loss function
model.eval() \ Use the gradients to update the weights according to
with torch.no grad(): the optimization method (defined on the previous

compute accuracy slide)
E.g., for SGD, w := w + learning_rate x gradient

Ben Lengerich © University of Wisconsin-Madison 2025

PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()

for batch idx, (features, targets) in enumerate(train loader):

features =
targets = tar

features.view(-1, 28*28).to(device)
ts.to(device)

FORWARD AND
logits, probas = mgdel(features)

loss = F.cross_entropy(logits, targets)
optimizer.zero grad()

loss.backward()

UPDATE MODEL PARAMETER

optimizer.step()
For evaluation, set the model to eval mode (will be

model.eval() < relevant later when we use DropOut or BatchNorm)

with torch.no grad():
compute accurac;“\‘-ﬁ\\\ﬁﬁﬁi _ _
This prevents the computation graph for

backpropagation from automatically being build in
the background to save memory

Ben Lengerich © University of Wisconsin-Madison 2025

Questions?

e
QWI WISCONSIN

, IIIIIIIIIIIIIIIIIIIII -MADISON
L

	Slide 1: STAT 992: Foundation Models for Biomedical Data
	Slide 2: Today
	Slide 3: 1. What is Machine Learning?
	Slide 4: What is Machine Learning?
	Slide 5: What is Machine Learning?
	Slide 6: The Connection Between Fields
	Slide 7: Not all AI Systems involve Machine Learning
	Slide 8: A Brief History of AI
	Slide 9: The AI Revolution: Matrix Multiplications
	Slide 10: 2. Three Types of Machine Learning
	Slide 11: 3 Broad Categories of ML
	Slide 12: 3 Broad Categories of ML
	Slide 13: Supervised Learning
	Slide 14: Supervised Learning
	Slide 15: Unsupervised Learning
	Slide 16: Unsupervised Learning
	Slide 17: Unsupervised Learning
	Slide 18: Unsupervised Learning
	Slide 19: Reinforcement Learning
	Slide 20: Reinforcement Learning
	Slide 21: Reinforcement Learning
	Slide 22: The 3 Broad Categories of ML
	Slide 23: Semi-Supervised Learning
	Slide 24: Self-Supervised Learning
	Slide 25: 3. Some Necessary Jargon
	Slide 26: Machine Learning Jargon
	Slide 27: Machine Learning Jargon
	Slide 28: Structured vs Unstructured Data
	Slide 29: Data Representation
	Slide 30: Data Representation
	Slide 31: Data Representation (structured data)
	Slide 32: Data Representation (unstructured data; images)
	Slide 33: 4. The building blocks of Deep Learning
	Slide 34: McCulloch & Pitt’s neuron model (1943)
	Slide 35: Rosenblatt’s Perceptron
	Slide 36: Perceptron Learning Algorithm
	Slide 37: Perceptron Learning Algorithm (pseudocode)
	Slide 38: Perceptron Geometric Intuition
	Slide 39: Perceptron Geometric Intuition: Learning
	Slide 40: Beyond Rosenblatt’s Perceptron
	Slide 41: Sigmoid unit: Logistic regression gives an optimizer
	Slide 42: Sigmoid unit: Logistic regression gives an optimizer
	Slide 43: Sigmoid unit: Logistic regression gives an optimizer
	Slide 44: Sigmoid unit: Logistic regression gives an optimizer
	Slide 45: Sigmoid unit: Logistic regression gives an optimizer
	Slide 46: Logistic Regression: Gradient Descent learning Rule
	Slide 47: Beyond Rosenblatt’s Perceptron
	Slide 48: Can a Perceptron represent XOR?
	Slide 49: An XOR Logic Gate
	Slide 50: Multilayer Perceptron
	Slide 51: Multilayer Perceptrons Can Solve XOR
	Slide 52: Multi-Layer Perceptrons (MLPs)
	Slide 53: “Combined Logistic Models”
	Slide 54: “Combined Logistic Models”
	Slide 55: “Combined Logistic Models”
	Slide 56: Multilayer Neural Networks Can Solve XOR
	Slide 57: A new problem: Training
	Slide 58: 5. Training Deep Models
	Slide 59: Backpropagation
	Slide 60: Computation graphs: ReLU
	Slide 61: Computation graphs: ReLU
	Slide 62: Computation graphs: ReLU
	Slide 63: Computation graphs: ReLU
	Slide 64: Computation graphs: ReLU
	Slide 65: Computation graphs: Single-path
	Slide 66: Computation graphs: Fully-Connected Layer
	Slide 67: Computation graphs: Weight-Sharing
	Slide 68: PyTorch: Automated Differentiation
	Slide 69: PyTorch Usage: Step 1 (Definition)
	Slide 70: PyTorch Usage: Step 2 (Creation)
	Slide 71: PyTorch Usage: Step 3 (Training)
	Slide 72: PyTorch Usage: Step 3 (Training)
	Slide 73: PyTorch Usage: Step 3 (Training)
	Slide 74

