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The Connection Between Fields
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Not all AI Systems involve Machine Learning
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A Brief History of AI
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1950

Perceptrons

1960

KNNs

1970

Decision Trees

1980

Decision Trees

Neural Nets

1990

Neural Nets

Bayes Nets

SVMs

2000

Boosted Trees

Random Forests

SVMs

2010

DNNs

GBT+RF

2020

LLMs

???

1st Coming
of NNs

2nd Coming
of NNs

3rd Coming
of NNs

4th Coming
of NNs

Courtesy of Rich Caruana



The AI Revolution: Matrix Multiplications
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2. Three Types of Machine Learning



3 Broad Categories of ML

Ben Lengerich © University of Wisconsin-Madison 2025



3 Broad Categories of ML

Ben Lengerich © University of Wisconsin-Madison 2025



Supervised Learning
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Ex: Regression



Supervised Learning
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Ex: Classification

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition



Unsupervised Learning
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Labeled data

Direct feedback

Predict outcome/future

No labels/targets

No feedback

Find hidden structure in data

Decision process

Reward system

Learn series of actions

Reinforcement Learning

Unsupervised Learning

Supervised Learning

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition



Unsupervised Learning
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Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ex: Representation Learning / Dimensionality Reduction with PCA



Unsupervised Learning
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Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ex: Representation Learning / Dimensionality Reduction with Autoencoders

Fun fact: PCA = linear Autoencoder



Unsupervised Learning
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Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition

Ex: Clustering
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Reinforcement Learning

Ben Lengerich © University of Wisconsin-Madison 2025



Reinforcement Learning
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AI-based GPCR bioact ive ligand discovery

Agent

Environment

Action

A t

Reward:

R t

R t+1

S t+1

State:

S t

1

3

2

CH3

CH3

Figure 5: Representat ion of the basic reinforcement learning paradigm with a simple molecular example. (1) Given a

benzene ring (state St at iterat ion t) and some reward value Rt at iterat ion t, (2) the agent selects an act ion At that adds

a methyl group to the benzene ring. (3) The environment considers this information for producing the next state (St+1)

and reward (Rt+1). This cycle repeats until the episode is terminated.

the course of an episode. However, DrugEx adds a stochastic component during training. Before being used in the

reinforcement learning training, theRNN agent network wasindividually trained with alargeset of moleculeSMILES

from ZINC [21]. Two copies of this pre-trained network were then created, with one referred to as the exploration

network and theother astheexploitation network. Only theexploitation network wasupdated during thereinforcement

learning training process; however, with a specified probability at each iteration, the exploration network would be

queried for the next token instead. The purpose of this procedure was to explore a wider chemical space during

training – afterwards the exploration network was discarded, and only the exploitation network was used to generate

new molecules. This method successfully rediscovered some known actives for adenosine A2A receptor. The RNN

agent wasalso able to producemolecules with a largediversity, which wasevident by covering all cluster centerswith

a generated active when using afingerprint-based clustering.

Other reinforcement learning-based models for de novo synthesis described in the literature were not specifically

focused on GPCRsâ bioactive molecule design but could be adopted for such tasks in the future [181, 182]. One

such example isZhou et al.’sMoleculeDeep Q-Networks(MOLDQN) approach, whichmodifiesdeep Q-networksfor

molecule generation [181, 183]. This modelâ s agent network takes the current molecular graph’s Morgan finger-

print as input and selectsan action to modify themolecular graph. Theactions includeadding an atom, adding abond,

or increasing a bondâ s order. Additionally, the actions that are allowed at a given iteration are restricted if they

are invalid so the system will always produce valid molecules. Similar to DrugEx, the model encourages exploration

by selecting a random valid action at a given iteration with some probability ✏. The model achieved state-of-the-art

performance when producing molecules that maximized for logP and quantitative estimates of drug likeness sepa-

rately [184].

While many publications in this area demonstrate the ability to optimize for molecular properties, they unfortu-

nately lack experimental follow-up proceduresfor further model evaluation. Asanotablecounter-example, wewant to

highlight GENTRL, which wasused to discover novel inhibitorsof discodin domain receptor 1, atyrosinekinase[14].

The inhibitors were generated computationally and then synthesized and experimentally validated. The experiments

in silico and in vitro werecompleted in approximately 46 days at a fraction of the cost of ahigh throughput screening

approach.

6. Transfer learning

Machinelearning, and deep learning in particular, requireslargetraining datasets. It’snot atypical for modern deep

neural networksto havemillionsof trainableparameters, which requiresufficient datafor successful parameterization.

Raschka and Kaufman: Preprint submitted to Elsevier Page 17 of 24

Source: Sebastian Raschka and Benjamin Kaufman (2020)
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition



Reinforcement Learning
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The 3 Broad Categories of ML
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Semi-Supervised Learning
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• Mix between supervised and unsupervised learning

• Some training examples contain outputs, but some don’t

Illustration of semi-supervised learning incorporating unlabeled examples. (A) A decision boundary derived from 
the labeled training examples only. (B) A decision boundary based on both labeled and unlabeled examples.



Self-Supervised Learning
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• A process of deriving and using label information directly from the 
data itself rather than having humans annotating it

Self-supervised learning via context prediction. (A) A random patch is sampled (red square) along with 9 neighboring patches. (B) Given the 

random patch and a random neighbor patch, the task is to predict the position of the neighboring patch relative to the center patch (red square).



3. Some Necessary Jargon



Machine Learning Jargon
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• Training a model = fitting a model = parameterizing a model = learning from 
data

• Training example, synonymous to training record, training instance, training 
sample (in some contexts, sample refers to a collection of training examples)

• Feature, synonymous to observation, predictor, variable, independent 
variable, input, attribute, covariate

• Target, synonymous to outcome, ground truth, output, response variable, 
dependent variable, (class) label (in classification)

• Output / Prediction, use this to distinguish from targets; here, means output 
from the model



Machine Learning Jargon

• Supervised learning
• Learning function to map input x (features) to output y (targets)

• Structured data
• Databases, spreadsheets/csv files, etc

• Unstructured data
• Features like image pixels, audio signals, text sentences
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Structured vs Unstructured Data

Ben Lengerich © University of Wisconsin-Madison 2025



Data Representation
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Data Representation
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Data Representation (structured data)
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Data Representation (unstructured data; images)
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4. The building blocks of Deep Learning



McCulloch & Pitt’s neuron model (1943)
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Warren McCulloch Walter Pitts



Rosenblatt’s Perceptron
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Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para. 

Cornell Aeronautical Laboratory.

Continuous 
Weighting

Activation 
(threshold) 
function

Generalizes MP neurons a bit…



Perceptron Learning Algorithm
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• Assume binary classification task

• Perceptron finds decision boundary is classes are separable

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

[animated GIF]
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Perceptron Learning Algorithm (pseudocode)

Ben Lengerich © University of Wisconsin-Madison 2025

Let

1. Initialize 𝒘 ≔ 0𝑚  (assume weight incl. bias)

2. For every training epoch:
1. For every 𝒙 𝑖 , 𝑦 𝑖 ∈ 𝐷:

1. ො𝑦[𝑖] ≔ 𝜎 𝒙 𝑖 𝑇𝒘

2. 𝑒𝑟𝑟 ≔ 𝑦 𝑖 − ො𝑦 𝑖

3. 𝒘 ≔ 𝒘 + 𝑒𝑟𝑟 × 𝒙[𝒊]

Only -0 or 1

Only -1, 0, or 1



Perceptron Geometric Intuition

Ben Lengerich © University of Wisconsin-Madison 2025



Perceptron Geometric Intuition: Learning
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Beyond Rosenblatt’s Perceptron
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Continuous 
Weighting

Activation 
function

threshold function

sigmoid DL “Perceptron” / 
sigmoid unit

Classic Rosenblatt 
Perceptron

Perceptrons generalize MP Neurons

• Many activation functions:
• Threshold function (perceptron, 1950+)

• Sigmoid function (before 2000)

• ReLU function (popular since CNNs)

• Many variants of ReLU, e.g. leaky ReLU, GeLU



Sigmoid unit: Logistic regression gives an optimizer

• For binary classes 𝑦 ∈ {0, 1}
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• Given the output:

• We compute the probability as

Recall Bernoulli distribution…
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Sigmoid unit: Logistic regression gives an optimizer



• Given the probability:

• Under MLE estimation, we would like to maximize the multi-sample 
likelihood:
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Likelihood

Sigmoid unit: Logistic regression gives an optimizer



• We are going to optimize via gradient descent, so let’s apply the 
logarithm to separate components:

Likelihood

Log-Likelihood

Ben Lengerich © University of Wisconsin-Madison 2025

Sigmoid unit: Logistic regression gives an optimizer
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Sigmoid unit: Logistic regression gives an optimizer



Logistic Regression: Gradient Descent learning Rule

Stochastic gradient descent:
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Beyond Rosenblatt’s Perceptron
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Continuous 
Weighting

Activation 
function

threshold function

sigmoid DL “Perceptron” / 
sigmoid unit

Classic Rosenblatt 
Perceptron

Perceptrons generalize MP Neurons

• Many activation functions:
• Threshold function (perceptron, 1950+)

• Sigmoid function (before 2000)

• ReLU function (popular since CNNs)

• Many variants of ReLU, e.g. leaky ReLU, GeLU

Gradient Descent



Can a Perceptron represent XOR?
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• No

• If there were, then there would be constants 𝑤1 and 𝑤2 such that:
• When 𝑥1 = 𝑥2, then 𝜎(𝑤1𝑥1 + 𝑤2𝑥2) < 𝜃

• When 𝑥1 ≠ 𝑥2, then 𝜎(𝑤1𝑥1 + 𝑤2𝑥2) ≥ 𝜃

• Let 𝑥1 = 1, 𝑥2 = 0

• Eq. 1 : 𝜎(w1) ≥ 𝜃

• Let 𝑥1 = 0, 𝑥2 = 1 

• Eq. (2): 𝜎(w2) ≥ 𝜃

• Let 𝑥1 = 1, 𝑥2 = 1:
• Eq. (3): 𝜎(𝑤1 + 𝑤2) < 𝜃

Eq. (1) + Eq. (2) contradicts Eq. (3)

Activation 
function

Continuous 
Weighting

XOR



An XOR Logic Gate

Ben Lengerich © University of Wisconsin-Madison 2025

Multi-layer Perceptron?

https://byjus.com/jee/basic-logic-

gates/



Multilayer Perceptron

• Computation Graph with Multiple Fully-Connected Layers
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Multilayer Perceptrons Can Solve XOR
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Multi-Layer Perceptrons (MLPs)
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aka Multi-layer Neural Networks



“Combined Logistic Models”

Ben Lengerich © University of Wisconsin-Madison 2025



“Combined Logistic Models”
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“Combined Logistic Models”
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Multilayer Neural Networks Can Solve XOR
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A new problem: Training
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• How can we train a multilayer model?
• No targets / ground truth for the hidden nodes

• Solution: Backpropagation
• Independently formulated many times

• http://people.idsia.ch/~juergen/who-invented-backpropagation.html

• Rumelhart and Hinton (1986) showed that it really works
• Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating 

errors. Nature, 323(6088), 533.

– Geoffrey Hinton in Talking Nets - An Oral History of Neural Networks, pg. 380

http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
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5. Training Deep Models



Backpropagation
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• Neural networks are function compositions that can be represented as 
computation graphs:

:

1

2

3

4
5

Input

variables

x f (x )
Outputs

Intermediate 

computations

• By applying the chain rule, and working in reverse order, we get:



Computation graphs: ReLU

Ben Lengerich © University of Wisconsin-Madison 2025



Computation graphs: ReLU
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Computation graphs: ReLU
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Computation graphs: ReLU
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Computation graphs: ReLU
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Computation graphs: Single-path
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Computation graphs: Fully-Connected Layer
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Computation graphs: Weight-Sharing
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PyTorch: Automated Differentiation



PyTorch Usage: Step 1 (Definition)

Ben Lengerich © University of Wisconsin-Madison 2025



PyTorch Usage: Step 2 (Creation)
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PyTorch Usage: Step 3 (Training)

Ben Lengerich © University of Wisconsin-Madison 2025



PyTorch Usage: Step 3 (Training)
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PyTorch Usage: Step 3 (Training)
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Questions?
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