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1. What is Machine Learning?




What is Machine Learning?

The Traditional Programming Paradigm

Inputs (observations)

7N

Programmer —» Program —> Computer —> Qutputs

[k |
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Machine Learning

Inputs —
Computer —> Program

Outputs —
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The Connection Between Fields

Machine Learning
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Not all Al Systems involve Machine Learning

Deep Blue used custom VLSI chips to
execute the alpha-beta search
algorithm in parallel, an example of
GOFAI

(Good Old-Fashioned Artificial
Intelligence).

2016/02/10/kasparov-deep-blue/.
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A Brief History of Al

|
1950 1960 1970 1980 1990 2000 2010 2020
Perceptrons KNNs Decision Trees Decision Trees Neural Nets Boosted Trees DNNs LLMs
Neural Nets Bayes Nets Random Forests GBT+RF ???
SVMs SVMs
15t Coming 2nd Coming
3" Coming 4t Coming
of NNs of NNs

Courtesy of Rich Caruana

Ben Lengerich © University of Wisconsin-Madison 2025




The Al Revolution: Matrix Multiplications

] NVIDIA Corporation = NASDAQ:NVDA

17411 uso +161.55 (+1,27910%) 2
Friday, 4:00 PM GMT-4 - Disclaimer

1 Day 5 Days 1 Month Ytd 1Year 5 Years Max

CPU vs GPU: Architecture

150

GPU

50
Core Core

Feb Aug Feb Aug Feb Aug Feb Aug Feb Aug
L1 Cache L1 Cache 2021 2022 2023 2024 2025

Open 1781 Mkt Cap 4.25T Prev close 18017

Core Core High 17815 P/E ratio 48.99 52W high 184.48
Low 17315 Volume 243M 52W low 86.62

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache L3 Cache

DRAM DRAM

mob/idev

https://mobidev.biz/blog/gpu-machine-learning-on-premises-vs-cloud
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2. Three Types of Machine Learning




3 Broad Categories of ML

> Labeled data

Supervised Learning > Direct feedback

> Predict outcome/future

> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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3 Broad Categories of ML
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Supervised Learning > Direct feedback

> Predict outcome/future
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Supervised Learning

A
Ex: Regression
/
® &
7
® ® 7 ®
® ®~
target y 7
(dependent variable, ) R ®
output) Q  ®
® ®
N >

feature (input, observation)

Source: Raschka and Mirjalili (2019). Python Machine Learning, 3rd Edition
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Supervised Learning

Ex: Classification

A
What are the S / «—— linear decision boundary
class labels (y's)? o o e /l @
© o /| o
/
X5 S e © / D D S
e / & d
/
© © / @ S D D
eoe [/ @D
o,/ ® o © i
X4

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Unsupervised Learning

> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Unsupervised Learning

Ex: Representation Learning / Dimensionality Reduction with PCA

PC2 PC1

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Unsupervised Learning

Ex: Representation Learning / Dimensionality Reduction with Autoencoders

=mmd Encoder Decoder

Source: https://3.bp.blogspot.com/-OUd11VBJNAM/ T
VsFacR_YhBI/AAAAAAAABO/ZKFKANR]3x0/s1600/
cannot%2Bresist.jpg

latent representation/
feature embedding

Fun fact: PCA = linear Autoencoder

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Unsupervised Learning

Ex: Clustering A
//.-\\
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Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Reinforcement Learning

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Reinforcement Learning

9

CH,

N

Environment

Si+1
o, 2]

Figure 5: Representation of the basic reinforcement learning paradigm with a simple molecular example. (1) Given a
benzene ring (state S; at iteration t) and some reward value R, at iteration t, (2) the agent selects an action A, that adds
a methyl group to the benzene ring. (3) The environment considers this information for producing the next state (S;,,)

and reward (R, ). This cycle repeats until the episode is terminated.

Source: Sebastian Raschka and Benjamin Kaufman (2020)
Machine learning and Al-based approaches for bioactive ligand discovery and GPCR-ligand recognition
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Reinforcement Learning

select rect(pl, p2) or build supply(p3) or ..

% StarCratft |l Binary

StarCraft || API

,,,,,,,,, Agent
resour
Observations available a n -1/0/+1
build queue
Non-spatial Screen Minimap
features features features Reward

Vinyals, Oriol, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani et al. "Starcraft II: A new challenge for
reinforcement learning." arXiv preprint arXiv:1708.04782 (2017).
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The 3 Broad Categories of ML

> Labeled data

Supervised Learning > Direct feedback

> Predict outcome/future

> No labels/targets

Unsupervised Learning > No feedback

> Find hidden structure in data

> Decision process

Reinforcement Learning > Reward system

> Learn series of actions

Source: Raschka and Mirjalily (2019). Python Machine Learning, 3rd Edition
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Semi-Supervised Learning

* Mix between supervised and unsupervised learning

e Some training examples contain outputs, but some don’t

A @ Class 1 B
4 A Class?2 A
@® Unlabeled ;
®: A ® A
s | A ¢ 00 0 g%,
. i A A A .‘ :0 F A A @
X1 ¢ ® : A X1 o ¢ ‘@ A
“EAA A ..“."AA.A
oo o i, A A oo 0% .0 A°A0A
o * AA *®® o o AA
& E A o © ",' .A ® o
X2 > X2 ”

lllustration of semi-supervised learning incorporating unlabeled examples. (A) A decision boundary derived from
the labeled training examples only. (B) A decision boundary based on both labeled and unlabeled examples.
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Self-Supervised Learning

* A process of deriving and using label information directly from the
data itself rather than having humans annotating it

(class label)

Neighbo
} p?)lgitionr

’ ﬂ& } 5 |nput
Randomly Randomly ledtures
sampled sampled
patch neighbor

Predict
neighbor
position

Self-supervised leaming via context prediction. (A) A random patch is sampled (red square) along with 9 neighboring patches. (B) Given the
random patch and a random neighbor patch, the task is to predict the position of the neighboring patch relative to the center patch (red square).
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3. Some Necessary Jargon




Machine Learning Jargon

* Training a model = fitting a model = parameterizing a model = learning from
data

* Training example, synonymous to training record, training instance, training
sample (in some contexts, sample refers to a collection of training examples)

* Feature, synonymous to observation, predictor, variable, independent
variable, input, attribute, covariate

* Target, synonymous to outcome, ground truth, output, response variable,
dependent variable, (class) label (in classification)

* Output / Prediction, use this to distinguish from targets; here, means output
from the model
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Machine Learning Jargon

* Supervised learning
* Learning function to map input x (features) to output y (targets)

e Structured data
» Databases, spreadsheets/csv files, etc

* Unstructured data
* Features like image pixels, audio signals, text sentences
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Structured vs Unstructured Data

A

Feature vector of the 1st training example

Index Sepal length Sepal width Petal length Petal width

Class label

Species

0.2 )@is—setos@

1 ( 5.1 3.5 1.4
2 4.9 3 1.4
3 47 3.2 1.3
150 5.9 3 5.1
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0.2 Iris-setosa

0.2 Iris-setosa

1.8 lris-virginica




Data Representation

Feature vector
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Data Representation

_ — X{ X{l] xQ[,I] ses x}E’ll]
X1
T 2] ,[2]1 ... [2]
X2 X = | *2 X = [*1 *2 Xm
X = . . .
Feature vector  Feature Matrix / Design Matrix Feature Matrix / Design Matrix
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Data Representation (structured data)

Sepal

length width

Sepal

Petal
length

Petal
width

Petal

Setosa
2 4.9 3.0 1.4 0.2 Setosa
50 6.4 3.5 4.5 1.2 Versicolor
150 | 5.9 3.0 5.0 1.8 Virginica
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Data Representation (unstructured data; images)

Convolutional Neural Networks

Image batch dimensions: torch.size([128, 1, 28, 28]) <+—— "NCHW" representation (more on that later)
Image label dimensions: torch.Size([128])
print(images[0].size())

torch.Size([1l, 28, 28])

images|[0]

tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000], 01
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, : |

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 10 4
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000], 15 4

[0.0000, 0.0000, 0.0000, 0.0000, 0.5020, 0.9529, 0.9529, 0.9529,

0.9529, 0.9529, 0.9529, 0.8706, 0.2157, 0.2157, 0.2157, 0.5176, 20
0.9804, 0.9922, 0.9922, 0.8392, 0.0235, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000]
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 25 1
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.6627, 0.9922, 0.9922, 0.9922, 0.0314, 0.0000, 0.0000, 0.0000, 0 5 o 15 20 5
0.0000, 0.0000, 0.0000, 0.0000]
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4980, 0.5529,
0.8471, 0.9922, 0.9922, 0.5961, 0.0157, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000]
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0667, 0.0745, 0.5412, 0.9725, 0.9922,

A AnaA A AAAaA A rAanE A AEAn A AAAN A AnAA A AnAA A AAAn
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4. The building blocks of Deep Learning




McCulloch & Pitt’s neuron model (1943)

Inputs McCulloch & Pitts
(1943)
X Linear Hard

Combiner  Limiter

:> Output
J_ B
?

Threshold

2% "%
Warren McCulloch Walter Pitts
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Rosenblatt’s Perceptron

|
Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para.

Cornell Aeronautical Laboratory.

Continuous
Wi /"J{‘/ Weighting

W

P——o

n
net = Eﬂ Wi X; 5 :W Activation
(threshold)
X, function

Perceptrony B ¥

[
A ‘ . ‘
-y
T {
P 'g-g |
L5l 4

Generalizes MP neurons a bit...

Source: http:/Awww.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4/Rosen-2.jpg
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Perceptron Learning Algorithm

e Assume binary classification task

* Perceptron finds decision boundary is classes are separable

® class0
49 m class1 -...l. -
"I.- LR
2 LT »
o i L
o on™ 4 *®
0 Y, o . o .
® o e [ ]
24 ® .J o .u@
® . 2o .
_ ® s ¢ ®
) 3 [animated GIF]
M

Iteration 0

Code at https://github.com/rasbt/stat453-deep-learning-
ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
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Perceptron Learning Algorithm (pseudocode)

Let
D = ((xU, 1), (x 4B, (M y)) € (R™ x {0,1})"

1. Initialize w :== 0™ (assume weight incl. bias)

2. For every training epoch:
1. Forevery (x[i],y[i]) eD:
1. pl = O'(x[i]TW) «<—— Only-Oor1
2 err = (y[i] — y[i]) «—— Only-1,0,0r1

3 w=w+err x xli
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Perceptron Geometric Intuition

Decision boundary Weight vector is perpendicular

to the boundary. Why?

Remember,

- 0, wix <0
Y= 1, wlix >0

w'x = ||w|| - [|x]] - cos(6)

——

So this needs to be 0 at the boundary,
and it is zero at 90°
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Perceptron Geometric Intuition: Learning

input vector for an example with label 1

This is the new weight vector
CORRECT SIDE

WRONG SIDE

For this weight vector, we make a wrong prediction;
hence, we update
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Beyond Rosenblatt’s Perceptron

[
Perceptrons generalize MP Neurons _ Classic Rosenblatt
—>
Continuous Activation P threshold function Perceptron
- 521 Weighting / function \
. ; sigmoid — DL “Perceptron” /
Oft »() sigmoid unit
el :E‘OWI' Xi o = G(net) = l_mr
l+e
(Logistic) Sigmoid
* Many activation functions:
* Threshold function (perceptron, 1950+) ) ReLU (Rectiied Linear Unit
e Sigmoid function (before 2000) e R ! MU<Z>={SI herwise

s
+{ ReLU(z) = max(0, z)
N

* RelLU function (popular since CNNs)
* Many variants of RelU, e.g. leaky RelLU, GelU

—————————————
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Sigmoid unit: Logistic regression gives an optimizer

* For binary classes y € {0, 1}

"logistic sigmoid" O'(Z) = 1+ o>
€

B0 \

L2 Wy > wizi+b— a=0(z) —> "output"

Wm
Lm
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Sigmoid unit: Logistic regression gives an optimizer

— "logistic sigmoid" o(2) = ] +16_z
* Given the output: By
A W
h(X) — J(WTX _|_ b) -’17:2 sz=zi:w.'x.-+b—b a=o(z) — ‘output

* We compute the probability as

) h(x) ify=1
PO =91 b ify=o

|

P(ylx) = a¥(1 — a)(*-¥)

Recall Bernoulli distribution...
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Sigmoid unit: Logistic regression gives an optimizer

e Given the probability:
P(ylx) = a¥(1 — )1V

 Under MLE estimation, we would like to maximize the multi-sample

likelihood: o
Py, ..yttt xlml) = T P (v 1)
n y(i) R 1_y(i)
= H (J(z(i))) (1 — O‘(Z(?’)))
i=1
| q ]
Likelihood
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Sigmoid unit: Logistic regression gives an optimizer

y(i) (7)

. n 1—
P(y[‘ﬂ?___?y[ﬂ”X[l}j___:X[ﬂ]):H(a(z(i))) (1_0(,2@)) '

1=1
\ J
|

Likelihood

* We are going to optimize via gradient descent, so let’s apply the
logarithm to separate components:

[((w) = log L(w)

=2 _ [yW g (0(z7)) + (1 - y") log (1 — o (=1))]

=1 ]
Y

Log-Likelihood
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Sigmoid unit: Logistic regression gives an optimizer

0L 0Lda 0z
Ow;  Oa dz Ow,
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Logistic Regression: Gradient Descent learning Rule

Stochastic gradient descent:
1. Initialize w:=0€ R™, b :=0
2. For every training epoch:
A. Forevery (x!! ylily e D
@ 9 =0o(x"Tw+b)
b) Vol = _(y[i] _ g[i])x[i]

Vol = —(y" —g19) Note
€ w:=w-+ n X (—Vwﬁ) a—Y & —(y[i] — g[i])
bim b+ x (VL)
—_—
learning rate T

negative gradient

Ben Lengerich © University of Wisconsin-Madison 2025



Beyond Rosenblatt’s Perceptron

[
Perceptrons generalize MP Neurons _ Classic Rosenblatt
—>
Continuous Activation P threshold function Perceptron
- 521 Weighting / function \
. ; sigmoid — DL “Perceptron” /
Oft »() sigmoid unit
el :E‘OWI' Xi o = G(net) = l_mr \
l+e
*n Gradient Descent
(Logistic) Sigmoid
* Many activation functions:
* Threshold function (perceptron, 1950+) ) ReLU (Rectiied Linear Unit
e Sigmoid function (before 2000) e R ! MU<Z>={SI herwise

s
+{ ReLU(z) = max(0, z)
N

* RelLU function (popular since CNNs)
* Many variants of RelU, e.g. leaky RelLU, GelU

—————————————
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Can a Perceptron represent XOR?

— Continuous Activation
x ' H i
! A/PU{‘/Wﬂght'ng / function
XOR "2 : ’
- +
+ 4
>
” _JC @
+ o ¥ -
. net —Eﬂ“’: X 0 = G(ner) = l-m’l
l+e
.!’n
* No

* If there were, then there would be constants w; and w, such that:
* When x; = x,, then a(wyx; + wyx,) < 6
* When x; # x,,thenao(wyx; + wyx,) = 6
e letx; =1,x, =0 e Letx; =1,x, =1:
* Eq.(1): a(wy) =86 * Eq.(3):0(wy+w,) <6
e letx; =0,x, =1

. Eq. (2): (W) = 6 Eq. (1) + Eq. (2) contradicts Eq. (3)
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An XOR Logic Gate

| .
_1_1

g O »O

— }a . I.
nes E‘O“Jx.' 0 = O(net) = e

l+e

n

Multi-layer Perceptron?

https://byjus.com/jee/basic-logic-
gates/
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Multilayer Perceptron

 Computation Graph with Multiple Fully-Connected Layers

T Y1 Y2Ys
01 l
T9 02 > ﬁ(Y’ 0)

use softmax if this is a multi-class
problem with mutually exclusive classes

Ben Lengerich © University of Wisconsin-Madison 2025




Multilayer Perceptrons Can Solve XOR

m ClassO0
A Class1

m ClassO0
A Class1

Decision boundaries of two different multilayer perceptrons on simulated data
NN-SVG ~  solving the XOR problem

O \
Q
Q

https://alexlenail.me/NN-SVG/index.html
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Multi-Layer Perceptrons (MLPs)

aka Multi-layer Neural Networks
Inputs

Output

0.6

“Probability
of
beingAlive”

Dependent

Independent  Weights  HiddenL  wejghts variable

variables aver
Prediction
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“Combined Logistic Models”

Output
Age P
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights HiddenL  wejghts va :;ﬂ ble
variables ayer
Prediction
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“Combined Logistic Models”

Inputs
Output
Age
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights  HiddenL.  yyejghts mrﬂab!e
variables aver
Prediction
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“Combined Logistic Models”

Inputs

\ Output
S
7.\ — 0.6
9-.{ “Probability
of
/ beingAlive”

. _ Dependent
Independent Weights HiddenL  vweijghts variable
variables aver
Prediction
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Multilayer Neural Networks Can Solve XOR

m ClassO0
A Class1

m ClassO0
A Class1

Decision boundaries of two different multilayer perceptrons on simulated data
NN-SVG ~  solving the XOR problem

O \
Q
Q

https://alexlenail.me/NN-SVG/index.html
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A new problem: Training

* How can we train a multilayer model?
* No targets / ground truth for the hidden nodes

 Solution: Backpropagation

* Independently formulated many times
* http://people.idsia.ch/~juergen/who-invented-backpropagation.html

 Rumelhart and Hinton (1986) showed that it really works

* Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323(6088), 533.
In late 1985, I actually had a deal with Dave Rumelhart that I would write

a short paper about backpropagation, which was his idea, and he would write
a short paper about autoencoders, which was my idea. It was always better
to have someone who didn’t come up with the idea write the paper because
he could say more clearly what was important.

So I wrote the short paper about backpropagation, which was the Nature
paper that came out in 1986, but Dave still hasn’t written the short paper

about autoencoders. I'm still waiting.
What he did da wac tell Nave Zincer ahant the idea of autnencoders and

— Geoffrey Hinton in Talking Nets - An Oral History of Neural Networks, pg. 380
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5. Training Deep Models




Backpropagation

* Neural networks are function compositions that can be represented as
computation graphs:

VOl

variables Outputs

Intermediate
computations

* By applying the chain rule, and working in reverse order, we get:

dfn L afn ale L afﬂ afi.i afi.l
Z 8_}%‘,1 Ox N Z Z dfig Ox N

11€ET(N) i1 Eﬂ'(n) io€Em(i1)
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Computation graphs: RelLU

— Suppose we have the following activation function:

a(x, w, b) =relu(w -x +b)

z ifz>0
81 relu(z) —{ 0 otherwise

6_

for example,
activation a 4 |

-100 -75 -50 -25 00 25 50 75
for example, net input z

RelLU = Rectified Linear Unit

(prob. the most commonly used activation function in DL)
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Computation graphs: RelLU

alx, w, b) =relu(w -x + b)
—

Uy J
Y
"4
b
X a= relu(v)]
:}}}{ u = wx
W
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Computation graphs: RelLU

{a = reIu(v)J
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Computation graphs: RelLU

{a = reIu(v)J
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Computation graphs: RelLU

P[a = relu(v)]
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Computation graphs: Single-path

E(y, 01 (w1 y :131))

Y
ol l
0 v L(y,0) =1
.7'10]_ — A1 » O — l
8a1 0o
Owy day

ol Ol 0do 0Oay

8—w1:80.8a1.8—w1

(univariate chain rule)
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Computation graphs: Fully-Connected Layer

aagl)
8w{51%
Bagl)

5w£2
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Computation graphs: Weight-Sharing

L(y,03|01(w1 - 1), 02 (w1 - 21)])

01(21) = a1
80,1
ow,. @1 do

Y
-~ 9y O j
- \ do y L(y,0)=1

w o3(a1,az) =o

1 -~
8&2

6—101 02(21) = Q2

Upper path

ol _ 0l 9o Oam Ol 9o Oay o .
w: 9o Oai Ow,  do Oay 0w, (multivariable chain rule)

Lower path
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PyTorch: Automated Differentiation




PyTorch Usage: Step 1 (Definition)

Backward will be inferred
automatically if we use the nn.Module

def _ init__ (self, num features, num classes): class!
super (MultilayerPerceptron, self). init ()

class MultilayerPerceptron(torch.nn.Module): «

### lst hidden layer _

self.linear 1 = torch.nn.Linear(num_ feat, num hl) Define model parameters

### 2nd hidden layer that will be instantiated
self.linear 2 = torch.nn.Linear(num _hl, num h2) when created an object of
this class

### Output layer
self.linear out = torch.nn.Linear(num h2, num classes)

def forward(self, x):
out = self.linear_1(x) Define how and it what

out = F.relu(out) order the model parameters

out = self.linear 2(out) :
out = F.relu(out) should be used in the

logits = self.linear out(out) forward pPass
probas = F.log softmax(logits, dim=1)
return logits, probas AL
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PyTorch Usage: Step 2 (Creation)

torch.manual seed(random_ seed)
model = MultilayerPerceptron(num_features=num_features,I Instantiate model

num_classes=num_classes) (creates the model parameters)

model = model.to(device)

optimizer = torch.optim.SGD(model.parameters(),

lr=learning rate) I Define an optimization method
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PyTorch Usage: Step 3 (Training)

Run for a specified number of
epochs
: lterate over minibatches
for epoch in range(num epochs): .
model.train() / N epOCh
for batch idx, (features, targets) in enumerate(train loader):
If your model is on the
GPU, data should also

features = features.view(-1, 28*28).to(device) +——

targets = targets.to(device) <
be
### FORWARD AND BACK PROP on the GP U
logits, probas = model(features)
cost = F.cross _entropy(probas, targets)
optimizer.zero grad()
cost.backward() y = model(x) calls .__call__ and then .forward(), where some
extra stuff is done in _call_;
### UPDATE MODEL PARAMETERS don't run y = model.forward(x) directly
optimizer.step()
model.eval()
with torch.no_grad(): Gradients at each leaf node are accumulated under the .grad attribute, not just stored. This is why we

# compute accurac
P Y have to zero them before each backward pass
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PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()
for batch_idx, (features, targets) in enumerate(train_ loader):

features = features.view(-1, 28*28).to(device)
targets = targets.to(device)

### FORWARD AND BACK PROP

logits, probas = model(features) <«——— This willrun the forward() method

loss = F.cross_entropy(logits, targets)<«——— Define aloss function to optimize
optimizer.zero_grad() «——— Set the gradient to zero

(could be non-zero from a previous forward pass)
loss.backward()

Compute the gradients, the backward is
### UPDATE MODEL PARAMETERS ; " "
L automatically constructed by "autograd” based on
optimizer.step()

the forward() method and the loss function
model.eval() \ Use the gradients to update the weights according to
with torch.no grad(): the optimization method (defined on the previous

# compute accuracy slide)
E.g., for SGD, w := w + learning_rate x gradient
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PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()

for batch idx, (features, targets) in enumerate(train loader):

features =
targets = tar

features.view(-1, 28*28).to(device)
ts.to(device)

### FORWARD AND
logits, probas = mgdel(features)

loss = F.cross_entropy(logits, targets)
optimizer.zero grad()

loss.backward()

### UPDATE MODEL PARAMETER

optimizer.step()
For evaluation, set the model to eval mode (will be

model.eval() < relevant later when we use DropOut or BatchNorm)

with torch.no grad():
# compute accurac;“\‘-ﬁ\\\ﬁﬁﬁi _ _
This prevents the computation graph for

backpropagation from automatically being build in
the background to save memory
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