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Where we are...

* Good news: We can solve non-linear problems!
* Bad news: Our multilayer neural networks have lots of
parameters and it’s easy to overfit the data...

Next time:
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Regularization




Parameters vs Hyperparameters

weights (weight parameters)
biases (bias units)
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minibatch size

data normalization schemes

number of epochs

number of hidden layers

number of hidden units

learning rates

(random seed, why?)

loss function

various weights (weighting terms)
activation function types

regularization schemes (more later)
weight initialization schemes (more later)
optimization algorithm type (more later)




Overfitting and Underfitting

We usually use the test set error
as estimator of the generalization error

Error

Overfitting

Model Capacity
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Bias-Variance Decomposition

General Definition: Intuition:

Bias [9’"‘] _ E[é‘] _0 %\\‘i‘zﬁ:‘;’%ﬁﬁa‘ﬁéﬁs
Varg[d] = E [§2] — (E[6])? % \ v,

Vonauce 721"84
(9)
L
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Bias-Variance & Overfitting-Underfitting

. — : —_—
. Underfitting +  Overfitting
Tven increases | increases

A

Model Capacity
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Deep Learning works best with large datasets

Generalization
Error
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Deep Learning

Training Dataset Size
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Collecting more data

Data augmentation

Many ways to improve generalization

Label smoothing

Dataset Semi-supervised

Leveraging unlabeled data _~~
. Self-supervised

Meta-learning
Leveraging related data
< Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchMNorm and variants
Normalization

Weight standardization

Gradient centralization

Adaptive learning rates

Training loop Auxiliary losses

Gradient clipping

L2 (/L1) regularization

Regularization Early stopping

Dropout
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General Strategies to Avoid Overfitting

e Collecting more data, especially high-quality data, is best & always
recommended

* Alternatively: semi-supervised learning, transfer learning, and self-supervised
learning

e Data augmentation is helpful
e Usually requires prior knowledge about data or tasks

* Reducing model capacity can help
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Data Augmentation

* Key Idea: If we know the label shouldn’t depend on a fcransformation
h(x), then we can generate new training data h(x‘),y‘

* But we must already know something that our outcome doesn’t
depend on

* Example: image classification
e rotation, zooming, sepia filter, etc.
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Reduce Network Capacity

* Key Idea: The simplest model that matches the outputs should
generalize the best

* Choose a smaller architecture: fewer hidden layers & units, add
dropout, use RelLU + L1 penalty to prune dead activations,e tc.

* Enforce smaller weights: Early stopping, L2 norm penalty
* Add noise: Dropout

* Note: With recent LLMs and foundation models, it’s possible to use a
large pretrained model and perform efficient fine-tuning (updating
small number of parameters of a large model)
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Early Stopping

e Step 1: Split your dataset into 3 parts (as always)

* Use test set only once at the end
* Use validation accuracy for tuning

Dataset

Training Validation Test
dataset dataset dataset
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Early Stopping

 Step 2: Stop training early

* Reduce overfitting by observing the training/validation accuracy gap during training
and then stop at the “right” point

A

Good early stopping point

Training set

Accuracy

Validation set

A

Epoéhs
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Effect of Regularization on Decision Boundary

Assume a nonlinear model
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L2 regularization for Multilayer Neural Networks

n L
1 ENT A
L2-Regularized-Costy, , = n Z Ly™, ") + - Z w5
sum/ov'er layers

where ||W(l) | |%—1 is the Frobenius norm (squared):

w2 = ZZ 2
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L2 regularization for Multilayer Neural Networks

Regular gradient descent update:

oL 2\ )

Wi,j = Wij — 7] - ——W;,
'J 'J (8@02"7 n 'J
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L2 regularization for Neural Networks in PyTorch

Manually:

# regularize loss
L2 = 0.
for name, p in model.named parameters():
if 'weight' in name:
L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward()
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L2 regularization for Neural Networks in PyTorch

Automatically:

HHHHHHAHHHHHAHHHAHHAARHHAAHHAAR AT AR A A AR AR AHHHASHH AR HH A
## Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),

1r=0.1,

weight decay=LAMBDA)

for epoch in range(num epochs):

#### Compute outputs ####
out = model(X train tensor)

#### Compute gradients ####

cost = F.binary cross entropy(out, y train tensor)
optimizer.zero grad()

cost.backward()
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Dropout

P
L1 (2)
aq
> :
T2 agz)
P

Originally, drop probability 0.5

(but 0.2-0.8 also common now)
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Dropout

 How do we drop node activations practically / efficiently?

Bernoulli Sampling (during training):

* p :=drop probability

* v :=random sample from uniform distribution in range [0, 1]
* Viev:v;, =0ifv;, <pelsel

*'a:=a@®wv (p X 100% of the activations a will be zeroed)

Then, after training when making predictions (during "inference")

scale activationsvia a:=a® (1 — p)
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Dropout in PvTorch

— class MultilayerPerceptron(torch.nn.Module):

def __init__ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
# output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

Ben Lengerich © University of Wisconsin-Madison 2025



Improvements to optimization




Note that our Loss is Not Convex Anymore
* Linear regression, Adaline, Logistic Regression, and Softmax Regression
have convex loss functions

e But our deep loss is no longer convex (most of the time)

* |n practice, we usually end up at different local minima if we repeat the training
(e.g. by changing the random seed for weight initialization or shuffling the dataset
while leaving all settings the same

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018. Visualizing the loss landscape of neural nets.
In Advances in Neural Information Processing Systems (pp. 6391-6401).
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Minibatch Training

* Minibatch learning is a form of
T stochastic gradient descent
Lost Miwimam o Egch minibatch can be considered a
") sample drawn from the training set

(where the training set is in turn a
sample drawn from the population)

* Hence, the gradient is noisier

— > A noisy gradient can be:
e good: chance to escape local minima
* bad: can lead to extensive oscillation
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Learning Rate Decay

e Batch effects -- minibatches are samples of the training
set, hence minibatch loss and gradients are approximations

* Hence, we usually get oscillations

* To dampen oscillations towards the end of the training, we can

decay the learning rate nally Wi el ouenage
. . Q/;;l’ W lhole - brasurug sek Aogs
e Danger of learning rate is to decrease the A / Q
learning rate too early '
* Practical tip: try to train the model without
learning rate decay first, then add it later /[,
* You can also use the validation performance
(e.g., accuracy) to judge whether Ir decay is
useful (as opposed to using the training loss)
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Learning Rate Decay

Most common variants for Ir decay:

1. Exponential Decay:

N = nge Xt

where k is the decay rate

- decay rate 0.05
—— decay rate 0.01
0.4 —— decay rate 0.1

o
[

Learning rate

e
H

0.0 1

0 20 40 60 80 100
Iteration (usually: epoch)
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Learning Rate Decay

Most common variants for Ir decay:

1. Exponential Decay:
Ne = 1oe™ "
where k is the decay rate

2. Halving the learning rate:
Ne = Ne—1/2
where t is a multiple of T (e.g. T, = 100)

3. Inverse decay:
Mo

T 1+ k-t

Ne -
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Training with “Momentum”

* Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

S T e

https://www.asherworldturns.com/zorbing-new-zealand/
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Training with “Momentum”

* Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

<

Without momentum With momentum

Key take-away: Not only move in the (opposite) direction of the
gradient, but also move in the “weighted averaged" direction of the
last few updates
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Training with “Momentum”

Often referred to as "velocity" V
"velocity" from the
previous iteration
Aw; (1) := o Awj(t —1) +n- 5 —(t)
Wi,
Usually, we choose a \
momentum rate between
0.9 and 0.999; you can Regular partial derivative/
think of it as a "friction" or ~ gradient multiplied by
Qian, N.(1999). On the momentum term in gradient descent n . n .
Iearninglalgorithms. Neural Netwgrks:The Official Journal of the dampenlng parameter |eal’nlng I’ate at CUI’I’ent
International Neural Network Society, 12(1), 145-151. t|me Step t

http://doi.org/10.1016/S0893-6080(98)00116-6
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Nesterov: A Better Momentum

We already know where the momentum part will push us in this step. Let’s
calculate the new gradient with that update in mind:

Before:

Aw; == a - Awi_1 + 1 - VW L(Wy)
Wil 1= Wy — Awy

Nesterov:
AWt .

Wiy -

a-Aw, 1+ 1 Ve l(w; —a- Awy_1)
Wi — AWt

Nesterov, Y. (1983). A method for unconstrained convex minimization Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated

importance of initialization and momentum in deep learning. ICML (3),
as Soviet.Math.Docl.), vol. 269, pp. 543—547. 28(1139-1147), 5.
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Nesterov: A Better Momentum

momentum term vy,

-
--"
-
------
-
-
-
-

-
-
="
-
-
--"

g6, + uv,)«— correction term (gradient of the
R point where you would have
-------- Ot ended up via the standard
momentum method)

Figure 1. (Top) Classical Momentum (Bottom) Nes-
terov Accelerated Gradient

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147), 5.
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Adaptive Learning Rates

Many different flavors of adapting the learning rate

Rule of thumb:
1. decrease learning if the gradient changes its direction

2. increase learning if the gradient stays consistent
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RMSProp

* Unpublished (but very popular) algorithm by Geoff Hinton
e Based on Rprop [1]
* Very similar to another concept called AdaDelta

* Main idea: divide learning rate by an exponentially decreasing
moving average of the squared gradients
 RMS = “Root Mean Squared”
* Takes into account that gradients can vary widely in magnitude
* Damps oscillations like momentum (in practice, works better)

[1] Igel, Christian, and Michael Hiisken. "Improving the Rprop learning algorithm." Proceedings of the Second
International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.
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ADAM (Adaptive Moment Estimation)

* Probably the most widely used optimization algorithm in DL

 Combination of momentum + RMSProp

Momentum-like term:
oL

= ﬂ‘w—‘é—f_)ﬂw

/
my 3’&)1 j

(t)

t
&U% y ( )
RMSProp term: 9
oL )

ro= ,(3 . MeanSquare W, b — 1)+ (1 — ,8 (
( J ) ( ) 31,01-,3- (t)
ADAM update:

t
sJ L? ‘\/F_I_E

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

m:=a-my_1+ (1 —a) -
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Normalization




Normalization and gradient descent

— Surface of a convex cost function

A minimum (for simplicity)
.

w| (=== —0

(Keep in mind that we are using
the same learning rate for all weights, so large parameters
will dominate the updates)

(V05

[
>

"Standardization" of input features

w1 o Wz — g
=T
i

(scaled feature will have zero mean,
> unit variance)
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In deep models...

Normalizing the inputs only affects the first hidden layer...what
about the rest?
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Batch Normalization (“BatchNorm”)

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

 Normalizes hidden layer inputs

* Helps with exploding/vanishing gradient problems

e Can increase training stability and convergence rate

 Can be understood as additional (normalization) layers (with
additional parameters)
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Batch Normalization (“BatchNorm”)
(2)

— Suppose, we have net input 2,
associated with an activation in the 2nd hidden layer
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Batch Normalization (“BatchNorm”)

Now, consider all examples in a minibatch such that the net input

of a given training example at layer 2 is written as Z§2) g

where ¢ € {1,...,n}

In the next slides, let's omit the
layer index, as it may be
distracting...

L1

L2
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BatchNorm Step 1: Normalize Net Inputs

o Ll
Hi = o Z &
2
o 1 (4] 2
9 = Z(Zj — [45)
;
(4] In practice:
Z/Bi] _ S ; SO
O'j z’j =

\/ajz-—l—e

For numerical stability, where
epsilon is a small number like 1E-5
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BatchNorm Step 2: Pre-Activation Scaling

[Z]

;[z] — Ky

Controls the mean

Controls the spread or scale

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance
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BatchNorm Steps 1+2 Together

i
@ _ % —H [4] [4]
i ay =725 + 5

4 ~

ry — z§1) —»z’gl)—>a’§1)—> agl) first hidden layer

zgz)—>z’ §2)—’a' 52)—’ a§2) ' second hidden layer
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BatchNorm Steps 1+2 Together

a/u[;] — i - ZIE‘Z] + B;

N

This parameter makes the bias units redundant

Also, note that the batchnorm parameters
are vectors with the same number of
elements as the bias vector

Iy

Z2
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BatchNorm and Backprop

Z,(-Q) _ 5 T Hj
J O-‘7

w®

@ o
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BatchNorm and Backprop

(

1) (2)
-

Since the minibatch mean and
variance act as parameters, we
can/have to apply the
multivariable chain rule

oL 0l -3z1§_2)[i] N ol Oy, N ol do?
azﬂ(?)[i] 3z'§2)[i] azﬁz)[i] O azj(?)[i] 0o 823(2)[1']
— ol - 1 + ﬁ : l e ol , 2(z3(2) _IJ’J')
3ZI§2)[i] o;  Ou; n 3032 n
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BatchNorm and Backprop

) or 0P o au, 8l 80
] i q T ' 1732 ~ @
92 oy Ol 9, @6 T op; 9, T 907 g,
4 N ’ ‘ (2)
I I W U S el )
| 9@ los B | n do’; n
7 Y, —— N/

If you like math & engineering, you can solve the remaining terms
as an ungraded HW exercise ;)
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BatchNorm in PyTorch

class MultilayerPerceptron(torch.nn.Module):

def __init__ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1, bias=False)
torch.nn.BatchNormld (num_hidden_1),
torch.nn.ReLU(),
# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False)
torch.nn.BatchNormld (num_hidden_2),
torch.nn.ReLU(),
# output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

https://github.com/rasbt/stat453-deep-
Ben Lengerich © University of Wisconsin-Madison 2025 learningss21/blob/main/L11/code/batchnorm.ipynb
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BatchNorm in PyTorch

[ def train_model(model, num_epochs, train_loader,
valid_loader, test_loader, optimizer, device):

start_time = time.time()
minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
for epoch in range(num_epochs):

model.train()
for batch_idx, (features, targets) in enumerate(train_loader):

features = features.to(device)
targets = targets.to(device)

# ## FORWARD AND BACK PROP

logits = model(features)

loss = torch.nn.functional.cross_entropy(logits, targets)
optimizer.zero_grad()

loss.backward()

# ## UPDATE MODEL PARAMETERS donlt forget mOdeI'train()
optimizer.step() and mode|_eva|()
# ## LOGGING in training and test loops

minibatch_loss_list.append(loss.item())
if not batch_idx % 50:
print(f'Epoch: {epoch+1:03d}/{num_epochs:@3d} '
f'| Batch {batch_idx:04d}/{len(train_loader):04d} '
f'| Loss: {loss:.4f}')

model.eval()
with torch.no_grad(): # save memory during inference
train_acc = compute_accuracy(model, train_loader, device=device)
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BatchNorm at Test-Time

e Use exponentially weighted average (moving average) of mean and
variance

running_mean = momentum * running_mean + (1 - momentum) *
sample_mean

(where momentum is typically ~0.1; and same for variance)

e Alternatively, can also use global training set mean and variance
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Related: LayerNorm

e Layer normalization (LN)

X141

* BN calculates mean/std based on
a mini batch, whereas LN
calculates mean/std based on
feature/embedding vectors

Pre-LLN Transformer

2P = LayerNorm(z!"°)

27"%? = MultiHeadAtt(z}", [zF7°" - - 2P7®))
I?’;EJ - If:e ki I;):e.?_

27" = LayerNorm(z21"*?)

27%° = ReLU (2] ;=W 4 bLY) W2l 4 p2
ofrs s = o0 +afy?

* |[n the stats language, BN zero
mean unit variance, whereas LN

. . pPTe I pPre
Final LayerNorm: 27, .; ; + LayerNorm(z} , ;)

. . tte;tion
projects feature vector to unit
sphere

X]

e LN in Transformers




Normalize everything?

Batch Norm Layer Norm Instance Norm Group Norm
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Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C' as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).




Initialization




Weight initialization

e Recall: Can’t initialize all weights to O (symmetry problem)

* But we want weights to be relatively small.

* Traditionally, we can initialize weights by sampling from a random uniform
distribution in range [0, 1], or better, [-0.5, 0.5]

* Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 0r 0.01)
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Xavier Initialization

Method:
 Step 1: Initialize weights from Gaussian or uniform distribution

* Step 2: Scale the weights proportional to the number of inputs to
the layer

* For the first hidden layer, that is the number of features in the dataset; for the
second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.
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Xavier Initialization

Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of
independent variables is the sum of the variances); square root for

standard deviation

mp_1
Var (zj(.l)) = Var Z WJ(,? ,(cl_l)
j=1
(=1 (1)
= Z Var [Wj(,?ag_l)] = Z Var [WJ(Q] Var [a,(cl_l)]
j=1 i=1
m (=1
= Z Var [W(l)] Var [a(l_l)] — m{=D var [W(l)] Var [a(l_l)]
j=1
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He Initialization

* Assuming activations with mean 0, which is reasonable, Xavier

Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

 For RelLU, the activations are not centered at zero
 He initialization takes this into account

 The result is that we add a scaling factor of V2

2
) .— w .
wh .—w \/m(el)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.
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Questions?

e
QWI WISCONSIN
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