
STAT 992: Foundation Models for
Biomedical Data

Ben Lengerich
Lecture 03: Regularization, Optimization, and Initialization in Deep Learning

Jan 28, 2026

Where we are…

Ben Lengerich © University of Wisconsin-Madison 2026

• Good news: We can solve non-linear problems!
• Bad news: Our multilayer neural networks have lots of

parameters and it’s easy to overfit the data…

Next time:

Regularization

Parameters vs Hyperparameters

Ben Lengerich © University of Wisconsin-Madison 2026

weights (weight parameters)
biases (bias units)

minibatch size
data normalization schemes
number of epochs
number of hidden layers
number of hidden units
learning rates
(random seed, why?)
loss function
various weights (weighting terms)
activation function types
regularization schemes (more later)
weight initialization schemes (more later)
optimization algorithm type (more later)
...

Overfitting and Underfitting

Ben Lengerich © University of Wisconsin-Madison 2026

Bias-Variance Decomposition

Ben Lengerich © University of Wisconsin-Madison 2025

General Definition: Intuition:

Ben Lengerich © University of Wisconsin-Madison 2026

Bias-Variance & Overfitting-Underfitting

Ben Lengerich © University of Wisconsin-Madison 2025

Deep Learning works best with large datasets

Ben Lengerich © University of Wisconsin-Madison 2025

Many ways to improve generalization

Ben Lengerich © University of Wisconsin-Madison 2025

General Strategies to Avoid Overfitting

Ben Lengerich © University of Wisconsin-Madison 2025

• Collecting more data, especially high-quality data, is best & always
recommended
• Alternatively: semi-supervised learning, transfer learning, and self-supervised

learning

• Data augmentation is helpful
• Usually requires prior knowledge about data or tasks

• Reducing model capacity can help

Data Augmentation

Ben Lengerich © University of Wisconsin-Madison 2025

• Key Idea: If we know the label shouldn’t depend on a transformation
h(x), then we can generate new training data ℎ 𝑥𝑖 , 𝑦𝑖

• But we must already know something that our outcome doesn’t
depend on

• Example: image classification
• rotation, zooming, sepia filter, etc.

Reduce Network Capacity

Ben Lengerich © University of Wisconsin-Madison 2025

• Key Idea: The simplest model that matches the outputs should
generalize the best

• Choose a smaller architecture: fewer hidden layers & units, add
dropout, use ReLU + L1 penalty to prune dead activations,e tc.

• Enforce smaller weights: Early stopping, L2 norm penalty

• Add noise: Dropout

• Note: With recent LLMs and foundation models, it’s possible to use a
large pretrained model and perform efficient fine-tuning (updating
small number of parameters of a large model)

Early Stopping

Ben Lengerich © University of Wisconsin-Madison 2025

• Step 1: Split your dataset into 3 parts (as always)
• Use test set only once at the end

• Use validation accuracy for tuning

Early Stopping

Ben Lengerich © University of Wisconsin-Madison 2025

• Step 2: Stop training early
• Reduce overfitting by observing the training/validation accuracy gap during training

and then stop at the “right” point

Effect of Regularization on Decision Boundary

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Multilayer Neural Networks

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

L2 regularization for Neural Networks in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

Dropout

Ben Lengerich © University of Wisconsin-Madison 2025

• How do we drop node activations practically / efficiently?

Dropout in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

Improvements to optimization

Note that our Loss is Not Convex Anymore

Ben Lengerich © University of Wisconsin-Madison 2025

• Linear regression, Adaline, Logistic Regression, and Softmax Regression
have convex loss functions

• But our deep loss is no longer convex (most of the time)
• In practice, we usually end up at different local minima if we repeat the training

(e.g. by changing the random seed for weight initialization or shuffling the dataset
while leaving all settings the same

Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018. Visualizing the loss landscape of neural nets.

In Advances in Neural Information Processing Systems (pp. 6391-6401).

Minibatch Training

Ben Lengerich © University of Wisconsin-Madison 2025

• Minibatch learning is a form of
stochastic gradient descent

• Each minibatch can be considered a
sample drawn from the training set
(where the training set is in turn a
sample drawn from the population)

• Hence, the gradient is noisier

A noisy gradient can be:
• good: chance to escape local minima
• bad: can lead to extensive oscillation

Learning Rate Decay

Ben Lengerich © University of Wisconsin-Madison 2025

• Batch effects -- minibatches are samples of the training
set, hence minibatch loss and gradients are approximations

• Hence, we usually get oscillations

• To dampen oscillations towards the end of the training, we can
decay the learning rate

• Danger of learning rate is to decrease the
learning rate too early

• Practical tip: try to train the model without
learning rate decay first, then add it later

• You can also use the validation performance
(e.g., accuracy) to judge whether lr decay is
useful (as opposed to using the training loss)

Learning Rate Decay

Ben Lengerich © University of Wisconsin-Madison 2025

Most common variants for lr decay:

1. Exponential Decay:
𝜂𝑡 ≔ 𝜂0e

−k⋅𝑡

where 𝑘 is the decay rate

Learning Rate Decay

Ben Lengerich © University of Wisconsin-Madison 2025

Most common variants for lr decay:

1. Exponential Decay:
𝜂𝑡 ≔ 𝜂0e

−k⋅𝑡

where 𝑘 is the decay rate

2. Halving the learning rate:
𝜂𝑡 ≔ 𝜂𝑡−1/2

where 𝑡 is a multiple of 𝑇0 (e.g. 𝑇0 = 100)

3. Inverse decay:

𝜂𝑡 ≔
𝜂0

1 + 𝑘 ⋅ 𝑡

Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

• Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

https://www.asherworldturns.com/zorbing-new-zealand/

https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/
https://www.asherworldturns.com/zorbing-new-zealand/

Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

• Main idea: Let’s dampen oscillations by using “velocity” (the
speed of the “movement” from previous updates)

Key take-away: Not only move in the (opposite) direction of the
gradient, but also move in the “weighted averaged" direction of the
last few updates

Training with “Momentum”

Ben Lengerich © University of Wisconsin-Madison 2025

Qian, N. (1999). On the momentum term in gradient descent
learning algorithms. Neural Networks : The Official Journal of the
International Neural Network Society, 12(1), 145–151.
http://doi.org/10.1016/S0893-6080(98)00116-6

Nesterov: A Better Momentum

Ben Lengerich © University of Wisconsin-Madison 2025

Nesterov, Y. (1983). A method for unconstrained convex minimization
problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated
as Soviet.Math.Docl.), vol. 269, pp. 543– 547.

We already know where the momentum part will push us in this step. Let’s
calculate the new gradient with that update in mind:

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147), 5.

Nesterov: A Better Momentum

Ben Lengerich © University of Wisconsin-Madison 2025

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147), 5.

correction term (gradient of the

point where you would have

ended up via the standard

momentum method)

Adaptive Learning Rates

Ben Lengerich © University of Wisconsin-Madison 2025

Many different flavors of adapting the learning rate

Rule of thumb:

1. decrease learning if the gradient changes its direction

2. increase learning if the gradient stays consistent

RMSProp

Ben Lengerich © University of Wisconsin-Madison 2025

• Unpublished (but very popular) algorithm by Geoff Hinton

• Based on Rprop [1]

• Very similar to another concept called AdaDelta

• Main idea: divide learning rate by an exponentially decreasing
moving average of the squared gradients
• RMS = “Root Mean Squared”

• Takes into account that gradients can vary widely in magnitude

• Damps oscillations like momentum (in practice, works better)

[1] Igel, Christian, and Michael Hüsken. "Improving the Rprop learning algorithm." Proceedings of the Second

International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.

ADAM (Adaptive Moment Estimation)

Ben Lengerich © University of Wisconsin-Madison 2025

• Probably the most widely used optimization algorithm in DL

• Combination of momentum + RMSProp

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Momentum-like term:

RMSProp term:

ADAM update:

Normalization

Normalization and gradient descent

Ben Lengerich © University of Wisconsin-Madison 2025

In deep models…

Ben Lengerich © University of Wisconsin-Madison 2025

Normalizing the inputs only affects the first hidden layer…what
about the rest?

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning (pp. 448-456).

http://proceedings.mlr.press/v37/ioffe15.html

http://proceedings.mlr.press/v37/ioffe15.html

• Normalizes hidden layer inputs
• Helps with exploding/vanishing gradient problems
• Can increase training stability and convergence rate
• Can be understood as additional (normalization) layers (with

additional parameters)

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

Batch Normalization (“BatchNorm”)

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 1: Normalize Net Inputs

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Step 2: Pre-Activation Scaling

Ben Lengerich © University of Wisconsin-Madison 2025

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance

BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm Steps 1+2 Together

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm and Backprop

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

https://github.com/rasbt/stat453-deep-
learningss21/blob/main/L11/code/batchnorm.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

BatchNorm in PyTorch

Ben Lengerich © University of Wisconsin-Madison 2025

BatchNorm at Test-Time

Ben Lengerich © University of Wisconsin-Madison 2025

• Use exponentially weighted average (moving average) of mean and
variance

running_mean = momentum * running_mean + (1 - momentum) *
sample_mean

(where momentum is typically ~0.1; and same for variance)

• Alternatively, can also use global training set mean and variance

Related: LayerNorm

• Layer normalization (LN)

• BN calculates mean/std based on
a mini batch, whereas LN
calculates mean/std based on
feature/embedding vectors

• In the stats language, BN zero
mean unit variance, whereas LN
projects feature vector to unit
sphere

• LN in Transformers

Normalize everything?

Initialization

Weight initialization

Ben Lengerich © University of Wisconsin-Madison 2025

• Recall: Can’t initialize all weights to 0 (symmetry problem)

• But we want weights to be relatively small.
• Traditionally, we can initialize weights by sampling from a random uniform

distribution in range [0, 1], or better, [-0.5, 0.5]

• Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 or 0.01)

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Method:

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to
the layer
• For the first hidden layer, that is the number of features in the dataset; for the

second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics .
2010.

Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

He Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.

• Assuming activations with mean 0, which is reasonable, Xavier
Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

• For ReLU, the activations are not centered at zero
• He initialization takes this into account

• The result is that we add a scaling factor of √2

.

Questions?

	Slide 1: STAT 992: Foundation Models for Biomedical Data
	Slide 2: Where we are…
	Slide 3: Regularization
	Slide 4: Parameters vs Hyperparameters
	Slide 5: Overfitting and Underfitting
	Slide 6: Bias-Variance Decomposition
	Slide 7: Bias-Variance & Overfitting-Underfitting
	Slide 8: Deep Learning works best with large datasets
	Slide 9: Many ways to improve generalization
	Slide 10: General Strategies to Avoid Overfitting
	Slide 11: Data Augmentation
	Slide 12: Reduce Network Capacity
	Slide 13: Early Stopping
	Slide 14: Early Stopping
	Slide 15: Effect of Regularization on Decision Boundary
	Slide 16: L2 regularization for Multilayer Neural Networks
	Slide 17: L2 regularization for Multilayer Neural Networks
	Slide 18: L2 regularization for Neural Networks in PyTorch
	Slide 19: L2 regularization for Neural Networks in PyTorch
	Slide 20: Dropout
	Slide 21: Dropout
	Slide 22: Dropout in PyTorch
	Slide 23: Improvements to optimization
	Slide 24: Note that our Loss is Not Convex Anymore
	Slide 25: Minibatch Training
	Slide 26: Learning Rate Decay
	Slide 27: Learning Rate Decay
	Slide 28: Learning Rate Decay
	Slide 29: Training with “Momentum”
	Slide 30: Training with “Momentum”
	Slide 31: Training with “Momentum”
	Slide 32: Nesterov: A Better Momentum
	Slide 33: Nesterov: A Better Momentum
	Slide 34: Adaptive Learning Rates
	Slide 35: RMSProp
	Slide 36: ADAM (Adaptive Moment Estimation)
	Slide 37: Normalization
	Slide 38: Normalization and gradient descent
	Slide 39: In deep models…
	Slide 40: Batch Normalization (“BatchNorm”)
	Slide 41: Batch Normalization (“BatchNorm”)
	Slide 42: Batch Normalization (“BatchNorm”)
	Slide 43: BatchNorm Step 1: Normalize Net Inputs
	Slide 44: BatchNorm Step 2: Pre-Activation Scaling
	Slide 45: BatchNorm Steps 1+2 Together
	Slide 46: BatchNorm Steps 1+2 Together
	Slide 47: BatchNorm and Backprop
	Slide 48: BatchNorm and Backprop
	Slide 49: BatchNorm and Backprop
	Slide 50: BatchNorm in PyTorch
	Slide 51: BatchNorm in PyTorch
	Slide 52: BatchNorm at Test-Time
	Slide 53: Related: LayerNorm
	Slide 54: Normalize everything?
	Slide 55: Initialization
	Slide 56: Weight initialization
	Slide 57: Xavier Initialization
	Slide 58: Xavier Initialization
	Slide 59: He Initialization
	Slide 60: .

