STAT 992: Foundation Models for
Biomedical Data

Ben Lengerich

Lecture 04: Initialization and CNNs

Feb 02, 2026




Where we are...

* Good news: We can solve non-linear problems!
* Bad news: Our multilayer neural networks have lots of
parameters and it’s easy to overfit the data...

Next time:
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Collecting more data

Data augmentation

Last time...

Label smoothing

Dataset Semi-supervised

Leveraging unlabeled data _~~
. Self-supervised

Meta-learning
Leveraging related data
'< Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchMorm and variants

Normalization
Weight standardization
Gradient centralization
Adaptive learning rates
Training loop Auxiliary losses

Gradient clipping

L2 (/L1) regularization

Regularization Early stopping

Dropout
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Last time...

Complicated Loss Landscape > Improvements to Optimization
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Initialization




Weight initialization

e Recall: Can’t initialize all weights to O (symmetry problem)

* But we want weights to be relatively small.

* Traditionally, we can initialize weights by sampling from a random uniform
distribution in range [0, 1], or better, [-0.5, 0.5]

* Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 0r 0.01)
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Xavier Initialization

Method:
 Step 1: Initialize weights from Gaussian or uniform distribution

* Step 2: Scale the weights proportional to the number of inputs to
the layer

* For the first hidden layer, that is the number of features in the dataset; for the
second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.
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Xavier Initialization

Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of
independent variables is the sum of the variances); square root for

standard deviation

mp_1
Var (zj(.l)) = Var Z WJ(,? ,(cl_l)
j=1
(=1 (1)
= Z Var [Wj(,?ag_l)] = Z Var [WJ(Q] Var [a,(cl_l)]
j=1 i=1
m (=1
= Z Var [W(l)] Var [a(l_l)] — m{=D var [W(l)] Var [a(l_l)]
j=1

Ben Lengerich © University of Wisconsin-Madison 2025




He Initialization

* Assuming activations with mean 0, which is reasonable, Xavier

Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

 For RelLU, the activations are not centered at zero
 He initialization takes this into account

 The result is that we add a scaling factor of V2

2
) .— w .
wh .—w \/m(el)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.
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Convolutional Neural Networks (CNNs)




Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

S T o
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CNNs for Image Classification

/ output

twitter.com%2Fcats&psig=AOvVaw30_o-PCM- e e e p ( y:Ca t)
K21DiIMAJQimQ4&ust=1553887775741551

Image Source: https://www.pinterest.com/pin/
244742560974520446




CNNs for Object Detection
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Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 779-788).




CNNs for Object Segmentation

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask R-CNN." In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2961-2969. 2017.




Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

o A WNRE
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Why images are hard

Different lighting, contrast, viewpoints, etc.

Image Source: Image Source: https://www.123rf.com/
twitter.com%2Fcats&psig=AOvVaw30_o-PCM- photo_76714328_side-view-of-tabby-cat-face-over-
K21DIMAJQimQ48&ust=1553887775741551 white.html

Or even simple translation

i 5‘ , Do deep fully-connected nets solve this?
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Full connectivity is a problem for large inputs
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e 3x200x200 images imply 120,000 weights per neuron in first hidden layer
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Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch
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Convolutional Neural Networks [LeCun 1989]

e Let’s share parameters.

* Instead of learning position-specific weights, learn weights
defined for relative positions

e Learn “filters” that are reused across the image
e Generalize across spatial translation of input

* Key idea:

e Replace matrix multiplication in neural networks with a convolution

 Later, we will see that this can work for any graph-
structured data, not just images.
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Weight sharing in kernels

[
Input
Kernel . _
c || d Sliding filters (kernels)
w I
q h
i £
k )
Output .
y — Reused weights (small)!
—P
aw + br + bw + ex + cw + dr +
ey + [z fy + gz gy + hz
ew + fzr 4+ fw + gr + gw + hzx + .
iy o+ gz jy 4+ k2 ky +  lz Fig. Goodfellow et al. 2016
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

0

The pixels are —:: e —
referred to | S —

as "receptive field"

15 +

20 1

"feature map"

A feature detector that works well in one region may also work well in another region
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map
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A feature detector that works well in one region may also work well in another region
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map
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A feature detector that works well in one region may also work well in another region
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Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map
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A feature detector that works well in one region may also work well in another region
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Kernels for each channel

10

15

20 1

25 4
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Multiple "feature detectors
(kernels) are used

to create multiple feature
maps

Q: Do you see sparse
connectivity & weight
sharing?




Convolutional Neural Networks [LeCun 1989]

L
FROC, OF THE 1IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
C1: feature maps S4:1. maps 16@5x5

0%

d2x32 52 f. maps

05 layer
. ™ : .
Convolufiens Subsampling Convolutions ut}samp ' FuII mnnectmn

SN\

izo connections

Fig. 2. Architecture of LeNet-5, a Convelutional Neural Network
whose weights are consirained to be idefsical.

tre for digits recognition. EachNglane is a featyfe map, i.e. a set of units

"Automatic feature extractor" "Regular classifier"

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of
IEEE, 86(11):2278-2324, 1998.
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Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER. 1998 7

C1: feature ma

: : f. maps 16@5x5
6@28x28

C5: layer
120

INPUT

32x32 F6:layer OUTPUT

84 10

|
Full coanection ‘ Gaussian connections

Convolution sampli i @osampling Full connection

Fig. 2. Architecture of LeNet-5, a pfolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained t0 be identical.

Each "bunch" of feature maps represents one hidden layer in the neural network.

Counting the FC layers, this network has 5 layers
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Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER, 1998 Size of the resulting lavers
— Number of feature detectors o g'ay

C3:f. maps 16@10x10

14 feature maps S4: f. maps 16@5x5 I-
INPUT o P Multi-layer perceptron
32x32 S2: 1. maps -laver OUTPUT
6@14x14 - 1ay 10

; | |
Full connection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architgctire of LeNet-5, a Convolutional Jeural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weighfs are constrained to be identical.

v

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)
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“Pooling”: lossy compression

Note: Sebastian Raschka, Vahid Mirjalili. Python Machine
o Learning. 3rd Edition. Birmingham, UK: Packt
AN g stride=(3, 3) Publishing, 2019. ISBN: 978-1789955750

Pooling (P,,.)
d N4 h
2 1 7\”‘1\\2 9 Max-pooling Mean-pooling
51013 '
11718 3.78|(2.33
(032 3 |[1.22
62 |5
3160
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Main ideas of CNNs

e Sparse-connectivity: A single element in the feature map is connected
to only a small patch of pixels. (This is very different from connecting
to the whole input image, in the case of multi-layer perceptrons.)

 Parameter-sharing: The same weights are used for different patches of
the input image.

 Many layers: Combining extracted local patterns to global patterns
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Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

o Uk W PE
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Convolution: Adding two random variables

* lLetX ~ Py,Y ~ Py be independent RVs. What's E[X] + E|Y]?
* What's P(X +Y = z)?

p(x+y=z)=jp(x=x,y=z—x)dx
= fPX(X =x)Py(Y =z —x)dx

= JPX(x)PY(Z — x)dx

* This is known as a convolution of Py and Py:
(Px * Py)(2) = | Pxy(x)Py(z — x)dx
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Convolution: Adding two random variables

e Let X ~ Py,Y ~ Py beindep. discrete RVs. What’s E|X] + E[Y]?
* What's P(X +Y = z)?
* This is a convolution of Py and Py:

(Px P)(2) = ) Py(@) Py(z = )

* More generally:
* Discrete:

Peoy(2) = ) Pyy (62— %)

e Continuous:

fx+r(@) = | fxy(x,z — x)dx
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Where’s the “Convolution” in CNNs?

e Kernel sliding over the activation window:

k k
Zli, j| = Z Z Klu,v|Ali —u,j — v
u=—k v=—%k
Zli,jl=Kx A
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Actually, this is a “cross-correlation”

k k
Cross-Correlation: Zli.jl= Y _ > Klu,v]Ali+u,j+v]

Zli,jl=K® A

k k
Convolution: Z[i,j1= > Y K[u,v]Ali—u,j — ]
u=—k v=—k

Zli,j] =K * A 9) 8) 7)

-1,-1 | -1,0 | -1,1
Basically, we are flipping the kernel (or the 6) 5) A
receptive field) horizontally and vertically )

0,-1 0,0 0,1
3) 2) 1)

1,-1 | 1,0 | 1,1
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CNNs give sparse connectivity

Sparse
connections
due to small
convolution

kernel

Dense
connections

(Goadfalow 2016]
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Receptive fields grow over depth

Flg ure 9 4 (Goodratow 2016)
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Parameter sharing

[

Convolution °

shares the same

parameters

across all spatial Gb e Gb Gb
locations

Traditional
matrix

multiplication

does not share @ @ @

any parameters

F|g ure 9.5 (Goadisllow 2018)
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Impact of convolutions on size

Feature map size: nput width kernel width
/ padding
W K 2P
0 = 2
/ S
output width stride
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Padding output

input

No padding, stride=1

padding=2, stride=1

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

No padding, stride=2
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Kernel dimensions and trainable parameters

|
5

For a grayscale image with a

5x5 feature detector (kernel),
we have the following dimensions

15 1

20

25

T 5 F 3 (number of parameters to learn)
a.shape
(1, 28, 28)
inport torch What’s the output size for this
conv = torch.nn.Conv2d(é3{fzz;2:};i::é' 28X28 Image?

kernel_size=(5, 5),
stride=(1, 1))

conv.weight.size()

torch.Size([8, 1, 5, 5])

conv.bias.size()

torch.Size( [8])
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CNNs and Translation/Rotation/Scale Invariance

CNNs aren’t really invariant to translation/rotation/scale:

- The activations are still
dependent on the location,
.- etc.
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Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER, 1998 Size of the resulting lavers
— Number of feature detectors o g'ay

C3:f. maps 16@10x10

14 feature maps S4: f. maps 16@5x5 I-
INPUT o P Multi-layer perceptron
32x32 S2: 1. maps -laver OUTPUT
6@14x14 - 1ay 10

; | |
Full connection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architgctire of LeNet-5, a Convolutional Jeural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weighfs are constrained to be identical.

v

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)
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Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

S A T o
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Backpropagation in CNNs

e Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint
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Recall: Weight sharing in computation graphs

E— da; Jl(zl) = aq

da; gl
do § L(y,o0)=1
o — |

W1+ x1 = 21

0'3(611, ag) =0
._ 8a2

8w1 0'2(21) = a2

Upper path

oL 9l 0o da; Ol 0o Oaz : . .
d0r =~ 90 9 9w T 0 94, dwn (multivariable chain rule)

Lower path
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Backpropagation in CNNs

e Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Due to weight sharing: w; = w»y

0

B,

P ——
e —

54 -

%\

10 1

15 1

20 4
(10)) 1

—— ——

25 1

Optional averaging

weight update: 1‘/ e e
HE

W1 ‘=W ' =W, — 1N w w
1 2
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Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch
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CNNs in PyTorch

I
FHUE, UF THE IEEE, RUYEMBEH LFEE
Ca:1. maps 161010
SELT ©1: fuatura maps E4: 1. mags 16®5s5
ET) — &2 I, maps

HH"‘-\-\. .
nE 14514 Ir- rrxfé-nlﬂv r&.m, -q:l::;wur

LN\

| Full -:-:nlul:h:vn | Gavussian connsctions
Convalsions Subsampling Comeobtions  Subzampoling Full canmsadicn
INg, 3, Aerldseriure of Lefe-5, 3 Comsmnlatioeal Meersl Setwork, Bere o ilgles reoognition. Rack plase g o eaiure map, Le 2 s=t ol eesin

whnms wrgiis are comeriesd in D Sleeyileal

https://github.com/rasbt/stat453-deep-learning-
ss20/tree/master/L12-cnns/code

class LeNet5(nn.Module):

def

def

__init__(self, num_classes, grayscale=False):

super(LeNet5, self).__init_ ()

self.grayscale = grayscale
self.num_classes = num_classes

if self.grayscale:

in_channels = 1
else:
in_channels = 3

self.features = nn.Sequential(
nn.Conv2d(in_channels, 6, kernel_size=5),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(6, 16, kernel_size=5),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2)

)

self.classifier = nn.Sequential(
nn.Linear(16x5%5, 120),
nn.Tanh(),
nn.Linear(120, 84),
nn.Tanh(),
nn.Linear(84, num_classes),

)

forward(self, x):

x = self.features(x)

x = torch.flatten(x, 1)

logits = self.classifier(x)
probas = F.softmax(logits, dim=1)
return logits, probas



https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code

Convolutions on non-image data?
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Graph Convolutional Networks

Hidden layer

Hidden layer
T i A"
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[Kipf 2016]



https://tkipf.github.io/graph-convolutional-networks/

Questions?
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