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Where we are…
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• Good news: We can solve non-linear problems!
• Bad news: Our multilayer neural networks have lots of 

parameters and it’s easy to overfit the data…

Next time:



Last time…
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Last time…
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Complicated Loss Landscape Improvements to Optimization

Mini-batch training Momentum

Adaptive Training



Initialization



Weight initialization
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• Recall: Can’t initialize all weights to 0 (symmetry problem)

• But we want weights to be relatively small.
• Traditionally, we can initialize weights by sampling from a random uniform 

distribution in range [0, 1], or better, [-0.5, 0.5]

• Or, we could sample from a Gaussian distribution with mean 0 and small variance 
(e.g., 0.1 or 0.01)



Xavier Initialization

Ben Lengerich © University of Wisconsin-Madison 2025

Method: 

• Step 1: Initialize weights from Gaussian or uniform distribution

• Step 2: Scale the weights proportional to the number of inputs to 
the layer 
• For the first hidden layer, that is the number of features in the dataset; for the 

second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics . 
2010.



Xavier Initialization
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He Initialization
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing 
human-level performance on imagenet classification." In Proceedings of the IEEE international 
conference on computer vision, pp. 1026-1034. 2015.

• Assuming activations with mean 0, which is reasonable, Xavier 
Initialization assumes a derivative of 1 for the activation function (which 
is reasonable for tanH)

• For ReLU, the activations are not centered at zero
• He initialization takes this into account

• The result is that we add a scaling factor of √2



Convolutional Neural Networks (CNNs)



Today: CNNs
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1. What CNNs Can Do

2. Image Classification

3. Convolutional Neural Network Basics

4. Cross-Correlation vs Convolution

5. CNNs & Backpropagation

6. CNNs in PyTorch



CNNs for Image Classification



CNNs for Object Detection



CNNs for Object Segmentation
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Why images are hard

Do deep fully-connected nets solve this?



Full connectivity is a problem for large inputs
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• 3x200x200 images imply 120,000 weights per neuron in first hidden layer
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Convolutional Neural Networks [LeCun 1989]
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• Let’s share parameters.

• Instead of learning position-specific weights, learn weights 
defined for relative positions
• Learn “filters” that are reused across the image

• Generalize across spatial translation of input

• Key idea:
• Replace matrix multiplication in neural networks with a convolution

• Later, we will see that this can work for any graph-
structured data, not just images.



Weight sharing in kernels
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Reused weights (small)!



Alternative visualization of kernels
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A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

A feature detector that works well in one region may also work well in another region
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Alternative visualization of kernels
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A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

A feature detector that works well in one region may also work well in another region



Kernels for each channel
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Convolutional Neural Networks [LeCun 1989]
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Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of 

IEEE, 86(11):2278–2324, 1998.



Convolutional Neural Networks [LeCun 1989]
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Each "bunch" of feature maps represents one hidden layer in the neural network. 

Counting the FC layers, this network has 5 layers



Convolutional Neural Networks [LeCun 1989]
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“Pooling”: lossy compression
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Main ideas of CNNs

• Sparse-connectivity: A single element in the feature map is connected 
to only a small patch of pixels. (This is very different from connecting 
to the whole input image, in the case of multi-layer perceptrons.)

• Parameter-sharing: The same weights are used for different patches of 
the input image.

• Many layers: Combining extracted local patterns to global patterns
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Convolution: Adding two random variables
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• Let X ∼ 𝑃𝑋 , 𝑌 ∼ 𝑃𝑌 be independent RVs. What’s 𝐸 𝑋 + 𝐸 𝑌 ?

• What’s 𝑃(𝑋 + 𝑌 = 𝑧)?

𝑃 𝑋 + 𝑌 = 𝑧 = න𝑃 𝑋 = 𝑥, 𝑌 = 𝑧 − 𝑥 𝑑𝑥

= න𝑃𝑋 𝑋 = 𝑥)𝑃𝑌(𝑌 = 𝑧 − 𝑥 𝑑𝑥

= න𝑃𝑋 𝑥 𝑃𝑌 𝑧 − 𝑥 𝑑𝑥

• This is known as a convolution of 𝑃𝑋 and PY:
(𝑃𝑋 ∗ 𝑃𝑌) 𝑧 = ∫ 𝑃𝑋 𝑥 𝑃𝑌 𝑧 − 𝑥 𝑑𝑥



Convolution: Adding two random variables
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• Let X ∼ 𝑃𝑋 , 𝑌 ∼ 𝑃𝑌 be indep. discrete RVs. What’s 𝐸 𝑋 + 𝐸 𝑌 ?

• What’s 𝑃(𝑋 + 𝑌 = 𝑧)?

• This is a convolution of 𝑃𝑋 and PY:

(𝑃𝑋 ∗ 𝑃𝑌) 𝑧 = ෍

𝑥

𝑃𝑋 𝑥 𝑃𝑌(𝑧 − 𝑥)

• More generally:
• Discrete:

𝑃𝑋+𝑌(𝑧) = ෍

𝑥

𝑃𝑋,𝑌 (𝑥, 𝑧 − 𝑥)

• Continuous:

𝑓𝑋+𝑌 𝑧 = ∫ 𝑓𝑋,𝑌 𝑥, 𝑧 − 𝑥 𝑑𝑥



Where’s the “Convolution” in CNNs?

• Kernel sliding over the activation window:
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Actually, this is a “cross-correlation”
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CNNs give sparse connectivity

Ben Lengerich © University of Wisconsin-Madison 2025



Receptive fields grow over depth
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Parameter sharing
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Impact of convolutions on size
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Padding
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Dumoulin, Vincent, and Francesco Visin. "A guide to 
convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).



Kernel dimensions and trainable parameters

What’s the output size for this 
28x28 image?
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CNNs and Translation/Rotation/Scale Invariance

CNNs aren’t really invariant to translation/rotation/scale:
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Convolutional Neural Networks [LeCun 1989]
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Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an 
additional weight-sharing constraint
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Recall: Weight sharing in computation graphs

Ben Lengerich © University of Wisconsin-Madison 2025



Backpropagation in CNNs

• Same concept as before: Multivariable chain rule, and now with an 
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025



Today: CNNs

Ben Lengerich © University of Wisconsin-Madison 2025

1. What CNNs Can Do

2. Image Classification

3. Convolutional Neural Network Basics

4. Cross-Correlation vs Convolution

5. CNNs & Backpropagation

6. CNNs in PyTorch



CNNs in PyTorch

https://github.com/rasbt/stat453-deep-learning-

ss20/tree/master/L12-cnns/code

https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code


Convolutions on non-image data?
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Graph Convolutional Networks
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[Kipf 2016]

https://tkipf.github.io/graph-convolutional-networks/


.

Questions?
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