STAT 992: Foundation Models for
Biomedical Data

Ben Lengerich

Lecture 04: Initialization and CNNs

Feb 02, 2026

Where we are...

* Good news: We can solve non-linear problems!
* Bad news: Our multilayer neural networks have lots of
parameters and it’s easy to overfit the data...

Next time:

A \ T i\ |

O y /O x| S

- Q_© “ (00 x \O O

X ! x " 3(; X N —
| > —_— /__.._————-)
Zaq,t WJMCW"&&("\D"I Pm/% Low f"d‘“(“"‘liaj"‘n (rood (oupromte
—> '/113(4 b/ias =% lmdh Vanau e

Ben Lengerich © University of Wisconsin-Madison 2026

Collecting more data

Data augmentation

Last time...

Label smoothing

Dataset Semi-supervised

Leveraging unlabeled data _~~
. Self-supervised

Meta-learning
Leveraging related data
'< Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchMorm and variants

Normalization
Weight standardization
Gradient centralization
Adaptive learning rates
Training loop Auxiliary losses

Gradient clipping

L2 (/L1) regularization

Regularization Early stopping

Dropout

Ben Lengerich © University of Wisconsin-Madison 2026

Last time...

Complicated Loss Landscape > Improvements to Optimization

CaSL M ''''''
W,
D
W
Mini-batch training Momentum
. Adaptive Training mt
wijj e

Ben Lengerich © University of Wisconsin-Madison 2026

Initialization

Weight initialization

e Recall: Can’t initialize all weights to O (symmetry problem)

* But we want weights to be relatively small.

* Traditionally, we can initialize weights by sampling from a random uniform
distribution in range [0, 1], or better, [-0.5, 0.5]

* Or, we could sample from a Gaussian distribution with mean 0 and small variance
(e.g., 0.1 0r 0.01)

Ben Lengerich © University of Wisconsin-Madison 2025

Xavier Initialization

Method:
 Step 1: Initialize weights from Gaussian or uniform distribution

* Step 2: Scale the weights proportional to the number of inputs to
the layer

* For the first hidden layer, that is the number of features in the dataset; for the
second hidden layer, that is the number of units in the 1st hidden layer, etc.

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010.

Ben Lengerich © University of Wisconsin-Madison 2025

Xavier Initialization

Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of
independent variables is the sum of the variances); square root for

standard deviation

mp_1
Var (zj(.l)) = Var Z WJ(,? ,(cl_l)
j=1
(=1 (1)
= Z Var [Wj(,?ag_l)] = Z Var [WJ(Q] Var [a,(cl_l)]
j=1 i=1
m (=1
= Z Var [W(l)] Var [a(l_l)] — m{=D var [W(l)] Var [a(l_l)]
j=1

Ben Lengerich © University of Wisconsin-Madison 2025

He Initialization

* Assuming activations with mean 0, which is reasonable, Xavier

Initialization assumes a derivative of 1 for the activation function (which
is reasonable for tanH)

 For RelLU, the activations are not centered at zero
 He initialization takes this into account

 The result is that we add a scaling factor of V2

2
) .— w .
wh .—w \/m(el)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks (CNNs)

Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

S T o

Ben Lengerich © University of Wisconsin-Madison 2025

CNNs for Image Classification

/ output

twitter.com%2Fcats&psig=AOvVaw30_o-PCM- e e e p (y:Ca t)
K21DiIMAJQimQ4&ust=1553887775741551

Image Source: https://www.pinterest.com/pin/
244742560974520446

CNNs for Object Detection

\"“ y
L
AN

[
N

/

MORE VIDEOS QB

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 779-788).

CNNs for Object Segmentation

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask R-CNN." In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2961-2969. 2017.

Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

o A WNRE

Ben Lengerich © University of Wisconsin-Madison 2025

Why images are hard

Different lighting, contrast, viewpoints, etc.

Image Source: Image Source: https://www.123rf.com/
twitter.com%2Fcats&psig=AOvVaw30_o-PCM- photo_76714328_side-view-of-tabby-cat-face-over-
K21DIMAJQimQ48&ust=1553887775741551 white.html

Or even simple translation

i 5‘ , Do deep fully-connected nets solve this?

: . 5‘
25 25
T T T T T T T T T T T

Full connectivity is a problem for large inputs

7

FK

N)EX V
\“'//‘\\ output layer

input layer
hidden layer 1 hidden layer 2

&
e e
20T O
L

e 3x200x200 images imply 120,000 weights per neuron in first hidden layer

Ben Lengerich © University of Wisconsin-Madison 2025

Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

o Uk WwWwh e

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

e Let’s share parameters.

* Instead of learning position-specific weights, learn weights
defined for relative positions

e Learn “filters” that are reused across the image
e Generalize across spatial translation of input

* Key idea:

e Replace matrix multiplication in neural networks with a convolution

 Later, we will see that this can work for any graph-
structured data, not just images.

Ben Lengerich © University of Wisconsin-Madison 2025

Weight sharing in kernels

[
Input
Kernel . _
c || d Sliding filters (kernels)
w I
q h
i £
k)
Output .
y — Reused weights (small)!
—P
aw + br + bw + ex + cw + dr +
ey + [z fy + gz gy + hz
ew + fzr 4+ fw + gr + gw + hzx + .
iy o+ gz jy 4+ k2 ky + lz Fig. Goodfellow et al. 2016

Ben Lengerich © University of Wisconsin-Madison 2025

Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

0

The pixels are —:: e —
referred to | S —

as "receptive field"

15 +

20 1

"feature map"

A feature detector that works well in one region may also work well in another region

Ben Lengerich © University of Wisconsin-Madison 2025

Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

9
D- —
§ :'wjmj
5 4 =1
10 4 -

15 A

20

25

A feature detector that works well in one region may also work well in another region

Ben Lengerich © University of Wisconsin-Madison 2025

Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

9
D- —
§ :'wjmj
5 4 =1
10 4 ™~

15 A

20

25

A feature detector that works well in one region may also work well in another region

Ben Lengerich © University of Wisconsin-Madison 2025

Alternative visualization of kernels

A "feature detector" (filter, kernel) slides over the inputs to generate a feature map

9
D- —
§ :wj$j
=1

10 A

15 A

20

25

A feature detector that works well in one region may also work well in another region

Ben Lengerich © University of Wisconsin-Madison 2025

Kernels for each channel

10

15

20 1

25 4

Ben Lengerich © University of Wisconsin-Madison 2025

Multiple "feature detectors
(kernels) are used

to create multiple feature
maps

Q: Do you see sparse
connectivity & weight
sharing?

Convolutional Neural Networks [LeCun 1989]

L
FROC, OF THE 1IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
C1: feature maps S4:1. maps 16@5x5

0%

d2x32 52 f. maps

05 layer
. ™ : .
Convolufiens Subsampling Convolutions ut}samp ' FuII mnnectmn

SN\

izo connections

Fig. 2. Architecture of LeNet-5, a Convelutional Neural Network
whose weights are consirained to be idefsical.

tre for digits recognition. EachNglane is a featyfe map, i.e. a set of units

"Automatic feature extractor" "Regular classifier"

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition, Proceedings of
IEEE, 86(11):2278-2324, 1998.

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER. 1998 7

C1: feature ma

: : f. maps 16@5x5
6@28x28

C5: layer
120

INPUT

32x32 F6:layer OUTPUT

84 10

|
Full coanection ‘ Gaussian connections

Convolution sampli i @osampling Full connection

Fig. 2. Architecture of LeNet-5, a pfolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained t0 be identical.

Each "bunch" of feature maps represents one hidden layer in the neural network.

Counting the FC layers, this network has 5 layers

Ben Lengerich © University of Wisconsin-Madison 2025

Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER, 1998 Size of the resulting lavers
— Number of feature detectors o g'ay

C3:f. maps 16@10x10

14 feature maps S4: f. maps 16@5x5 I-
INPUT o P Multi-layer perceptron
32x32 S2: 1. maps -laver OUTPUT
6@14x14 - 1ay 10

; | |
Full connection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architgctire of LeNet-5, a Convolutional Jeural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weighfs are constrained to be identical.

v

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)

Ben Lengerich © University of Wisconsin-Madison 2025

“Pooling”: lossy compression

Note: Sebastian Raschka, Vahid Mirjalili. Python Machine
o Learning. 3rd Edition. Birmingham, UK: Packt
AN g stride=(3, 3) Publishing, 2019. ISBN: 978-1789955750

Pooling (P,,.)
d N4 h
2 1 7\”‘1\\2 9 Max-pooling Mean-pooling
51013 '
11718 3.78|(2.33
(032 3 |[1.22
62 |5
3160

Ben Lengerich © University of Wisconsin-Madison 2026

Main ideas of CNNs

e Sparse-connectivity: A single element in the feature map is connected
to only a small patch of pixels. (This is very different from connecting
to the whole input image, in the case of multi-layer perceptrons.)

 Parameter-sharing: The same weights are used for different patches of
the input image.

 Many layers: Combining extracted local patterns to global patterns

Ben Lengerich © University of Wisconsin-Madison 2026

Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

o Uk W PE

Ben Lengerich © University of Wisconsin-Madison 2025

Convolution: Adding two random variables

* lLetX ~ Py,Y ~ Py be independent RVs. What's E[X] + E|Y]?
* What's P(X +Y = z)?

p(x+y=z)=jp(x=x,y=z—x)dx
= fPX(X =x)Py(Y =z —x)dx

= JPX(x)PY(Z — x)dx

* This is known as a convolution of Py and Py:
(Px * Py)(2) = | Pxy(x)Py(z — x)dx

Ben Lengerich © University of Wisconsin-Madison 2025

Convolution: Adding two random variables

e Let X ~ Py,Y ~ Py beindep. discrete RVs. What’s E|X] + E[Y]?
* What's P(X +Y = z)?
* This is a convolution of Py and Py:

(Px P)(2) =) Py(@) Py(z =)

* More generally:
* Discrete:

Peoy(2) =) Pyy (62— %)

e Continuous:

fx+r(@) = | fxy(x,z — x)dx

Ben Lengerich © University of Wisconsin-Madison 2025

Where’s the “Convolution” in CNNs?

e Kernel sliding over the activation window:

k k
Zli, j| = Z Z Klu,v|Ali —u,j — v
u=—k v=—%k
Zli,jl=Kx A

Ben Lengerich © University of Wisconsin-Madison 2025

Actually, this is a “cross-correlation”

k k
Cross-Correlation: Zli.jl= Y _ > Klu,v]Ali+u,j+v]

Zli,jl=K® A

k k
Convolution: Z[i,j1= > Y K[u,v]Ali—u,j —]
u=—k v=—k

Zli,j] =K * A 9) 8) 7)

-1,-1 | -1,0 | -1,1
Basically, we are flipping the kernel (or the 6) 5) A
receptive field) horizontally and vertically)

0,-1 0,0 0,1
3) 2) 1)

1,-1 | 1,0 | 1,1

Ben Lengerich © University of Wisconsin-Madison 2025

CNNs give sparse connectivity

Sparse
connections
due to small
convolution

kernel

Dense
connections

(Goadfalow 2016]

Ben Lengerich © University of Wisconsin-Madison 2025

Receptive fields grow over depth

Flg ure 9 4 (Goodratow 2016)

Ben Lengerich © University of Wisconsin-Madison 2025

Parameter sharing

[

Convolution °

shares the same

parameters

across all spatial Gb e Gb Gb
locations

Traditional
matrix

multiplication

does not share @ @ @

any parameters

F|g ure 9.5 (Goadisllow 2018)

Ben Lengerich © University of Wisconsin-Madison 2025

Impact of convolutions on size

Feature map size: nput width kernel width
/ padding
W K 2P
0 = 2
/ S
output width stride

Ben Lengerich © University of Wisconsin-Madison 2025

Padding output

input

No padding, stride=1

padding=2, stride=1

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

No padding, stride=2

Ben Lengerich © University of Wisconsin-Madison 2025

Kernel dimensions and trainable parameters

|
5

For a grayscale image with a

5x5 feature detector (kernel),
we have the following dimensions

15 1

20

25

T 5 F 3 (number of parameters to learn)
a.shape
(1, 28, 28)
inport torch What’s the output size for this
conv = torch.nn.Conv2d(é3{fzz;2:};i::é' 28X28 Image?

kernel_size=(5, 5),
stride=(1, 1))

conv.weight.size()

torch.Size([8, 1, 5, 5])

conv.bias.size()

torch.Size([8])

Ben Lengerich © University of Wisconsin-Madison 2026

CNNs and Translation/Rotation/Scale Invariance

CNNs aren’t really invariant to translation/rotation/scale:

- The activations are still
dependent on the location,
.- etc.

Ben Lengerich © University of Wisconsin-Madison 2026

Convolutional Neural Networks [LeCun 1989]

PROC. OF THE IEEE, NOVEMBER, 1998 Size of the resulting lavers
— Number of feature detectors o g'ay

C3:f. maps 16@10x10

14 feature maps S4: f. maps 16@5x5 I-
INPUT o P Multi-layer perceptron
32x32 S2: 1. maps -laver OUTPUT
6@14x14 - 1ay 10

; | |
Full connection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architgctire of LeNet-5, a Convolutional Jeural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weighfs are constrained to be identical.

v

nowadays called "pooling" basically a fully-connected
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays common to use
that are being reused ("weight sharing") fc-layer + softmax

=> also called "kernel" or "filter" + cross entropy)

Ben Lengerich © University of Wisconsin-Madison 2025

Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

S A T o

Ben Lengerich © University of Wisconsin-Madison 2025

Backpropagation in CNNs

e Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Ben Lengerich © University of Wisconsin-Madison 2025

Recall: Weight sharing in computation graphs

E— da; Jl(zl) = aq

da; gl
do § L(y,o0)=1
o — |

W1+ x1 = 21

0'3(611, ag) =0
._ 8a2

8w1 0'2(21) = a2

Upper path

oL 9l 0o da; Ol 0o Oaz : . .
d0r =~ 90 9 9w T 0 94, dwn (multivariable chain rule)

Lower path

Ben Lengerich © University of Wisconsin-Madison 2025

Backpropagation in CNNs

e Same concept as before: Multivariable chain rule, and now with an
additional weight-sharing constraint

Due to weight sharing: w; = w»y

0

B,

P ——
e —

54 -

%\

10 1

15 1

20 4
(10)) 1

—— ——

25 1

Optional averaging

weight update: 1‘/ e e
HE

W1 ‘=W ' =W, — 1N w w
1 2

Ben Lengerich © University of Wisconsin-Madison 2025

Today: CNNs

What CNNs Can Do

Image Classification

Convolutional Neural Network Basics
Cross-Correlation vs Convolution
CNNs & Backpropagation

CNNs in PyTorch

o Uk wheE

Ben Lengerich © University of Wisconsin-Madison 2025

CNNs in PyTorch

I
FHUE, UF THE IEEE, RUYEMBEH LFEE
Ca:1. maps 161010
SELT ©1: fuatura maps E4: 1. mags 16®5s5
ET) — &2 I, maps

HH"‘-\-\. .
nE 14514 Ir- rrxfé-nlﬂv r&.m, -q:l::;wur

LN\

| Full -:-:nlul:h:vn | Gavussian connsctions
Convalsions Subsampling Comeobtions Subzampoling Full canmsadicn
INg, 3, Aerldseriure of Lefe-5, 3 Comsmnlatioeal Meersl Setwork, Bere o ilgles reoognition. Rack plase g o eaiure map, Le 2 s=t ol eesin

whnms wrgiis are comeriesd in D Sleeyileal

https://github.com/rasbt/stat453-deep-learning-
ss20/tree/master/L12-cnns/code

class LeNet5(nn.Module):

def

def

__init__(self, num_classes, grayscale=False):

super(LeNet5, self).__init_ ()

self.grayscale = grayscale
self.num_classes = num_classes

if self.grayscale:

in_channels = 1
else:
in_channels = 3

self.features = nn.Sequential(
nn.Conv2d(in_channels, 6, kernel_size=5),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(6, 16, kernel_size=5),
nn.Tanh(),
nn.MaxPool2d(kernel_size=2)

)

self.classifier = nn.Sequential(
nn.Linear(16x5%5, 120),
nn.Tanh(),
nn.Linear(120, 84),
nn.Tanh(),
nn.Linear(84, num_classes),

)

forward(self, x):

x = self.features(x)

x = torch.flatten(x, 1)

logits = self.classifier(x)
probas = F.softmax(logits, dim=1)
return logits, probas

https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns/code

Convolutions on non-image data?

Ben Lengerich © University of Wisconsin-Madison 2025

Graph Convolutional Networks

Hidden layer

Hidden layer
T i A"
-]
u/. r / P
| e S
\ & @ '.I » L
® ®
» ®
Input ¢ “ Output
. ™) g ¢ ™)
@ / y ®
. o ,::" ReLU --__4 RelLU .
* \ ® \ * *
e LT ey S R R e e R e S
® ¢ * ® e
e ® o
., . \, y
@ L
®]
. * e
® a—"
] ®
A\ AN
., A s,
Ben Lengerich © University of Wisconsin-Madison 2025

[Kipf 2016]

https://tkipf.github.io/graph-convolutional-networks/

Questions?

e
QWI WISCONSIN

, IIIIIIIIIIIIIIIIIIIII -MADISON
L

	Slide 1: STAT 992: Foundation Models for Biomedical Data
	Slide 2: Where we are…
	Slide 3: Last time…
	Slide 4: Last time…
	Slide 5: Initialization
	Slide 6: Weight initialization
	Slide 7: Xavier Initialization
	Slide 8: Xavier Initialization
	Slide 9: He Initialization
	Slide 10: Convolutional Neural Networks (CNNs)
	Slide 11: Today: CNNs
	Slide 12: CNNs for Image Classification
	Slide 13: CNNs for Object Detection
	Slide 14: CNNs for Object Segmentation
	Slide 15: Today: CNNs
	Slide 16: Why images are hard
	Slide 17: Full connectivity is a problem for large inputs
	Slide 18: Today: CNNs
	Slide 19: Convolutional Neural Networks [LeCun 1989]
	Slide 20: Weight sharing in kernels
	Slide 21: Alternative visualization of kernels
	Slide 22: Alternative visualization of kernels
	Slide 23: Alternative visualization of kernels
	Slide 24: Alternative visualization of kernels
	Slide 25: Kernels for each channel
	Slide 26: Convolutional Neural Networks [LeCun 1989]
	Slide 27: Convolutional Neural Networks [LeCun 1989]
	Slide 28: Convolutional Neural Networks [LeCun 1989]
	Slide 29: “Pooling”: lossy compression
	Slide 30: Main ideas of CNNs
	Slide 31: Today: CNNs
	Slide 32: Convolution: Adding two random variables
	Slide 33: Convolution: Adding two random variables
	Slide 34: Where’s the “Convolution” in CNNs?
	Slide 35: Actually, this is a “cross-correlation”
	Slide 36: CNNs give sparse connectivity
	Slide 37: Receptive fields grow over depth
	Slide 38: Parameter sharing
	Slide 39: Impact of convolutions on size
	Slide 40: Padding
	Slide 41: Kernel dimensions and trainable parameters
	Slide 42: CNNs and Translation/Rotation/Scale Invariance
	Slide 43: Convolutional Neural Networks [LeCun 1989]
	Slide 44: Today: CNNs
	Slide 45: Backpropagation in CNNs
	Slide 46: Recall: Weight sharing in computation graphs
	Slide 47: Backpropagation in CNNs
	Slide 48: Today: CNNs
	Slide 49: CNNs in PyTorch
	Slide 50: Convolutions on non-image data?
	Slide 51: Graph Convolutional Networks
	Slide 52: .

