STAT 992: Foundation Models for
Biomedical Data

Ben Lengerich

Lecture 05: Graphs, RNNs
Feb 09, 2026

Convolutions on non-image data?

Ben Lengerich © University of Wisconsin-Madison 2026

Graph Convolutional Networks

Hidden layer

Hidden layer
T i A"
-]
u/. r / P
| e S
\ & @ '.I » L
® ®
» ®
Input ¢ “ Output
. ™) g ¢ ™)
@ / y ®
. o ,::" ReLU --__4 RelLU .
* \ ® \ * *
e LT ey S R R e e R e S
® ¢ * ® e
e ® o
., . \, y
@ L
®]
. * e
® a—"
] ®
A\ AN
., A s,
Ben Lengerich © University of Wisconsin-Madison 2026

[Kipf 2016]

https://tkipf.github.io/graph-convolutional-networks/

Graph Convolutional Networks

| .
(i) Graph
<* _..,:f' ra

mG=(V,E) - .

0 1 1 1 0 0

1 0 1 0 0 0

1 1 0 0 1 1

Adjacency matrix 4 =

1 0 0 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0

B - Slides

courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

L
/% =
() _Graph

mG=(V,E) - .
3 0 0 0 0 0
0 2 0 0 0 0
0 0 4 0 0 0
Degree matrix D =
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2
- - Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

[
SO
@' Graph

P = D'/2AD"1/2

= G=(V,E) . ;
1 1 1
0 V342 V3.v4 V3.41 0 0
1 1
V3.2 0 V2.4 0 0 0
1 1 0 0 1 1
Normalized p= V3.4 V2.2 Vi N2 Va2
adjacency matrix o 1
== 0 0 0 0 O
1 1
0 0 Va2 0 V2.2
1 1
0 o Va2 0 V22 0 .
_] Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

@' Graph Neural Network

m Graph Convolution Neural Network(GCN) [Kipf et al.,2017]

0 Aggregating the neighbors’ node features,
O Training the weights with Message-Passing Scheme

0 Architecture:
HE+D = (PHOW®)
neural networks (&)
.-.;3.551 NODE ’ ."‘: .
A~
/ '._\ -'_..
.f _____“’ neural networks I..
[neural * r
b . +netwurks :4.‘t .
'
¢ .’J", ""-.geural networks
INPUT GRAPH A
Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

() GCN and CNN

m CNN is also a (Message-Passing) GNN

0 Aggregating the eight neighbors‘ and its own features

1]1[1]o]o
041)1/1]0 4
o111
o|joj1|1|0
0o|1{1|0]|0
Image Convolved
Feature

Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

[-
@' Graph

L=1I-D2AD~1/?

mG=(V,E) - .
-1 -1 —
1 V342 V3.V4 V3.41 0 0
-1 -1
V342 1 V2.4 0 0 0
-1 -1 1 0 -1 -1
Normalized L V3-V4 V2.4 Va2 4.2
Laplacian matrix “ — 1
== 0 0 1 0 0
V3 -v1
-1 ~1
0 0 Va.\2 0 1 V2.2
~1 -1
0 0 Va.v2 0 V242 1
- - Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

@| Graph Fourier Transform

m The eigendecomposition of Laplacian matrix

Ay 0
L:UAUT:U(s s)UT,

0 - A,
where U = [uy, ..., u,], A = diag([4,, ..., A,,]), u; and 4, for i € {1,2, ..., n} denote
the eigenvectors and eigenvalues, respectively, and 4; € [0,2].

O Orthonormal basis: U - UT =1,

m Graph Fourier Transform of a signal: = U"x
m Inverse Graph Fourier Transform of a signal: x = Ux

Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026

https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Recurrent Neural Networks

Ben Lengerich © University of Wisconsin-Madison 2026

Sequence data: order matters

The movie my friend has not seen is good
The movie my friend has seen is not good

y y

<2> <3> <4> <5> <6>

A

Output: y<> vy y y

|nput: X<1> X<2> X<3> X<4> X<5> X<6> Tlme

Ben Lengerich © University of Wisconsin-Madison 2025 Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. Packt, 2019

time step t
Recurrent Neural Networks (RNNs)

v
Networks we used
previously: also called Recurrent Neural 0.
feedforward neural Network (RNN)

networks
0

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd

Edition. Packt, 2019 Recurrent edge

Ben Lengerich © University of Wisconsin-Madison 2025

Recurrent Neural Networks (RNNs)

Single layer RNN

Un fold> vee

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Recurrent Neural Networks (RNNs)

i]]
Single layer RNN ‘ S Each hldden unlt B

receives 2 inputs
Unfofd>

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd

Edition. Packt, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Multilayer RNNs

m Multilayer RNN

)) o
(o
G

Unfold

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019

-
&3

Ben Lengerich © University of Wisconsin-Madison 2025

Recurrence unlocks many types of sequence tasks

F] C JC)
. JC JC) [i

many-to-one one-to-many

C JC JC C JC)

S N . JC JC)

many-to-many many-to-many
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Recurrence unlocks many types of sequence tasks

. JC)

many-to-one

Many-to-one: The input data is a sequence, but the output
is a fixed-size vector, not a sequence.

Example: sentiment analysis, the input is some text, and the
output is a class label.

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Recurrence unlocks many types of sequence tasks

C I JC

one-to-many

One-to-many: Input data is in a standard format (not a
sequence), the output is a sequence.

Example: Image captioning, where the input is an image, the
output is a text description of that image

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Recurrence unlocks many types of sequence tasks

Many-to-many: Both inputs and outputs are sequences. Can
be direct or delayed.

Example: Video-captioning, i.e., describing a sequence of
images via text (direct). Translation.

many-to-many many-to-many
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Under the hood: weight matrices in an RNN

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Under the hood: weight matrices in an RNN

e
=

Net input: Zé} Whmx() ~+ ‘NT;LIL]TIG";_1> + by,

Activation: h{t) = h(zéﬂ)

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Under the hood: weight matrices in an RNN

e
=

Net input: z;” = Wpyx® + Wy,,h® 1 b, Net input: zéﬁ = Wyhh“) + b,

Activation: h'® = g, (Z,S?) Output: .Y(t} — Oy (Zért})

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

The overall loss can be computed as
the sum over all time steps

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

T
L3 10
t=1

OL®Y LM gy t o oh® ahk)
W, Oy® oh®) 2 |

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Backpropagation through time

Computed as a multiplication of
adjacent time steps:

T

L=) LY / oh® L gh
t=1 —

) Oh(k) H Oh(i—1)

1=k+1

OL®Y LM gy tloh®| ank)
(2o W

k=1\)
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

Backpropagation through time

Straightforward, but
problematic:
vanishing / exploding
gradients!

Computed as a multiplication of
adjacent time steps:

T
L=) LY / oh(®) ﬁ oh()
t=1 p— '

OLM ALM gy®) (Xt: 5h(®) amm) 9) 182 Oh(i—1)
1

’ 1=k+1
Oh(F)| OW
———/

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019

3Wh,h - 8y(t) 3h(t

A challenge: Vanishing / exploding gradients

h, = tanh(Whhh,_, + Whxx,)

W—(_)= tanh W—>)= tanh W—> = tanh W—()= tanh

N, s ité%ck “——* N, S swck L h, S sTk IL’ N, S i%ck Ig h,
X, x2 X, X,

Largest singular value > 1: | Gradient clipping: Scale

Computing gradient | Exploding gradients gradient if its norm is too big
of h, involves many
grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (tk(2shold / arad rorm)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural neworks”

Ben Lengerich © University of Wisconsin-Madison 2025

Solutions to Vanishing / Exploding Gradients

* Gradient Clipping: set a max value for gradients if they grow to large (solves
only exploding gradient problem)

* Truncated backpropagation through time (TBPTT): limit the number of time
steps the signal can backpropagate after each forward pass. E.g., even if
the sequence has 100 elements/steps, we may only backpropagate through 20
or so.

Ben Lengerich © University of Wisconsin-Madison 2025

Solutions to Vanishing / Exploding Gradients

Long short-term memory (LSTM): uses a memory cell for modeling long-range
dependencies and avoid vanishing gradient problems

® ® ®

) t - |
Standard RNN | N E_L"
N 7. = | L)
| “ r
& ® &)
LSTM 619 / @ 6%)
o [IEAD]
. Yags a8 ;
® &

Ben Lengerich © University of Wisconsin-Madison 2025

Long-short term memory (LSTM)

* Not an oxymoron: 2 paths of memory

c<t>

To next
7 time step

t
Figure: Sebastian Raschleg,:i/ahid Mirjalili. Python Machine Learning. 3rd Edition.
Ben Lengerich © University of Wisconsin-Madison 2025 Birmingham, UK: Packt Publishing, 2019

Long-short term memory (LSTM)

[
<t-1> ~ <t>
C T >C
g Tanh
o o Tanh o 0
To next
Wy Wi by | Wy, W, b, ng Wgh bg Wox Won 0, layer
[[] L
h"_ pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Inside LSTM

— 1C?H'state at time t-1 Cell state at time t
<t- t>
C — ﬁ.
To next
layer
<t-1>
h — pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Inside LSTM

[]

il —>C*
Activation Activation
from time Tonext .iimet
1 \ layer

<t-1> /
h — pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

“Forget gate”: controls which information is
remembered and which is forgotten

Inside LSTM fi=o (W rox® £ WhED 4 b f)

[

Element- /

Wlse. | f

multiplic

ation

o
‘0 next
Wi W, by layer
<t-1>
h S— - - d pre. To next

h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

“Input gate”: it =o0 (Wimx“} + Wih1 4 bi)
Inside LSTM “Inputnode”y/ g: = tanh (Wg,x® + Wb~ + b,)

[]
c-::t-1::- ; N c-:t:-
Element-
wise ~ -
I g
addition
o Tanh
To next
Wi, W, b; ng Wgh bg layer
[1 L
h m— / N pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Forget Gate Input Node Input Gate

Inside LSTM . _ (O(tl)é‘ft) o (\.‘ {

FopApdating the cell state

C _ﬁc
(o} (o} Tanh
To next
Wy W, be| Wy Wy, b; ng Wgh bg layer
[1 1
h m— — pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Forget Gate Input Node Input Gate

Inside LSTM - _ (C<t1>>‘f,§) (>t @g‘t/

/|

Fordindating the ce ate

c-::t-1::- o N iy i -)c-:t:-

NP T
Output gate for
f i o g Tanh /, updating the values of
P hidden units:
= 0 (Woux! + Wy, h 71 4+ 1,
o o Tanh o 5 o = 7 (Woux g)
fo Wﬂ': bf Wix “Gh bi W, Wgh bg wnx oh bu
et [1)

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

Forget Gate Input Node Input Gate

Inside LSTM ot _ (C(tné‘ft) \ /

—_— D (it © gt)
pa
E Zindatina the a Nt o
cﬁt-1=- ~ —oAdpaating-tne celh-stale c-:t:-

(®) 2 >

Output gate for
f i o NG updating the values of

hidden units:
W, x{® + W, h=1 1 b,

o} o Tanh o (* h)

To next

x " ih i gx gh "g 0X Wah 0

et [1

pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019

Ben Lengerich © University of Wisconsin-Madison 2025

LSTM Back Together
— h!" = 0, ® tanh (C“))

c<t>

To next
time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Ben Lengerich © University of Wisconsin-Madison 2025 Birmingham, UK: Packt Publishing, 2019

Good reading

* The Unreasonable Effectiveness of Recurrent Neural Networks by
Andrej Karpathy

* On the difficulty of training recurrent neural networks by Razvan
Pascanu, Tomas Mikolov, Yoshua Bengio

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://proceedings.mlr.press/v28/pascanu13.pdf
https://proceedings.mlr.press/v28/pascanu13.pdf

Questions?

e
QWI WISCONSIN

, IIIIIIIIIIIIIIIIIIIII -MADISON
L

	Slide 1: STAT 992: Foundation Models for Biomedical Data
	Slide 2: Convolutions on non-image data?
	Slide 3: Graph Convolutional Networks
	Slide 4: Graph Convolutional Networks
	Slide 5: Graph Convolutional Networks
	Slide 6: Graph Convolutional Networks
	Slide 7: Graph Convolutional Networks
	Slide 8: Graph Convolutional Networks
	Slide 9: Graph Convolutional Networks
	Slide 10: Graph Convolutional Networks
	Slide 11: Recurrent Neural Networks
	Slide 12: Sequence data: order matters
	Slide 13: Recurrent Neural Networks (RNNs)
	Slide 14: Recurrent Neural Networks (RNNs)
	Slide 15: Recurrent Neural Networks (RNNs)
	Slide 16: Multilayer RNNs
	Slide 17: Recurrence unlocks many types of sequence tasks
	Slide 18: Recurrence unlocks many types of sequence tasks
	Slide 19: Recurrence unlocks many types of sequence tasks
	Slide 20: Recurrence unlocks many types of sequence tasks
	Slide 21: Under the hood: weight matrices in an RNN
	Slide 22: Under the hood: weight matrices in an RNN
	Slide 23: Under the hood: weight matrices in an RNN
	Slide 24: Backpropagation through time
	Slide 25: Backpropagation through time
	Slide 26: Backpropagation through time
	Slide 27: Backpropagation through time
	Slide 28: A challenge: Vanishing / exploding gradients
	Slide 29: Solutions to Vanishing / Exploding Gradients
	Slide 30: Solutions to Vanishing / Exploding Gradients
	Slide 31: Long-short term memory (LSTM)
	Slide 32: Long-short term memory (LSTM)
	Slide 33: Inside LSTM
	Slide 34: Inside LSTM
	Slide 35: Inside LSTM
	Slide 36: Inside LSTM
	Slide 37: Inside LSTM
	Slide 38: Inside LSTM
	Slide 39: Inside LSTM
	Slide 40: LSTM Back Together
	Slide 42: Good reading
	Slide 43: .

