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Convolutions on non-image data?
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Graph Convolutional Networks
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[Kipf 2016]



https://tkipf.github.io/graph-convolutional-networks/

Graph Convolutional Networks
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Graph Convolutional Networks
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Graph Convolutional Networks
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Graph Convolutional Networks

@' Graph Neural Network

m Graph Convolution Neural Network(GCN) [Kipf et al.,2017]

0 Aggregating the neighbors’ node features,
O Training the weights with Message-Passing Scheme

0 Architecture:
HE+D = (PHOW®)
neural networks (&)
.-.;3.551 NODE ’ ."‘: .
A~
/ '._\ -'_..
.f _____“’ neural networks I..
[ neural * r
b . +netwurks : ................ .4.‘t .
'
¢ .’J", ""-.geural networks
INPUT GRAPH A
Slides
courtesy of
Zhewei Wei

Ben Lengerich © University of Wisconsin-Madison 2026


https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf
https://weizhewei.com/assets/pdf/GCN_theory_short%20v6.pdf

Graph Convolutional Networks

() GCN and CNN

m CNN is also a (Message-Passing) GNN

0 Aggregating the eight neighbors‘ and its own features
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Graph Convolutional Networks
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Graph Convolutional Networks

@| Graph Fourier Transform

m The eigendecomposition of Laplacian matrix

Ay 0
L:UAUT:U(s s)UT,

0 - A,
where U = [uy, ..., u,], A = diag([4,, ..., A,,]), u; and 4, for i € {1,2, ..., n} denote
the eigenvectors and eigenvalues, respectively, and 4; € [0,2].

O Orthonormal basis: U - UT =1,

m Graph Fourier Transform of a signal: = U"x
m Inverse Graph Fourier Transform of a signal: x = Ux
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Recurrent Neural Networks
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Sequence data: order matters

The movie my friend has not seen is good
The movie my friend has seen is not good

y y

<2> <3> <4> <5> <6>

A

Output: y<> vy y y

|nput: X<1> X<2> X<3> X<4> X<5> X<6> Tlme

Ben Lengerich © University of Wisconsin-Madison 2025 Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. Packt, 2019



time step t
Recurrent Neural Networks (RNNs)

v
Networks we used
previously: also called Recurrent Neural 0.
feedforward neural Network (RNN)

networks
0

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd

Edition. Packt, 2019 Recurrent edge
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Recurrent Neural Networks (RNNs)

Single layer RNN

Un fold> vee

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019
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Recurrent Neural Networks (RNNs)

i ] ]
Single layer RNN ‘ S Each hldden unlt B

receives 2 inputs
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd

Edition. Packt, 2019
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Multilayer RNNs

m Multilayer RNN
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd
Edition. Packt, 2019
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Recurrence unlocks many types of sequence tasks
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Recurrence unlocks many types of sequence tasks

. JC )

many-to-one

Many-to-one: The input data is a sequence, but the output
is a fixed-size vector, not a sequence.

Example: sentiment analysis, the input is some text, and the
output is a class label.

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Recurrence unlocks many types of sequence tasks

C I JC

one-to-many

One-to-many: Input data is in a standard format (not a
sequence), the output is a sequence.

Example: Image captioning, where the input is an image, the
output is a text description of that image

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Recurrence unlocks many types of sequence tasks

Many-to-many: Both inputs and outputs are sequences. Can
be direct or delayed.

Example: Video-captioning, i.e., describing a sequence of
images via text (direct). Translation.

many-to-many many-to-many
Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019




Under the hood: weight matrices in an RNN

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Under the hood: weight matrices in an RNN

e
=

Net input: Zé} Whmx( ) ~+ ‘NT;LIL]TIG";_1> + by,

Activation: h{t) = h(zéﬂ)

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Under the hood: weight matrices in an RNN

e
=

Net input: z;” = Wpyx® + Wy,,h® 1 b, Net input: zéﬁ = Wyhh“) + b,

Activation: h'® = g, (Z,S?) Output: .Y(t} — Oy (Zért})

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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The overall loss can be computed as
the sum over all time steps

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
Ben Lengerich © University of Wisconsin-Madison 2025 Learning. 3rd Edition. Packt, 2019
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Backpropagation through time

Computed as a multiplication of
adjacent time steps:

T

L=) LY / oh® L gh
t=1 —
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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Backpropagation through time

Straightforward, but
problematic:
vanishing / exploding
gradients!

Computed as a multiplication of
adjacent time steps:

T
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine
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A challenge: Vanishing / exploding gradients

h, = tanh(Whhh,_, + Whxx,)

W—(_ )= tanh W—> )= tanh W—> = tanh W—( )= tanh

N, s ité%ck “——* N, S swck L h, S sTk IL’ N, S i%ck Ig h,
X, x2 X, X,

Largest singular value > 1: | Gradient clipping: Scale

Computing gradient | Exploding gradients gradient if its norm is too big
of h, involves many
grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (tk(2shold / arad rorm)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural neworks”
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Solutions to Vanishing / Exploding Gradients

* Gradient Clipping: set a max value for gradients if they grow to large (solves
only exploding gradient problem)

* Truncated backpropagation through time (TBPTT): limit the number of time
steps the signal can backpropagate after each forward pass. E.g., even if
the sequence has 100 elements/steps, we may only backpropagate through 20
or so.
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Solutions to Vanishing / Exploding Gradients

Long short-term memory (LSTM): uses a memory cell for modeling long-range
dependencies and avoid vanishing gradient problems
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Long-short term memory (LSTM)

* Not an oxymoron: 2 paths of memory

c<t>

To next
7 time step

t
Figure: Sebastian Raschleg,:i/ahid Mirjalili. Python Machine Learning. 3rd Edition.
Ben Lengerich © University of Wisconsin-Madison 2025 Birmingham, UK: Packt Publishing, 2019




Long-short term memory (LSTM)

[
<t-1> ~ <t>
C T >C
g Tanh
o o Tanh o 0
To next
Wy Wi by | Wy, W, b, ng Wgh bg Wox Won 0, layer
[ [ ] L
h"_ pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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Inside LSTM

— 1C?H'state at time t-1 Cell state at time t
<t- t>
C — ﬁ.
To next
layer
<t-1>
h — pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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Inside LSTM

[ ]

il —>C*
Activation Activation
from time Tonext .iimet
1 \ layer

<t-1> /
h — pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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“Forget gate”: controls which information is
remembered and which is forgotten

Inside LSTM fi=o (W rox® £ WhED 4 b f)

[

Element- /

Wlse. | f
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o
‘0 next
Wi W, by layer
<t-1>
h S— - - d pre. To next
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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“Input gate”: it =o0 (Wimx“} + Wih1 4 bi)
Inside LSTM  “Inputnode”y/ g: = tanh (Wg,x® + Wb~ + b, )

[ ]
c-::t-1::- ; N c-:t:-
Element-
wise ~ -
I g
addition
o Tanh
To next
Wi, W, b; ng Wgh bg layer
[ 1 L
h m— / N pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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Forget Gate Input Node  Input Gate

Inside LSTM . _ (O(tl)é‘ft) o (\.‘ {

FopApdating the cell state

C _ﬁc
(o} (o} Tanh
To next
Wy W, be| Wy Wy, b; ng Wgh bg layer
[ 1 1
h m— — pre. To next
h time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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Forget Gate Input Node  Input Gate

Inside LSTM - _ (C<t1>>‘f,§) (>t @g‘t/

/|

Fordindating the ce ate
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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Forget Gate Input Node  Input Gate
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019
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LSTM Back Together
— h!" = 0, ® tanh (C“))

c<t>

To next
time step

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.
Ben Lengerich © University of Wisconsin-Madison 2025 Birmingham, UK: Packt Publishing, 2019




Good reading

* The Unreasonable Effectiveness of Recurrent Neural Networks by
Andrej Karpathy

* On the difficulty of training recurrent neural networks by Razvan
Pascanu, Tomas Mikolov, Yoshua Bengio



http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://proceedings.mlr.press/v28/pascanu13.pdf
https://proceedings.mlr.press/v28/pascanu13.pdf
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