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Convolutions on non-image data?
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Graph Convolutional Networks
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[Kipf 2016]

https://tkipf.github.io/graph-convolutional-networks/
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Recurrent Neural Networks
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Sequence data: order matters

Ben Lengerich © University of Wisconsin-Madison 2025 Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. Packt, 2019
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Recurrent Neural Networks (RNNs)
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd 

Edition. Packt, 2019

Each hidden unit 
receives 2 inputs



Multilayer RNNs
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd 

Edition. Packt, 2019



Recurrence unlocks many types of sequence tasks
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019



Recurrence unlocks many types of sequence tasks
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Many-to-one: The input data is a sequence, but the output 
is a fixed-size vector, not a sequence.

Example: sentiment analysis, the input is some text, and the 
output is a class label.



Recurrence unlocks many types of sequence tasks
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

One-to-many: Input data is in a standard format (not a 
sequence), the output is a sequence.

Example: Image captioning, where the input is an image, the 
output is a text description of that image



Recurrence unlocks many types of sequence tasks
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Many-to-many: Both inputs and outputs are sequences. Can 
be direct or delayed.

Example: Video-captioning, i.e., describing a sequence of 
images via text (direct). Translation.



Under the hood: weight matrices in an RNN
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019



Under the hood: weight matrices in an RNN
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Net input:

Activation:



Under the hood: weight matrices in an RNN
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Net input:

Activation:

Net input:

Output:



Backpropagation through time
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

The overall loss can be computed as 
the sum over all time steps



Backpropagation through time
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019



Backpropagation through time
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Computed as a multiplication of 
adjacent time steps: 



Backpropagation through time
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Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine 
Learning. 3rd Edition. Packt, 2019

Computed as a multiplication of 
adjacent time steps: 

Straightforward, but 
problematic:
vanishing / exploding 
gradients!



A challenge: Vanishing / exploding gradients
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Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”

Pascanu et al., 2013 “On the difficulty of training recurrent neural neworks”



Solutions to Vanishing / Exploding Gradients

Ben Lengerich © University of Wisconsin-Madison 2025

• Gradient Clipping: set a max value for gradients if they grow to large (solves 
only exploding gradient problem)

• Truncated backpropagation through time (TBPTT): limit the number of time 
steps the signal can backpropagate after each forward pass. E.g., even if 
the sequence has 100 elements/steps, we may only backpropagate through 20 
or so.



Solutions to Vanishing / Exploding Gradients
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Long short-term memory (LSTM): uses a memory cell for modeling long-range 
dependencies and avoid vanishing gradient problems



Long-short term memory (LSTM)
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• Not an oxymoron: 2 paths of memory

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019



Long-short term memory (LSTM)
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019



Inside LSTM

Ben Lengerich © University of Wisconsin-Madison 2025

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019

Cell state at time t-1 Cell state at time t



Inside LSTM
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019

Activation 
from time 
t-1

Activation 
at time t



Inside LSTM
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019

Element-
wise 
multiplic
ation

“Forget gate”: controls which information is 
remembered and which is forgotten



Inside LSTM
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019

Element-
wise 
addition

“Input gate”:

“Input node”:



Inside LSTM
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019



Inside LSTM

Ben Lengerich © University of Wisconsin-Madison 2025

Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019

Output gate for 
updating the values of 
hidden units:



Inside LSTM
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019

Output gate for 
updating the values of 
hidden units:



LSTM Back Together
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Figure: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. 

Birmingham, UK: Packt Publishing, 2019



Good reading

• The Unreasonable Effectiveness of Recurrent Neural Networks by 
Andrej Karpathy 

• On the difficulty of training recurrent neural networks by Razvan 
Pascanu, Tomas Mikolov, Yoshua Bengio

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://proceedings.mlr.press/v28/pascanu13.pdf
https://proceedings.mlr.press/v28/pascanu13.pdf


.

Questions?
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