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Generative Models



Where we’re going: Deep Generative Models
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Discriminative Model (what we’ve seen so far)

Cat or dog?

Generative Model (what we’re going to see)



Where we’re going: Deep Generative Models
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NVIDIA is 
now valued 
at >$4.5T



A Linear Intro to Generative Models



Generative and Discriminative Models
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• Generative:
• Models the joint distribution P(𝑋, 𝑌).

• Discriminative:
• Models the conditional distribution P(𝑌|𝑋).

X

Y

P(X,Y)

P(Y|X=x) P(Y|X=x)



Two paths to P(Y|X)
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• Discriminative:

• Learn P 𝑋 𝑌 , P Y
• Calculate 𝑃 𝑋 = ׬

𝑌
𝑃 𝑋, 𝑌 𝑑𝑌 

Observe X, Y P Y X =
P X Y P(Y)

𝑃(𝑋)

Learn P Y XObserve X, Y

• Generative:



Two paths to classification
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• Discriminative:

• Learn P 𝑋 𝑌 , P Y
• Calculate 𝑃 𝑋 = ׬

𝑌
𝑃 𝑋, 𝑌 𝑑𝑌

Observe X, Y

Observe X, Y

• Generative:

෠𝑌 = argmaxYP Y X

෠𝑌 = argmaxYP X Y P(Y)



Example Discriminative Model: Logistic Regression
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Observe X, Y

• Parameterize:

• 𝑃 𝑌 = 1 𝑋 = 𝜎(𝜃𝑇𝑋) , where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the sigmoid function.

• 𝑃 𝑌 = 0 𝑋 = 1 − 𝑃(𝑌 = 1|𝑋)

• Recall: Why this parameterization?

𝐥𝐨𝐠
𝑷(𝒀 = 𝟏|𝑿)

𝑷(𝒀 = 𝟎|𝑿)
= log

𝜎(𝜃𝑇𝑋)

1 − 𝜎(𝜃𝑇𝑋)

= log

1

1+𝑒−𝜃𝑇𝑋

1 −
1

1+𝑒−𝜃𝑇𝑋

= log

1

1+𝑒−𝜃𝑇𝑋

(1+𝑒−𝜃𝑇𝑋)− 1

1+𝑒−𝜃𝑇𝑋

= log

1

1+𝑒−𝜃𝑇𝑋

𝑒−𝜃𝑇𝑋

1+𝑒−𝜃𝑇𝑋

 

=  log
1

𝑒−𝜃𝑇𝑋
= log 𝑒𝜃𝑇𝑋 = 𝜽𝑻𝑿

Learn P Y X

• Discriminative:



Example Discriminative Model: Logistic Regression
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Observe X, Y

• Parameterize:

• 𝑃 𝑌 = 1 𝑋 = 𝜎(𝜃𝑇𝑋) , where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the sigmoid function.

• 𝑃 𝑌 = 0 𝑋 = 1 − 𝑃(𝑌 = 1|𝑋)

• Estimate መ𝜃 from observations:
• ෠𝜃 = argmax𝜃 ς𝑖 𝑃(𝑌𝑖|𝑋𝑖; 𝜃)

       = argmax𝜃 σ𝑖[𝑌𝑖 log 𝜎 𝜃𝑇𝑋𝑖 + 1 − 𝑌𝑖 log(1 − 𝜎(𝜃𝑇𝑋𝑖))]

• Calculate 𝑃 𝑌 = 1 𝑋 = 𝜎(𝜃𝑇𝑋)

Learn P Y X

• Discriminative:



Example Generative Model: Naïve Bayes
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• Parameterize:

• Assume 𝑃 𝑋 𝑌 = ς𝑗=1
𝑑 𝑃 𝑋𝑗 𝑌 ,   𝑃 𝑌 = 𝑘 =

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑌=𝑘

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

• 𝑃 𝑋𝑗 𝑌 = 𝑁(𝜇𝑗𝑘 , 𝜎𝑗𝑘
2 ) 

Learn P 𝑋 𝑌 , P Y

Observe X, Y P Y X =
P X Y P(Y)

𝑃(𝑋)

Conditional independences of features X | Y
Frequency of labels

Y

𝑋1 … 𝑋𝑑



Example Generative Model: Naïve Bayes
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• Parameterize:

• Assume 𝑃 𝑋 𝑌 = ς𝑗=1
𝑑 𝑃 𝑋𝑗 𝑌 ,  𝑃 𝑌 = 𝑘 =

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑌=𝑘

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Learn P 𝑋 𝑌 , P Y

Observe X, Y P Y X =
P X Y P(Y)

𝑃(𝑋)

• Estimate:
• Ƹ𝜇, ො𝜎 = argmax𝜇,𝜎𝑃(𝑋|𝑌)

• Calculate 𝑃 𝑌 = 1 𝑋 =
ς𝑗=1

𝑑 𝑃 𝑋𝑗 𝑌 = 1 𝑃 𝑌=1

𝑃 𝑋



Summary
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• Discriminative:

• Learn P 𝑋 𝑌 , P Y
• Calculate 𝑃 𝑋 = ׬

𝑌
𝑃 𝑋, 𝑌 𝑑𝑌 

Observe X, Y P Y X =
P X Y P(Y)

𝑃(𝑋)

Learn P Y XObserve X, Y

• Generative:



What about MAP / Regularization?
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Observe X, Y

• Parameterize:

• 𝑃 𝑌 = 1 𝑋 = 𝜎(𝜃𝑇𝑋) , where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the sigmoid function.

• 𝑃 𝑌 = 0 𝑋 = 1 − 𝑃(𝑌 = 1|𝑋)

• Estimate መ𝜃 from observations:
• ෠𝜃 = argmax𝜃 ς𝑖 𝑃 𝑌𝑖 𝑋𝑖; 𝜃

       = argmax𝜃 σ𝑖 𝑌𝑖 log 𝜎 𝜃𝑇𝑋𝑖 + 1 − 𝑌𝑖 log(1 − 𝜎(𝜃𝑇𝑋𝑖))

• Calculate 𝑃 𝑌 𝑋

Learn P Y X; 𝜃

Prior P(𝜃)

𝑃(𝜃)

−𝑅(𝜃)

Logistic Regression:



Discriminative vs Generative Models
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• Discriminative models optimize the conditional likelihood:

෣𝜃𝑑𝑖𝑠𝑐 =  argmax𝜃𝑃 𝑌 𝑋; 𝜃  

• Generative models optimize the joint likelihood:
෣𝜃𝑔𝑒𝑛 =  argmax𝜃𝑃 𝑋, 𝑌; 𝜃  

Are these the same optimization?



Discriminative vs Generative Models
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• Discriminative models optimize the conditional likelihood:

෣𝜃𝑑𝑖𝑠𝑐 =  argmax𝜃𝑃 𝑌 𝑋; 𝜃  

• Generative models optimize the joint likelihood:
෣𝜃𝑔𝑒𝑛 =  argmax𝜃𝑃 𝑋, 𝑌; 𝜃

Are these the same optimization?

= argmax𝜃

𝑃 𝑋 𝑌; 𝜃 𝑃(𝑌; 𝜃)

𝑃(𝑋; 𝜃)

= argmax𝜃𝑃 𝑋 𝑌; 𝜃 𝑃 𝑌; 𝜃

Same optimization when 𝑷(𝑿; 𝜽) is invariant to 𝜽



Logistic Regression vs Naïve Bayes
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Logistic Regression Naïve Bayes

Discriminative Generative

Defines 𝑃 𝑌 𝑋; 𝜃 Defines 𝑃 𝑋, 𝑌; 𝜃

Estimates ෢𝜃𝑙𝑟 = argmax𝜃𝑃 𝑌 𝑋; 𝜃 Estimates ෢𝜃𝑛𝑏 = argmax𝜃𝑃 𝑋, 𝑌, 𝜃

Lower asymptotic error on classification Higher asymptotic error on classification

Slower convergence in terms of samples Faster convergence in terms of samples



Discriminative vs Generative: A Proposition
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• “While discriminative learning has lower asymptotic error, a generative 
classifier may also approach its (higher) asymptotic error much faster.”

LR
NB

Ng & Jordan 2001

Why?



Discriminative vs Generative: A Proposition
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• “While discriminative learning has lower asymptotic error, a generative 
classifier may also approach its (higher) asymptotic error much faster.”

• Underlying assumption of this statement:
• Generative models of the form 𝑷 𝑿, 𝒀, 𝜽  make more simplifying assumptions 

than do discriminative models of the form 𝑷 𝒀|𝑿, 𝜽 .

• Not always true

• “So far there is no theoretically correct, general criterion for choosing between the 
discriminative and the generative approaches to classification of an 
observation x into a class y; the choice depends on the relative confidence we have 
in the correctness of the specification of either p(y|x) or p(x, y) for the data.”

Xue & Tittering 2008

https://link.springer.com/article/10.1007/s11063-008-9088-7
https://link.springer.com/article/10.1007/s11063-008-9088-7


Modern Deep Generative Models (DGMs)
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• Goal: Generative models of the form 𝑷 𝑿, 𝒀, 𝜽  without strong 
simplifying assumptions.

• Hidden structure 𝑧 that explains high-dim. 𝑥

• Fundamental challenge: We never observe 𝑧

• This makes two core computations difficult:

• Marginal likelihood: 𝑝𝜃 𝑥 = ׬ 𝑝𝜃 𝑥, 𝑧 𝑑𝑧 

• Posterior inference: 𝑝𝜃 𝑧 ∣ 𝑥 ∝ 𝑝𝜃 𝑥 ∣ 𝑧 𝑝(𝑧) 

• Each type of DGM makes a tradeoff



Autoencoders



Overarching goals
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Unsupervised learning (no labeled examples)

• Finding the subspace/manifold of data distribution

• Visualizing data in high dimensions

• Sampling and generating new examples



Autoencoders
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෤𝑥 = 𝑓 ℎ = 𝑓 𝑔 𝑥

[Michelucci 2022]

https://arxiv.org/pdf/2201.03898
https://arxiv.org/pdf/2201.03898


Why reduce dimensionality?
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• Reduce computation cost of downstream tasks.

• Improve statistical stability of downstream tasks.

• Learn to generate samples (variational autoencoders).



Why reduce dimensionality?
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• Reduce computation cost of downstream tasks.

• Improve statistical stability of downstream tasks.

• Learn to generate samples (variational autoencoders).

• Denoise observations.

Gondara, L. (2016, December). Medical image denoising using convolutional denoising autoencoders. In 
2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) (pp. 241-246). IEEE.

What if we train our 
autoencoder on data with 
intentionally-added noise?



A Basic Fully-Connected Autoencoder
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A Basic Fully-Connected Autoencoder
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A Basic Fully-Connected Autoencoder
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Often
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Ignore this part

Can use latent 
embedding as 
input for 
downstream 
ML tasks



Autoencoder Variants



Denoising Autoencoders
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Add dropout after the 
input, or add noise to the 
input to learn to denoise 
inputs



Autoencoders and Dropout
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Add dropout layers to 
force the network to learn 
redundant features



Sparse Autoencoders
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Add L1 penalty to the loss 
to learn sparse feature 
representations



Sparse Autoencoders
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Useful for post-
hoc 
interpretability



Variational Autoencoders
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Define latent dim to follow 
Normal distribution

Enables sampling



Generative Adversarial Networks (GANs)



Generative Adversarial Networks
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Discriminator:

Generator:



Generative Adversarial Nets (GANs)
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https://arxiv.org/abs/1406.2661

https://arxiv.org/abs/1406.2661


Lots of GAN Applications
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Human Faces generated by VAEs Human Faces generated by GANs

https://becominghuman.ai/generative-adversarial-
networks-gans-human-creativity-2fc61283f3f6



Generative Adversarial Nets (GANs)
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• The original purpose is to generate new data

• Classically for generating new images, but applicable to wide range of 
domains

• Learns the training set distribution and can generate new images that 
have never been seen before

• Similar to VAE, and in contrast to e.g., autoregressive models or RNNs 
(generating one word at a time), GANs generate the whole output all 
at once



GAN Training
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Discriminator:

Generator:



GAN Training – An Adversarial Game
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Discriminator: learns to become better at 
distinguishing real from generated images

Generator: learns to generate better images 
to fool the discriminator



GAN Training – Putting it together
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Discriminator:

Generator:



GAN Training – Putting it together
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Discriminator gradient for update (gradient ascent):

want large probability on 
real images

want small probability on 
generated images



GAN Training – Putting it together
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Generator gradient for update (gradient descent):

Want discriminator to predict 
poorly on fake images
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Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 
Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural 
Information Processing Systems, pp. 2672-2680. 2014.
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GAN Training – Convergence?

• Converges when Nash-equilibrium (Game Theory concept) is 
reached in the minmax (zero-sum) game

• Nash-equilibrium in Game Theory is reached when the actions of 
one player won't change depending on the opponent's actions

• Here, this means that the GAN produces realistic images and the 
discriminator outputs random predictions (probabilities close to 
0.5)
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GAN Training – Saddle point interpretation
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GAN Training Problems

• Oscillation between generator and discriminator loss
• Mode collapse (generator produces examples of a particular kind 

only)
• Discriminator is too strong, such that the gradient for the 

generator vanishes and the generator can't keep up

Instead of gradient descent with 

Do gradient ascent with “Non-saturating” GAN
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GAN Training Problems

• Oscillation between generator and discriminator loss
• Mode collapse (generator produces examples of a particular kind 

only)
• Discriminator is too strong, such that the gradient for the 

generator vanishes and the generator can't keep up
• Discriminator is too weak, and the generator produces non-

realistic images that fool it too easily (rare problem, though)
• Sensitive to learning rate and other hyper parameters
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GAN Training Problems

• Lots of Tips & Tricks:

https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks


GANs vs VAEs: A Symmetry
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Hu et al. “Unifying Deep Generative Models”

Bonus

https://arxiv.org/abs/1706.00550


GANs and Mode Collapse
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Human Faces generated by VAEs Human Faces generated by GANs

https://becominghuman.ai/generative-adversarial-
networks-gans-human-creativity-2fc61283f3f6

Bonus



What to remember

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Summary
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Property VAE GAN

What we specify Prior p 𝑧 , Likelihood 𝑝𝜃(𝑥 ∣ 𝑧) Prior p 𝑧 , Generator 𝐺𝜃(𝑧)

Induced 𝑝(𝑥)
𝑝𝜃 x =  න

𝑧

𝑝𝜃 𝑋 𝑧 𝑝 𝑧 𝑑𝑧 𝑝𝜃 x = න
𝑧

𝑝𝜖 𝑥 − G𝜃 z p z dz

Simplifying 
assumption

Choose a restricted variational posterior 
𝑞𝜙(𝑧 ∣ 𝑥)

Replace NLL with a distributional 
discrepancy on samples 

(adversarial/IPM).

Training 
objective

ELBO:

𝐸𝑞 log 𝑝𝜃 𝑥 𝑧 − 𝐾𝐿(𝑞𝜙(𝑧 ∣ 𝑥) 𝑝 𝑧

Minimax fooling discriminator

What’s ignored 
from 𝑝𝜃 𝑥

𝐾𝐿(𝑞𝜙(𝑧 ∣ 𝑥) 𝑝𝜃 𝑧 ∣ 𝑥 All of NLL: log 𝑝𝜃 𝑥 isn’t evaluated or 
maximized.

Modes Covering Collapse

Generated 
Samples

Blurry Realistic

Training Relatively robust Fragile



Diffusion Models



Overview and comparison of generative models

Ben Lengerich © University of Wisconsin-Madison 2026 Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Diffusion
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Diffusion models: forward pass
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Diffusion models: reverse pass
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Diffusion models: generating a new sample
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Should we really run this process on pixels?
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Latent Diffusion



Stable Diffusion: Add Text Conditioning
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Latent Diffusion

Text



Stable Diffusion: Modern Image Generators

Ben Lengerich © University of Wisconsin-Madison 2026



More reading

Ben Lengerich © University of Wisconsin-Madison 2026

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://theaisummer.com/diffusion-models/
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Summary
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Property VAE GAN Diffusion

What we 
specify

Prior p 𝑧 , Likelihood 𝑝𝜃(𝑥 ∣ 𝑧) Prior p 𝑧 , Generator 𝐺𝜃(𝑧) Fixed forward noising 𝑞(𝑥𝑡 ∣
𝑥 𝑡−1 ); learn reverse p𝜃(𝑥𝑡−1 ∣ 𝑥𝑡)

Induced 𝑝(𝑥)
𝑝𝜃 x =  න

𝑧

𝑝𝜃 𝑋 𝑧 𝑝 𝑧 𝑑𝑧
𝑝𝜃 x

= න
𝑧

𝑝𝜖 𝑥 − G𝜃 z p z dz

𝑝𝜃 x

= ׬ 𝑝 𝑥𝑇 ෑ

𝑡

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 𝑑𝑥 

Simplifying 
assumption

Choose a restricted variational 
posterior 𝑞𝜙(𝑧 ∣ 𝑥)

Replace NLL with a 
distributional discrepancy 

on samples 
(adversarial/IPM).

Fix forward noise 𝑞; and optimize a 
variational bound on − log 𝑝𝜃 𝑥0 .

Training 
objective

ELBO:
𝐸𝑞 log 𝑝𝜃 𝑥 𝑧 − 𝐾𝐿(𝑞𝜙(𝑧

∣ 𝑥) 𝑝 𝑧

Minimax fooling 
discriminator

VLB / score matching: with 
Gaussian schedules reduces to 

𝔼𝑡,𝑥0,𝜖[𝑤 𝑡 ∥ 𝜖 − 𝜖𝜃 𝑥𝑡 𝑡 ∥2]

What’s 
ignored from 
𝑝𝜃 𝑥

𝐾𝐿(𝑞𝜙(𝑧 ∣ 𝑥) 𝑝𝜃 𝑧 ∣ 𝑥 All of NLL: log 𝑝𝜃 𝑥 isn’t 
evaluated or maximized.

Exact NLL not computed; optimize a 
variational upper bound on NLL 

(equivalently lower bound on 
log 𝑝 ) ; practical losses often 

reweight or drop constants from 
the exact VLB.

Modes Covering Collapse Covering



Questions?
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