Date Lecture Readings Logistics
Module 1: Introduction and Foundations
9/3 Lecture #1 (Prof. Lengerich):
Course Introduction, Introduction to DL
[ slides | notes ]

9/8 Lecture #2 (Prof. Lengerich):
A Brief History of DL
[ slides | notes ]

HW1 Out

9/10 Lecture #3 (Prof. Lengerich):
Statistics / linear algebra / calculus review
[ slides | notes ]

9/15 Lecture #4 (Prof. Lengerich):
Single-layer networks
[ slides | notes ]

9/17 Lecture #5 (Prof. Lengerich):
Parameter Optimization and Gradient Descent
[ slides | notes ]

HW2 Out

9/22 Lecture #6 (Prof. Lengerich):
Automatic differentiation with PyTorch
[ slides | notes ]

9/24 Lecture #7 (Prof. Lengerich):
Cluster and cloud computing resources
[ slides | notes ]

Module 2: Neural Networks
9/29 Lecture #8 (Prof. Lengerich):
Multinomial logistic regression
[ slides | notes ]

10/1 Lecture #9 (Prof. Lengerich):
Multi-layer perceptrons and backpropagation
[ slides | notes ]

HW3 Out

10/6 Lecture #10 (Prof. Lengerich):
Regularization
[ slides | notes ]

10/8 Lecture #11 (Prof. Lengerich):
Normalization / Initialization
[ slides | notes ]

10/13 Lecture #12 (Prof. Lengerich):
Optimization, Learning Rates
[ slides | notes ]

10/15 Lecture #13 (Prof. Lengerich):
CNNs
[ slides | notes ]

Project Proposal Due

10/20 Lecture #14 (Prof. Lengerich):
Review
[ slides | notes ]

10/22 Midterm Exam
Module 3: Intro to Generative Models
10/27 Lecture #15 (Prof. Lengerich):
A Linear Intro to Generative Models
[ slides | notes ]

10/29 Lecture #16 (Prof. Lengerich):
Factor Analysis, Autoencoders, VAEs
[ slides | notes ]

11/3 Lecture #17 (Prof. Lengerich):
Generative Adversarial Networks
[ slides | notes ]

11/5 Lecture #18 (Prof. Lengerich):
Diffusion Models
[ slides | notes ]

Project Midway Report Due

Module 4: Large Language Models
11/10 Lecture #19 (Prof. Lengerich):
Sequence Learning with RNNs
[ slides | notes ]

HW4 Out

11/12 Lecture #20 (Prof. Lengerich):
Attention, Transformers
[ slides | notes ]

11/17 Lecture #21 (Prof. Lengerich):
GPT Architectures
[ slides | notes ]

11/19 Lecture #22 (Prof. Lengerich):
Unsupervised Training of LLMs
[ slides | notes ]

11/24 Lecture #23 (Prof. Lengerich):
Supervised Fine-tuning of LLMs
[ slides | notes ]

HW5 Out

11/26 Lecture #24 (Prof. Lengerich):
Prompts and In-context learning
[ slides | notes ]

12/1 Lecture #25 (Prof. Lengerich):
Foundation models, alignment, explainability
[ slides | notes ]

12/3 Lecture #26 (Prof. Lengerich):
Open directions in LLM research
[ slides | notes ]

Module 5: Student Presentations
12/8 Project Presentations
12/10 Project Presentations
12/17 Final Exam